Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.333
Filter
1.
Genome Biol ; 25(1): 175, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961490

ABSTRACT

BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.


Subject(s)
Chromatin , Histone-Lysine N-Methyltransferase , Neural Stem Cells , Short Interspersed Nucleotide Elements , Animals , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , Chromatin/metabolism , DNA Methylation , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Epigenesis, Genetic , Histones/metabolism , Brain/metabolism , Brain/cytology
2.
EMBO J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951609

ABSTRACT

Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.

3.
Plant Physiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976580

ABSTRACT

Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).

5.
PeerJ ; 12: e17651, 2024.
Article in English | MEDLINE | ID: mdl-38993980

ABSTRACT

Background: Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods: We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results: We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.


Subject(s)
Chiroptera , Genome , Genomics , Phylogeny , Animals , Mexico , Genome/genetics , Chiroptera/genetics , Genomics/methods
6.
J Biochem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982631

ABSTRACT

Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.

7.
Mol Cell ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39013473

ABSTRACT

The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.

8.
BMC Genomics ; 25(1): 687, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997681

ABSTRACT

Transposable elements (TEs) are DNA sequences that can move or replicate within a genome, and their study has become increasingly important in understanding genome evolution and function. The Tridactylidae family, including Xya riparia (pygmy mole cricket), harbors a variety of transposable elements (TEs) that have been insufficiently investigated. Further research is required to fully understand their diversity and evolutionary characteristics. Hence, we conducted a comprehensive repeatome analysis of X. riparia species using the chromosome-level assembled genome. The study aimed to comprehensively analyze the abundance, distribution, and age of transposable elements (TEs) in the genome. The results indicated that the genome was 1.67 Gb, with 731.63 Mb of repetitive sequences, comprising 27% of Class II (443.25 Mb), 16% of Class I (268.45 Mb), and 1% of unknown TEs (19.92 Mb). The study found that DNA transposons dominate the genome, accounting for approximately 60% of the total repeat size, with retrotransposons and unknown elements accounting for 37% and 3% of the genome, respectively. The members of the Gypsy superfamily were the most abundant amongst retrotransposons, accounting for 63% of them. The transposable superfamilies (LTR/Gypsy, DNA/nMITE, DNA/hAT, and DNA/Helitron) collectively constituted almost 70% of the total repeat size of all six chromosomes. The study further unveiled a significant linear correlation (Pearson correlation: r = 0.99, p-value = 0.00003) between the size of the chromosomes and the repetitive sequences. The average age of DNA transposon and retrotransposon insertions ranges from 25 My (million years) to 5 My. The satellitome analysis discovered 13 satellite DNA families that comprise about 0.15% of the entire genome. In addition, the transcriptional analysis of TEs found that DNA transposons were more transcriptionally active than retrotransposons. Overall, the study suggests that the genome of X. riparia is complex, characterized by a substantial portion of repetitive elements. These findings not only enhance our understanding of TE evolution within the Tridactylidae family but also provide a foundation for future investigations into the genomic intricacies of related species.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Genome, Insect , Retroelements , Terminal Repeat Sequences , Animals , DNA Transposable Elements/genetics , Terminal Repeat Sequences/genetics , Gryllidae/genetics , Phylogeny , Genomics
9.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189143, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936517

ABSTRACT

Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.

10.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38843831

ABSTRACT

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Subject(s)
DNA Transposable Elements , Humans , DNA Transposable Elements/genetics , Genetic Engineering/methods , Genome, Human , Animals , Evolution, Molecular
11.
Genome Biol Evol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934893

ABSTRACT

De novo genes emerge from non-coding regions of genomes via succession of mutations. Among others, such mutations activate transcription and create a new open reading frame (ORF). Although the mechanisms underlying ORF emergence are well documented, relatively little is known about the mechanisms enabling new transcription events. Yet, in many species a continuum between absent and very prominent transcription has been reported for essentially all regions of the genome. In this study we searched for de novo transcripts by using newly assembled genomes and transcriptomes of seven inbred lines of Drosophila melanogaster, originating from six European and one African population. This setup allowed us to detect sample specific de novo transcripts, and compare them to their homologous non-transcribed regions in other samples, as well as genic and intergenic control sequences. We studied the association with transposable elements and the enrichment of transcription factor motifs upstream of de novo emerged transcripts and compared them with regulatory elements. We found that de novo transcripts overlap with TEs more often than expected by chance. The emergence of new transcripts correlates with regions of high GC content and TE expression. Moreover, upstream regions of de novo transcripts are highly enriched with regulatory motifs. Such motifs are more enriched in new transcripts overlapping with TEs, particularly DNA TEs, and are more conserved upstream de novo transcripts than upstream their 'non-transcribed homologs'. Overall, our study demonstrates that TE insertion is important for transcript emergence, partly by introducing new regulatory motifs from DNA TE families.

12.
Trends Plant Sci ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853096

ABSTRACT

Woody plants create the ecosystems they occupy and shape their biodiversity. Today's rapidly warming climate threatens these long-lived species by creating new environments in which existing populations become maladapted. Plants show enormous phenotypic diversity in response to environmental change, which can be caused by genotype or epigenetic mechanisms that influence the expression of the underlying DNA sequence. Whether epigenetics can affect ecologically important traits in trees is an important and controversial question. We explore the evidence that DNA methylation can affect gene expression, both directly and indirectly via its interaction with transposable elements (TEs), and subsequently shapes phenotypic variation in natural tree populations. Furthermore, we consider the potential of epigenetic approaches to assist in their conservation management strategies.

13.
Genome Biol Evol ; 16(6)2024 06 04.
Article in English | MEDLINE | ID: mdl-38753031

ABSTRACT

Genome size varies greatly across the tree of life and transposable elements are an important contributor to this variation. Among vertebrates, amphibians display the greatest variation in genome size, making them ideal models to explore the causes and consequences of genome size variation. However, high-quality genome assemblies for amphibians have, until recently, been rare. Here, we generate a high-quality genome assembly for the dyeing poison frog, Dendrobates tinctorius. We compare this assembly to publicly available frog genomes and find evidence for both large-scale conserved synteny and widespread rearrangements between frog lineages. Comparing conserved orthologs annotated in these genomes revealed a strong correlation between genome size and gene size. To explore the cause of gene-size variation, we quantified the location of transposable elements relative to gene features and find that the accumulation of transposable elements in introns has played an important role in the evolution of gene size in D. tinctorius, while estimates of insertion times suggest that many insertion events are recent and species-specific. Finally, we carry out population-scale mobile-element sequencing and show that the diversity and abundance of transposable elements in poison frog genomes can complicate genotyping from repetitive element sequence anchors. Our results show that transposable elements have clearly played an important role in the evolution of large genome size in D. tinctorius. Future studies are needed to fully understand the dynamics of transposable element evolution and to optimize primer or bait design for cost-effective population-level genotyping in species with large, repetitive genomes.


Subject(s)
Anura , DNA Transposable Elements , Evolution, Molecular , Genome Size , Genome , Animals , Anura/genetics , Poison Frogs
14.
Genomics ; 116(3): 110854, 2024 05.
Article in English | MEDLINE | ID: mdl-38701989

ABSTRACT

Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.


Subject(s)
Altitude , DNA Transposable Elements , Tibet , Humans , Adaptation, Physiological/genetics , Acclimatization/genetics , Polymorphism, Genetic , Asian People/genetics
15.
Biochem Soc Trans ; 52(3): 1349-1362, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38752836

ABSTRACT

Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.


Subject(s)
DNA Transposable Elements , Embryonic Development , Epigenesis, Genetic , DNA Transposable Elements/genetics , Humans , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Blastocyst/metabolism
16.
Noncoding RNA ; 10(3)2024 May 16.
Article in English | MEDLINE | ID: mdl-38804363

ABSTRACT

Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.

17.
Chemosphere ; 361: 142440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821133

ABSTRACT

Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.


Subject(s)
DNA Damage , Drosophila melanogaster , Plastics , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Plastics/toxicity , Polypropylenes/toxicity , Polyethylene/toxicity , Chromosome Aberrations/chemically induced , Environmental Monitoring , Mutagens/toxicity , DNA Transposable Elements , Mutagenicity Tests
18.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790169

ABSTRACT

Satellite DNA (sat-DNA) was previously described as junk and selfish DNA in the cellular economy, without a clear functional role. However, during the last two decades, evidence has been accumulated about the roles of sat-DNA in different cellular functions and its probable involvement in tumorigenesis and adaptation to environmental changes. In molluscs, studies on sat-DNAs have been performed mainly on bivalve species, especially those of economic interest. Conversely, in Gastropoda (which includes about 80% of the currently described molluscs species), studies on sat-DNA have been largely neglected. In this study, we isolated and characterized a sat-DNA, here named PcH-sat, in the limpet Patella caerulea using the restriction enzyme method, particularly HaeIII. Monomeric units of PcH-sat are 179 bp long, AT-rich (58.7%), and with an identity among monomers ranging from 91.6 to 99.8%. Southern blot showed that PcH-sat is conserved in P. depressa and P. ulyssiponensis, while a smeared signal of hybridization was present in the other three investigated limpets (P. ferruginea, P. rustica and P. vulgata). Dot blot showed that PcH-sat represents about 10% of the genome of P. caerulea, 5% of that of P. depressa, and 0.3% of that of P. ulyssiponensis. FISH showed that PcH-sat was mainly localized on pericentromeric regions of chromosome pairs 2 and 4-7 of P. caerulea (2n = 18). A database search showed that PcH-sat contains a large segment (of 118 bp) showing high identity with a homologous trait of the Nin-SINE transposable element (TE) of the patellogastropod Lottia gigantea, supporting the hypothesis that TEs are involved in the rising and tandemization processes of sat-DNAs.


Subject(s)
DNA, Satellite , Gastropoda , Animals , DNA, Satellite/genetics , Gastropoda/genetics , DNA Transposable Elements/genetics , Phylogeny
19.
Genes (Basel) ; 15(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38790249

ABSTRACT

Transposable elements (TEs) are characterized by their ability to change their genomic position. Through insertion or recombination leading to deletions and other chromosomal aberrations, they can cause genetic instability. The extent to which they thereby exert regulatory influence on cellular functions is unclear. To better characterize TEs in processes such as carcinogenesis, we used the well-established Xiphophorus melanoma model. By transcriptome sequencing, we show that an increasing total number in transposons correlates with progression of malignancy in melanoma samples from Xiphophorus interspecific hybrids. Further, by comparing the presence of TEs in the parental genomes of Xiphophorus maculatus and Xiphophorus hellerii, we could show that even in closely related species, genomic location and spectrum of TEs are considerably different.


Subject(s)
Cyprinodontiformes , DNA Transposable Elements , Melanoma , Animals , DNA Transposable Elements/genetics , Cyprinodontiformes/genetics , Melanoma/genetics , Melanoma/pathology , Transcriptome , Gene Expression Regulation, Neoplastic , Precancerous Conditions/genetics , Precancerous Conditions/pathology
20.
Am J Hum Genet ; 111(6): 1125-1139, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38759652

ABSTRACT

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.


Subject(s)
DNA Methylation , Genome, Human , Spermatogenesis , Humans , Spermatogenesis/genetics , Male , Spermatids/metabolism , Spermatocytes/metabolism , DNA Transposable Elements/genetics , Spermatozoa/metabolism , Meiosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...