Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 604
Filter
1.
Adv Mater ; : e2311041, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007252

ABSTRACT

2D single-phase multiferroic materials with the coexistence of electric and spin polarization offer a tantalizing potential for high-density multilevel data storage. One of the current limitations for application is the scarcity of the materials, especially those combine ferromagnetism and ferroelectricity at high temperatures. Here, robust ferrimagnetism and ferroelectricity in 2D ɛ-Fe2O3 samples with both single-crystalline and polycrystalline form are demonstrated. Interestingly, the polycrystalline nanosheets also exhibit easily switchable ferroelectric polarizations comparable to that of single crystals. The existence of grain boundary does not hinder the switching and retention of ferroelectric polarization. Furthermore, the ɛ-Fe2O3 nanosheets show ferrimagnetic and ferroelectric Curie temperatures up to 800 K, which reaches record highs in 2D single-phase multiferroic materials. This work provides important progress in the exploration of 2D high-temperature single-phase multiferroics for potentially compact high-temperature information nanodevices.

2.
Int J Pharm ; : 124470, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004294

ABSTRACT

The influence of different preparation methods on the physicochemical properties of amorphous solid forms have gained considerable attention, especially with recent publications on pharmaceutical polyamorphism. In the present study, we have investigated the possible occurrence of polyamorphism in the drug celecoxib (CEL) by investigating the thermal behavior, morphology, structure, molecular mobility and physical stability of amorphous CEL obtained by quench-cooling (QC), ball milling (BM) and spray drying (SD). Similar glass transition temperatures but different recrystallization behaviors were observed for CEL-QC, CEL-BM and CEL-SD using modulated differential scanning calorimetry analysis. A correlation between the different recrystallization behaviors of the three CEL amorphous forms and the respective distinct powder morphologies, was also found. Molecular dynamics simulations however, reveal that CEL presents similar molecular conformational distributions when subjected to QC and SD. Moreover, the obtained molecular conformational distributions of CEL are different from the ones found in its crystal structure and also from the ones found in the lowest-energy structure obtained by quantum mechanical calculations. The type and strength of CEL hydrogen bond interactions found in CEL-QC and CEL-SD systems are almost identical, though different from the ones presented in the crystal structure. Pair distribution function analyses and isothermal microcalorimetry show similar local structures and structural relaxation times, respectively, for CEL-QC, CEL-BM and CEL-SD. The present work shows that not only similar physicochemical properties (glass transition temperature, and structural relaxation time), but also similar molecular conformational distributions were observed for all prepared CEL amorphous systems. Hence, despite their different recrystallization behaviors, the three amorphous forms of CEL did not show any signs of polyamorphism.

3.
Eur J Pharm Biopharm ; : 114395, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971200

ABSTRACT

Drugs with poor water and lipid solubility are termed "brick dust." We previously successfully developed a co-amorphous system of a novel neuropeptide Y5 receptor antagonist (AntiY5R), a brick dust molecule, using sodium taurocholate (NaTC) as a co-former. However, the maximum improvement in AntiY5R dissolution by the co-amorphous system was only approximately 10 times greater than that of the crystals. Therefore, in the current study, other bile salts, including sodium cholate (NaC), sodium chenodeoxycholate (NaCC), and sodium glycocholate (NaGC), were examined as co-formers to further improve AntiY5R dissolution. NaC, NaCC, and NaGC have glass transition temperatures above 150 °C. All three co-amorphous systems prepared successfully retained the amorphous form of AntiY5R for 3 months at 40 °C, but the co-amorphous system with NaGC (AntiY5R-NaGC; 1:9 M ratio) provided the highest improvement in AntiY5R dissolution, which was approximately 50 times greater than that of the crystals. Possible intermolecular interactions via the glycine moiety of NaGC more than the other bile salts would contribute to the highest dissolution enhancement with AntiY5R-NaGC. Thus, NaGC would be a promising co-former for formulating stable co-amorphous systems to enhance the dissolution behavior of brick dust molecules.

4.
Nanomaterials (Basel) ; 14(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38869586

ABSTRACT

The presence of a polymer network and/or the addition of ferroelectric nanoparticles to a nematic liquid crystal are found to lower transition temperatures and birefringence, which indicates reduced orientational order. In addition, the electro-optic switching voltage is considerably increased when a polymer network is formed by in situ polymerization in the nematic state. However, the resulting polymer network liquid crystal switches at similar voltages as the neat liquid crystal when polymerization is performed at an elevated temperature in the isotropic state. When nanoparticle dispersions are polymerized at an applied DC voltage, the transition temperatures and switching voltages are reduced, yet they are larger than those observed for polymer network liquid crystals without nanoparticles polymerized in the isotropic phase.

5.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893367

ABSTRACT

Silver iodide is a prototype compound of superionic conductors that allows ions to flow through its structure. It exhibits a first-order phase transition at 420 K, characterized by an abrupt change in its ionic conductivity behavior, and above this temperature, its ionic conductivity increases by more than three orders of magnitude. Introducing small concentrations of carbon into the silver iodide structure produces a new material with a mixed conductivity (ionic and electronic) that increases with increasing temperature. In this work, we report the experimental results of the ionic conductivity as a function of the reciprocal temperature for the (AgI)x - C(1-x) mixture at low carbon concentrations (x = 0.99, 0.98, and 0.97). The ionic conductivity behavior as a function of reciprocal temperature was well fitted using a phenomenological model based on a random variable theory with a probability distribution function for the carriers. The experimental data show a proximity effect between the C and AgI phases. As a consequence of this proximity behavior, carbon concentration or temperature can control the conductivity of the (AgI)x - C(1-x) mixture.

6.
Polymers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891440

ABSTRACT

The frontal polymerization (FP) of carbon/epoxy (C/Ep) composites is investigated, considering FP as a viable route for the additive manufacturing (AM) of thermoset composites. Neat epoxy (Ep) resin-, short carbon fiber (SCF)-, and continuous carbon fiber (CCF)-reinforced composites are considered in this study. The evolution of the exothermic reaction temperature, polymerization frontal velocity, degree of cure, microstructures, effects of fiber concentration, fracture surface, and thermal and mechanical properties are investigated. The results show that exothermic reaction temperatures range between 110 °C and 153 °C, while the initial excitation temperatures range from 150 °C to 270 °C. It is observed that a higher fiber content increases cure time and decreases average frontal velocity, particularly in low SCF concentrations. This occurs because resin content, which predominantly drives the exothermic reaction, decreases with increased fiber content. The FP velocities of neat Ep resin- and SCF-reinforced composites are seen to be 0.58 and 0.50 mm/s, respectively. The maximum FP velocity (0.64 mm/s) is observed in CCF/Ep composites. The degree of cure (αc) is observed to be in the range of 70% to 85% in FP-processed composites. Such a range of αc is significantly low in comparison to traditional composites processed through a long cure cycle. The glass transition temperature (Tg) of neat epoxy resin is seen to be approximately 154 °C, and it reduces slightly to a lower value (149 °C) for SCF-reinforced composites. The microstructures show significantly high void contents (12%) and large internal cracks. These internal cracks are initiated due to high thermal residual stress developed during curing for non-uniform temperature distribution. The tensile properties of FP-cured samples are seen to be inferior in comparison to autoclave-processed neat epoxy. This occurs mostly due to the presence of large void contents, internal cracks, and a poor degree of cure. Finally, a highly efficient and controlled FP method is desirable to achieve a defect-free microstructure with improved mechanical and thermal properties.

7.
Polymers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891486

ABSTRACT

The in-line control of curing during the molding process significantly improves product quality and ensures the reliability of packaging materials with the required thermo-mechanical and adhesion properties. The choice of the morphological and thermo-mechanical properties of the molded material, and the accuracy of their determination through carefully selected thermo-analytical methods, play a crucial role in the qualitative prediction of trends in packaging product properties as process parameters are varied. This work aimed to verify the quality of the models and their validation using a highly filled molding resin with an identical chemical composition but 10 wt% difference in silica particles (SPs). Morphological and mechanical material properties were determined by dielectric analysis (DEA), differential scanning calorimetry (DSC), warpage analysis and dynamic mechanical analysis (DMA). The effects of temperature and injection speed on the morphological properties were analyzed through the design of experiments (DoE) and illustrated by response surface plots. A comprehensive approach to monitor the evolution of ionic viscosity (IV), residual enthalpy (dHrest), glass transition temperature (Tg), and storage modulus (E) as a function of the transfer-mold process parameters and post-mold-cure (PMC) conditions of the material was established. The reliability of Tg estimation was tested using two methods: warpage analysis and DMA. The noticeable deterioration in the quality of the analytical signal for highly filled materials at high cure rates is discussed. Controlling the temperature by increasing the injection speed leads to the formation of a polymer network with a lower Tg and an increased storage modulus, indicating a lower density and a more heterogeneous structure due to the high heating rate and shear heating effect.

8.
Materials (Basel) ; 17(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930214

ABSTRACT

Using a microscopic model, the temperature dependence of two phonon modes, ω0 = 32 cm-1 and 72 cm-1, and their damping of the ferroelastic LiCsSO4 compound, are calculated within Green's function technique. It is observed that the first mode increases whereas the second one decreases with increasing temperature T. This different behavior is explained with different sign of the anharmonic spin-phonon interaction constant. At the ferroelastic phase transition temperature TC, there is a kink in both modes due to the spin-phonon interaction. The phonon damping increases with T, and again shows an anomaly at TC. The contributions of the spin-phonon and phonon-phonon interactions are discussed. TC is reduced by decreasing the nanoparticle size, and can be enhanced by doping with K, Rb and NH4 ions at the Cs site. TC decreases by doping with Na, K or Rb on the Li site. The specific heat Cp also shows a kink at TC. Cp decreases with decreasing nanoparticle size and the peak disappears, whereas Cp increases with increasing K ion doping concentration.

9.
J Mol Model ; 30(7): 196, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837088

ABSTRACT

CONTEXT: To determine the miscibility of liquids at high temperatures using the concept of Hildebrand solubility parameter δ , the current practice is to examine the difference in δ between two liquids at room temperature, assuming that δ is not sensitive to temperature. However, such an assumption may not be valid for certain polymer blends and solutions. Therefore, a knowledge of the δ values of the liquids of interest at high temperatures is desirable. The determination of δ at high temperatures, especially for high-molecular-weight polymers, is impossible, as polymers have vapor pressures of zero. To this end, molecular dynamics (MD) simulations provide a practical means for determining δ over a wide range of temperatures. In this work, we study the temperature dependence of δ of five hydrocarbon polymers: polyethylene (PE), isotactic and atactic polypropylene (i-PP and a-PP), polyisobutylene (PIB), and polyisoprene (PI) in five hydrocarbon solvents: n-pentane, n-hexane, n-dodecane, isobutene, and cyclohexane. The polymers are modeled as monodisperse chains with 100 repeat units. The average δ values of PE, i-PP, a-PP, PIB, and PI at 300 K are determined as 18.6, 14.9, 14.6, 14.3, and 16.4 MPa1/2, respectively, in a good agreement with experimental data. The δ values of these polymers at various temperatures are also determined. The temperature dependence of δ is fitted to two linear equations, one above and the other below the polymer's glass transition temperature Tg. The δ values are more sensitive to temperature at T ≥ Tg. The Tg values of the polymers, determined based upon their specific volumes and δ values agree with the experiment qualitatively. The determination of the temperature dependence of δ has a great potential for industrial applications, such as determining miscibility, developing polymeric organogelators as flocculants and oil spill treating agents, and identifying potential solvents and ideal processing temperatures. METHODS: The MD simulations are performed using the GROMACS 2022.3 package with optimized potential for liquid simulations-all atom (OPLS-AA) force field parameters. All polymers are built as extended chains using CHARMM-GUI Polymer Builder.

10.
Small ; : e2401545, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837884

ABSTRACT

Polar metal halide hybrid perovskites (PHPs) that exhibit outstanding bulk photovoltaic effect (BPVE), excellent semiconductor features, and strong radiation absorption ability, have shown prominent advantages in highly sensitive direct X-ray detection. However, it is still a challenge to explore PHPs with high BPVE temperature ranges, answering the demand of developing thermally stable passive X-ray detection. Herein, by intercalating arylamine into lead tribromide and inducing order-disorder phase transition, a 2D multilayered PHPs (BZA)2(MA)Pb2Br7 (BZPB, BZA = benzylamine, MA = methylamine) is synthesized. BZPB crystallizes in a polar space group Aea2 at a low-temperature phase and demonstrates a significant open-circuit of 0.3 V deriving from BPVE under X-ray irradiation. Meanwhile, the strong X-ray absorption coefficient and outstanding carrier transport capability of the bilayered lead halide framework associated with the polar BPVE give BZPB excellent X-ray detection abilities. At 0 V bias, the impressive sensitivity of BZPB is 98 µC Gy-1 cm-2. Importantly, the introduction of the rigid BZA ring increases the energy barrier of phase transition and thus dramatically enhances the X-ray detection operating temperature of BZPB up to 409 K without significant performance degradation. This work strongly reveals the great potential of rational design of metal halide hybrid perovskites for X-ray detection applications.

11.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837050

ABSTRACT

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Subject(s)
Freeze Drying , Freeze Drying/methods , Spectroscopy, Fourier Transform Infrared , Spray Drying , Microbial Viability , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/physiology , Lactobacillales/metabolism , Lactobacillales/physiology , Desiccation
12.
Macromol Rapid Commun ; : e2400312, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860731

ABSTRACT

Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.

13.
Macromol Rapid Commun ; : e2400161, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794832

ABSTRACT

Machine learning can be used to predict the properties of polymers and explore vast chemical spaces. However, the limited number of available experimental datasets hinders the enhancement of the predictive performance of a model. This study proposes a machine learning approach that leverages transfer learning and ensemble modeling to efficiently predict the glass transition temperature (Tg) of fluorinated polymers and guide the design of high Tg copolymers. Initially, the quantum machine 9 (QM9) dataset is employed for model pretraining, thus providing robust molecular representations for the subsequent fine-tuning of a specialized copolymer dataset. Ensemble modeling is used to further enhance prediction robustness and reliability, effectively addressing the problems owing to the limited and unevenly distributed nature of the copolymer dataset. Finally, a fine-tuned ensemble model is used to navigate a vast chemical space comprising 61 monomers and identify promising candidates for high Tg fluorinated polymers. The model predicts 247 entries capable of achieving a Tg over 390 K, of which 14 are experimentally validated. This study demonstrates the potential of machine learning in material design and discovery, highlighting the effectiveness of transfer learning and ensemble modeling strategies for overcoming the challenges posed by small datasets in complex copolymer systems.

14.
ACS Appl Mater Interfaces ; 16(23): 30336-30343, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38781291

ABSTRACT

Thermomechanical properties of ultrathin films are crucial for fabrication and use of reliable thin electronic devices. Due to the lack of precise measurement techniques, the thermal deformation behavior of ultrathin films has not yet been clarified. Here, we propose a film on heated liquid (FOHL) method to simultaneously measure the coefficient of thermal expansion (CTE) and glass transition temperature (Tg) of multiple ultrathin polymer films. Free thermal expansion of thin films without substrate interaction can be guaranteed when the thin films are afloat on a liquid surface. To investigate the thermal behavior in a wide temperature range, glycerol is adopted as a thermally stable heating platform owing to its high boiling point of 290 °C. The thin films are transferred onto the glycerol surface from the water surface using the hygroscopic properties of glycerol. Highly accurate and high-throughput thermal strain measurement is achieved using three-dimensional digital image correlation (3D-DIC). The thermomechanical properties of ultrathin polystyrene thin films of various thicknesses (25-400 nm) are precisely characterized utilizing the FOHL and 3D-DIC method.

15.
Adv Sci (Weinh) ; 11(26): e2309393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704689

ABSTRACT

Shape memory polymers (SMPs) undergo changes between arbitrary shapes and programmed shapes upon exposure to specific stimulus, allowing them to restore their original shape. All kinds of external stimuli have a threshold to change the shape of the SMP. Especially, for the thermal type SMP, the critical temperature for shape restoration is typically near the glass transition temperature (Tg). In this study, the controllability of the restoration temperature is analyzed by adjusting the Tg of the polymer using Norland Optical Adhesive 63, which can be cured with UV irradiation. By varying the ambient temperature from 20 to 120 °C during UV exposure, Tg changes ranging from 35.84 to 50.50 °C are obtained, with corresponding changes in restoration temperature. As a practical application, a thermal-activated SMP dry adhesive is developed with programmable Tg and switchable adhesion. The fabricated SMP dry adhesive exhibited strong adhesion to substrates with various surface roughness. Additionally, the shape memory effect allowed for easy detachment through shape recovery, and different adhesive performances at different temperatures are achieved by programming various Tg values. Moreover, the simple manufacturing process of the SMP dry adhesive is confirmed to be suitable for continuous fabrication processes based on roll-to-roll methods.

16.
Mol Pharm ; 21(6): 3017-3026, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38758116

ABSTRACT

Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.


Subject(s)
Drug Stability , Excipients , Freeze Drying , Polymers , Povidone , Transition Temperature , Trehalose , Freeze Drying/methods , Povidone/chemistry , Trehalose/chemistry , Excipients/chemistry , Polymers/chemistry , Sucrose/chemistry , Sugars/chemistry , Hydrogen Bonding , Drug Storage , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning , Humidity , Pyrrolidines/chemistry , Vinyl Compounds/chemistry
17.
Methods Appl Fluoresc ; 12(3)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788753

ABSTRACT

This paper reports the effect of incorporation of Yb3+ions on the frequency downconversion luminescence and thermal properties of triply ionised Ho3+doped zinc tellurite (TZ) glasses. The photoluminescence spectra of both the Ho3+/Yb3+doped and codoped glasses have been recorded and observed a green emission band corresponding to the5F4,5S2→5I8(∼550 nm) transition upon various excitations. In the downconversion (DC) emission process, the back energy transfer (BET) mechanism from Ho3+ions to Yb3+ions has also been explored. The colour emitted in the downconversion process is found to be non-tunable at different excitations. Thus, the Ho3+:TZ glass can be utilised for non-colour tunable optical devices under various UV excitations. Also the glass transition (Tg) and crystallisation (Tc) temperatures have been measured for both the doped and codoped glasses and found to be increased in the codoped glass. The singly Ho3+ions doped TZ glass shows better optical downconversion and glass forming ability.

18.
Polymers (Basel) ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732765

ABSTRACT

The long-term operation of motors induces substantial alterations in the surface conductivity and nonlinear coefficient of anti-corona paint, diminishing its efficacy and jeopardizing the longevity of large motors. Hence, the development of high-performance anti-corona paint holds paramount importance in ensuring motor safety. In this study, we integrate two nano-fillers, namely silicon carbide (SiC) and organic montmorillonite (O-MMT), into a composite matrix comprising micron silicon carbide and epoxy resin (SiC/EP). Subsequently, three distinct types of anti-corona paint are formulated: SiC/EP, Nano-SiC/EP, and O-MMT/SiC/EP. Remarkably, O-MMT/SiC/EP exhibits a glass transition temperature about 25 °C higher than that of SiC/EP, underscoring its superior thermal properties. Moreover, the introduction of nano-fillers markedly augments the surface conductivity of the anti-corona paint. Aging tests, conducted across varying temperatures, unveil a notable reduction in the fluctuation range of surface conductivity post-aging. Initially, the nonlinear coefficients exhibit a declining trend, succeeded by an ascending trajectory. The O-MMT/SiC/EP composite displays a maximum nonlinearity coefficient of 1.465 and a minimum of 1.382. Furthermore, the incorporation of nanofillers amplifies the dielectric thermal stability of epoxy resin composites, with O-MMT/SiC/EP showcasing the pinnacle of thermal endurance. Overall, our findings elucidate the efficacy of nano-fillers in enhancing the performance and longevity of anti-corona paint, particularly highlighting the exceptional attributes of the O-MMT/SiC/EP composite in bolstering motor safety through improved thermal stability and electrical properties.

19.
Chemphyschem ; : e202400366, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753463

ABSTRACT

Polyurethanes are commodity materials used for multiple applications. In recent years, a new category of polyurethane material has emerged, characterized by the lack of polymer molar mass distribution, control of the monomer arrangement in the chain, and even full stereocontrol. Various multistep synthesis strategies have been developed to fabricate sequence-defined polyurethanes. However, synthesizing stereocontrolled polyurethanes with a controlled sequence is still a challenge. Polyurethanes with structural precision, as represented by biopolymers, i.e. proteins or nucleic acids, have opened new application directions for these groups of materials. It has been shown that polyurethanes can be used as biomimetics, information carriers, molecular tags, and materials with strictly controlled properties. Precise synthesis of macromolecules allows us to fine-tune the properties of polymers to specific needs. Therefore, it is essential to collect information on the sequence-structure relationship of polymers. In our work, we present synthetic pathways to make sequence and stereo-defined oligourethanes. We demonstrate that structural details, i.e., the monomer sequences and position of the stereocenter, have a tremendous effect on the thermal properties of model oligourethanes. We show that the introduction of chirality by constitutional isomerization can be used to program the thermal characteristics of polymers, which are key features for material applications.

20.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674969

ABSTRACT

The glass transition temperature of polymers is a key parameter in meeting the application requirements for energy absorption. Previous studies have provided some data from slow, expensive trial-and-error procedures. By recognizing these data, machine learning algorithms are able to extract valuable knowledge and disclose essential insights. In this study, a dataset of 7174 samples was utilized. The polymers were numerically represented using two methods: Morgan fingerprint and molecular descriptor. During preprocessing, the dataset was scaled using a standard scaler technique. We removed the features with small variance from the dataset and used the Pearson correlation technique to exclude the features that were highly connected. Then, the most significant features were selected using the recursive feature elimination method. Nine machine learning techniques were employed to predict the glass transition temperature and tune their hyperparameters. The models were compared using the performance metrics of mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). We observed that the extra tree regressor provided the best results. Significant features were also identified using statistical machine learning methods. The SHAP method was also employed to demonstrate the influence of each feature on the model's output. This framework can be adaptable to other properties at a low computational expense.

SELECTION OF CITATIONS
SEARCH DETAIL
...