Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Front Microbiol ; 15: 1396369, 2024.
Article in English | MEDLINE | ID: mdl-38894967

ABSTRACT

The diazotrophic cyanobacterium Trichodesmium has been recognized as a potentially significant contributor to aerobic methane generation via several mechanisms including the utilization of methylphophonate (MPn) as a source of phosphorus. Currently, there is no information about how environmental factors regulate methane production by Trichodesmium. Here, we grew Trichodesmium IMS101 at five temperatures ranging from 16 to 31°C, and found that its methane production rates increased with rising temperatures to peak (1.028 ± 0.040 nmol CH4 µmol POC-1 day-1) at 27°C, and then declined. Its specific growth rate changed from 0.03 ± 0.01 d-1 to 0.34 ± 0.02 d-1, with the optimal growth temperature identified between 27 and 31°C. Within the tested temperature range the Q10 for the methane production rate was 4.6 ± 0.7, indicating a high sensitivity to thermal changes. In parallel, the methane production rates showed robust positive correlations with the assimilation rates of carbon, nitrogen, and phosphorus, resulting in the methane production quotients (molar ratio of carbon, nitrogen, or phosphorus assimilated to methane produced) of 227-494 for carbon, 40-128 for nitrogen, and 1.8-3.4 for phosphorus within the tested temperature range. Based on the experimental data, we estimated that the methane released from Trichodesmium can offset about 1% of its CO2 mitigation effects.

2.
ISME Commun ; 4(1): ycae072, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38873030

ABSTRACT

As diazotrophic cyanobacteria of tremendous biomass, Trichodesmium continuously provide a nitrogen source for carbon-fixing cyanobacteria and drive the generation of primary productivity in marine environments. However, ocean iron deficiencies limit growth and metabolism of Trichodesmium. Recent studies have shown the co-occurrence of Trichodesmium and siderophore-producing Synechococcus in iron-deficient oceans, but whether siderophores secreted by Synechococcus can be used by Trichodesmium to adapt to iron deficiency is not clear. We constructed a mutant Synechococcus strain unable to produce siderophores to explore this issue. Synechococcus filtrates with or without siderophores were added into a Trichodesmium microbial consortium consisting of Trichodesmium erythraeum IMS 101 as the dominant microbe with chronic iron deficiency. By analyzing the physiological phenotype, metagenome, and metatranscriptome, we investigated the interactions between the nitrogen-fixing cyanobacterium Tricodesmium and siderophore-producing cyanobacterium Synechococcus under conditions of iron deficiency. The results indicated that siderophores secreted by Synechococcus are likely to chelate with free iron in the culture medium of the Trichodesmium consortium, reducing the concentration of bioavailable iron and posing greater challenges to the absorption of iron by Trichodesmium. These findings revealed the characteristics of iron-competitive utilization between diazotrophic cyanobacteria and siderophore-producing cyanobacteria, as well as potential interactions, and provide a scientific basis for understanding the regulatory effects of nutrient limitation on marine primary productivity.

3.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758591

ABSTRACT

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Subject(s)
Trichodesmium , Trichodesmium/metabolism , Gulf of Mexico , Cyanobacteria/metabolism , Eutrophication , Chromatography, Liquid , Tandem Mass Spectrometry
4.
Biochim Biophys Acta Bioenerg ; 1865(1): 149015, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37742749

ABSTRACT

The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.


Subject(s)
Metalloproteins , Trichodesmium , Trichodesmium/metabolism , Iron/metabolism , Metalloproteins/metabolism , Electrons , Acclimatization
5.
mSystems ; 8(6): e0074223, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37916816

ABSTRACT

IMPORTANCE: Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.


Subject(s)
Cyanobacteria , Trichodesmium , Trichodesmium/genetics , Cyanobacteria/genetics , Nitrogen Fixation
6.
Environ Monit Assess ; 195(10): 1238, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736823

ABSTRACT

The dynamics of physico-chemical, nutrient, and chlorophyll-a variables were studied in the bloom and non-bloom locations along the off-Gujarat coastal waters to understand the variability in biogeochemistry using multivariate analytical tests. The dissolved oxygen was significantly lower in the bloom stations (3.89 ± 0.44 mgL-1) than in the non-bloom stations (5.50 ± 0.70 mg L-1), due to the biological degradation of organic matter in addition to anaerobic microbial respiration. Nutrients (PO4 and NO3) and Chl-a concentrations were recorded higher in the bloom locations at 0.83 ± 0.21 µmol L-1, 4.47 ± 0.69 µmol L-1, 4.14 ± 1.49 mg m-3, respectively. PO4 and NO3 have shown a significantly higher positive correlation of r = 0.73 and r = 0.69 with Chl-a for bloom data than the non-bloom data. The percentage variance contributed by PC1 and PC2 for both bloom and non-bloom locations were estimated at 52.33%. The variable PO4 explains the highest 24.19% variability in PC1, followed by Chl-a (19.89%). The PO4 triggers the bloom formation and also correlates to the higher concentrations of Chl-a in the bloom locations. The bloom concentration ranges from 9553 to 12,235 trichomes L-1. The bloom intensity has shown a significant positive correlation with Chl-a (r = 0.77), NO3 (r = 0.56), and PO4 (r = 0.30), but a negative correlation was noticed with DO (r = - 0.63) and pH (r = - 0.49). The study also initiates a way forward research investigation on ocean-color technologies to identify and monitor blooms and climate change-driven factors for bloom formation. The occurrence of bloom and its influence on fishery resources and other marine biotas will open many research windows in marine fisheries, oceanography, remote sensing, marine biology, and trophodynamics.


Subject(s)
Environmental Monitoring , Eutrophication , Incidence , Biota , Chlorophyll A
7.
Mar Pollut Bull ; 195: 115546, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37774647

ABSTRACT

This study mainly focused on the water quality variability and distribution of micro-zooplankton (MZP) along the coastal waters of Tamil Nadu. Dendrogram analysis using water quality data categorized the study area into three regions: North (Chennai), Central (Puducherry), and South (Karaikal). The MZP consists of 40 ciliates and 8 dinoflagellates, with spirotrichea (52.4 %) significantly dominant, followed by dinophyceae (21.1 %), phyllopharyngea (14.7 %), and others (11.8 %). Paracyrtophoron tropicum, a new report in the coastal waters of India, was identified by comparing its molecular phylogeny (18S rRNA accession no: MT500569) to previously reported species. Statistical analysis revealed a positive correlation between P. tropicum abundance and water temperature, PO4, SiO4, TP, Chl-a, and Trichodesmium erythraeum, suggesting that they might not directly control the growth of P. tropicum but indirectly influence it via food availability, i.e., T. erythraeum. However, to understand these species interactions and ecological pathways, further long-term monitoring studies are required.

8.
Comput Struct Biotechnol J ; 21: 3503-3512, 2023.
Article in English | MEDLINE | ID: mdl-37484493

ABSTRACT

Trichodesmium is the dominant photoautotrophic dinitrogen (N2) fixer (diazotroph) in the ocean. Iron is an important factor limiting growth of marine diazotrophs including Trichodesmium mainly because of high iron content of its N2-fixing enzyme, nitrogenase. However, it still lacks a quantitative understanding of how dynamic iron allocation among physiological processes acts to regulate growth and N2 fixation in Trichodesmium. Here, we constructed a model of Trichodesmium trichome in which intracellular iron could be dynamically re-allocated in photosystems and nitrogenase during the daytime. The results demonstrate that the dynamic iron allocation enhances modeled N2 fixation and growth rates of Trichodesmium, especially in iron-limited conditions, albeit having a marginal impact under high iron concentrations. Although the reuse of iron during a day is an apparent cause that dynamic iron allocation can benefit Trichodesmium under iron limitation, our model reveals two important mechanisms. First, the release of iron from photosystems downregulates the intracellular oxygen (O2) production and reduces the demand of respiratory protection, a process that Trichodesmium wastefully respires carbohydrates to create a lower O2 window for N2 fixation. Hence, more carbohydrates can be used in growth. Second, lower allocation of iron to nitrogenase during early daytime, a period when photosynthesis is active and intracellular O2 is high, reduces the amount of iron that is trapped in the inactivated nitrogenase induced by O2. This mechanism further increases the iron use efficiency in Trichodesmium. Overall, our study provides mechanistic and quantitative insight into the diurnal iron allocation that can alleviate iron limitation to Trichodesmium.

9.
Front Microbiol ; 14: 1189410, 2023.
Article in English | MEDLINE | ID: mdl-37228373

ABSTRACT

Recent evidence has shown active N2 fixation in coastal eutrophic waters, yet the rate and controlling factors remain poorly understood, particularly in large estuaries. The Changjiang Estuary (CE) and adjacent shelf are characterized by fresh, nitrogen-replete Changjiang Diluted Water (CDW) and saline, nitrogen-depletion intruded Kuroshio water (Taiwan Warm Current and nearshore Kuroshio Branch Current), where N2 fixation may be contributed by different groups (i.e., Trichodesmium and heterotrophic diazotrophs). Here, for the first time, we provide direct measurement of size-fractionated N2 fixation rates (NFRs) off the CE during summer 2014 using the 15N2 bubble tracer method. The results demonstrated considerable spatial variations (southern > northern; offshore > inshore) in surface and depth-integrated NFRs, averaging 0.83 nmol N L-1 d-1 and 24.3 µmol N m-2 d-1, respectively. The highest bulk NFR (99.9 µmol N m-2 d-1; mostly contributed by >10 µm fraction) occurred in the southeastern East China Sea, where suffered from strong intrusion of the Kuroshio water characterized by low N/P ratio (<10) and abundant Trichodesmium (up to 10.23 × 106 trichomes m-2). However, low NFR (mostly contributed by <10 µm fraction) was detected in the CE controlled by the CDW, where NOx concentration (up to 80 µmol L-1) and N/P ratio (>100) were high and Trichodesmium abundance was low. The >10 µm fraction accounted for 60% of depth-integrated bulk NFR over the CE and adjacent shelf. We speculated that the present NFR of >10 µm fraction was mostly supported by Trichodesmium. Spearman rank correlation indicated that the NFR was significantly positively correlated with Trichodesmium abundance, salinity, temperature and Secchi depth, but was negatively with turbidity, N/P ratio, NOx, and chlorophyll a concentration. Our study suggests that distribution and size structure of N2 fixation off the CE are largely regulated by water mass (intruded Kuroshio water and CDW) movement and associated diazotrophs (particularly Trichodesmium) and nutrient conditions.

10.
Trends Microbiol ; 31(10): 1072-1084, 2023 10.
Article in English | MEDLINE | ID: mdl-37244772

ABSTRACT

The N2-fixing cyanobacterium Trichodesmium is an important player in the oceanic nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and as colonies containing hundreds of trichomes. In this review, we explore the benefits and disadvantages of colony formation, considering physical, chemical, and biological effects from nanometer to kilometer scale. Showing that all major life challenges are affected by colony formation, we claim that Trichodesmium's ecological success is tightly linked to its colonial lifestyle. Microbial interactions in the microbiome, chemical gradients within the colony, interactions with particles, and elevated mobility in the water column shape a highly dynamic microenvironment. We postulate that these dynamics are key to the resilience of Trichodesmium and other colony formers in our changing environment.


Subject(s)
Cyanobacteria , Trichodesmium , Nitrogen Fixation , Oceans and Seas , Social Behavior
11.
Front Microbiol ; 14: 1102909, 2023.
Article in English | MEDLINE | ID: mdl-36876059

ABSTRACT

Effects of changed levels of dissolved O2 and CO2 on marine primary producers are of general concern with respect to ecological effects of ongoing ocean deoxygenation and acidification as well as upwelled seawaters. We investigated the response of the diazotroph Trichodesmium erythraeum IMS 101 after it had acclimated to lowered pO2 (~60 µM O2) and/or elevated pCO2 levels (HC, ~32 µM CO2) for about 20 generations. Our results showed that reduced O2 levels decreased dark respiration significantly, and increased the net photosynthetic rate by 66 and 89% under the ambient (AC, ~13 µM CO2) and the HC, respectively. The reduced pO2 enhanced the N2 fixation rate by ~139% under AC and only by 44% under HC, respectively. The N2 fixation quotient, the ratio of N2 fixed per O2 evolved, increased by 143% when pO2 decreased by 75% under the elevated pCO2. Meanwhile, particulate organic carbon and nitrogen quota increased simultaneously under reduced O2 levels, regardless of the pCO2 treatments. Nevertheless, changed levels of O2 and CO2 did not bring about significant changes in the specific growth rate of the diazotroph. Such inconsistency was attributed to the daytime positive and nighttime negative effects of both lowered pO2 and elevated pCO2 on the energy supply for growth. Our results suggest that Trichodesmium decrease its dark respiration by 5% and increase its N2-fixation by 49% and N2-fixation quotient by 30% under future ocean deoxygenation and acidification with 16% decline of pO2 and 138% rise of pCO2 by the end of this century.

12.
Microbiol Spectr ; 10(6): e0202522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36374046

ABSTRACT

There is considerable debate about the benefits and trade-offs for colony formation in a major marine nitrogen fixer, Trichodesmium. To quantitatively analyze the trade-offs, we developed a metabolic model based on carbon fluxes to compare the performance of Trichodesmium colonies and free trichomes under different scenarios. Despite reported reductions in carbon fixation and nitrogen fixation rates for colonies relative to free trichomes, we found that model colonies can outperform individual cells in several cases. The formation of colonies can be advantageous when respiration rates account for a high proportion of the carbon fixation rate. Negative external influence on vital rates, such as mortality due to predation or micronutrient limitations, can also create a net benefit for colony formation relative to individual cells. In contrast, free trichomes also outcompete colonies in many scenarios, such as when respiration rates are equal for both colonies and individual cells or when there is a net positive external influence on rate processes (i.e., optimal environmental conditions regarding light and temperature or high nutrient availability). For both colonies and free trichomes, an increase in carbon fixation relative to nitrogen fixation rates would increase their relative competitiveness. These findings suggest that the formation of colonies in Trichodesmium might be linked to specific environmental and ecological circumstances. Our results provide a road map for empirical studies and models to evaluate the conditions under which colony formation in marine phytoplankton can be sustained in the natural environment. IMPORTANCE Trichodesmium is a marine filamentous cyanobacterium that fixes nitrogen and is an important contributor to the global nitrogen cycle. In the natural environment, Trichodesmium can exist as individual cells (trichomes) or as colonies (puffs and tufts). In this paper, we try to answer a longstanding question in marine microbial ecology: how does colony formation benefit the survival of Trichodesmium? To answer this question, we developed a carbon flux model that utilizes existing published rates to evaluate whether and when colony formation can be sustained. Enhanced respiration rates, influential external factors such as environmental conditions and ecological interactions, and variable carbon and nitrogen fixation rates can all create scenarios for colony formation to be a viable strategy. Our results show that colony formation is an ecologically beneficial strategy under specific conditions, enabling Trichodesmium to be a globally significant organism.


Subject(s)
Trichodesmium , Trichodesmium/metabolism , Nitrogen Fixation , Nitrogen Cycle , Nitrogen/metabolism , Carbon/metabolism
13.
Microorganisms ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36013957

ABSTRACT

The ecologically important organic sulfur compound, dimethylsulfoniopropionate (DMSP), is ubiquitous in marine environments. Produced by some species of phytoplankton and bacteria, it plays a key role in cellular responses to environmental change. Recently, uptake of DMSP by non-DMSP-producing phytoplankton species has been demonstrated, highlighting knowledge gaps concerning DMSP distribution through the marine microbial food web. In this study, we traced the uptake and distribution of DMSP through a natural marine microbial community collected from off the eastern coastline Australia. We found a diverse phytoplankton community representing six major taxonomic groups and conducted DMSP-enrichment experiments both on the whole community, and the community separated into large (≥8.0 µm), medium (3.0−8.0 µm), and small (0.2−3.0 µm) size fractions. Our results revealed active uptake of DMSP in all three size fractions of the community, with the largest fraction (>8 µm) forming the major DMSP sink, where enrichment resulted in an increase of DMSPp by 144%. We observed evidence for DMSP catabolism in all size fractions with DMSP enrichment, highlighting loss from the system via MeSH or DMS production. Based on taxonomic diversity, we postulate the sources of DMSP were the dinoflagellates, Phaeocystis sp., and Trichodesmium sp., which were present in a relatively high abundance, and the sinks for DMSP were the diatoms and picoeucaryotes in this temperate community. These findings corroborate the role of hitherto disregarded phytoplankton taxa as potentially important players in the cycling of DMSP in coastal waters of Australia and emphasize the need to better understand the fate of accumulated DMSP and its significance in cellular metabolism of non-DMSP producers.

14.
mSystems ; 7(4): e0053822, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862813

ABSTRACT

The dominant marine filamentous N2 fixer, Trichodesmium, conducts photosynthesis and N2 fixation during the daytime. Because N2 fixation is sensitive to O2, some previous studies suggested that spatial segregation of N2 fixation and photosynthesis is essential in Trichodesmium. However, this hypothesis conflicts with some observations where all the cells contain both photosystems and the N2-fixing enzyme nitrogenase. Here, we construct a systematic model simulating Trichodesmium metabolism, showing that the hypothetical spatial segregation is probably useless in increasing the Trichodesmium growth and N2 fixation, unless substances can efficiently transfer among cells with low loss to the environment. The model suggests that Trichodesmium accumulates fixed carbon in the morning and uses that in respiratory protection to reduce intracellular O2 during the mid-daytime, when photosynthesis is downregulated, allowing the occurrence of N2 fixation. A cell membrane barrier against O2 and alternative non-O2 evolving electron transfer also contribute to maintaining low intracellular O2. Our study provides a mechanism enabling N2 fixation despite the presence of photosynthesis across Trichodesmium. IMPORTANCE The filamentous Trichodesmium is a globally prominent marine nitrogen fixer. A long-standing paradox is that the nitrogen-fixing enzyme nitrogenase is sensitive to oxygen, but Trichodesmium conducts both nitrogen fixation and oxygen-evolving photosynthesis during the daytime. Previous studies using immunoassays reported that nitrogenase was limited in some specialized Trichodesmium cells (termed diazocytes), suggesting the necessity of spatial segregation of nitrogen fixation and photosynthesis. However, attempts using other methods failed to find diazocytes in Trichodesmium, causing controversy on the existence of the spatial segregation. Here, our physiological model shows that Trichodesmium can maintain low intracellular O2 in mid-daytime and achieve feasible nitrogen fixation and growth rates even without the spatial segregation, while the hypothetical spatial segregation might not be useful if substantial loss of substances to the environment occurs when they transfer among the Trichodesmium cells. Our study then suggests a possible mechanism by which Trichodesmium can survive without the spatial segregation.


Subject(s)
Trichodesmium , Trichodesmium/metabolism , Nitrogen Fixation/physiology , Photosynthesis , Nitrogenase/metabolism , Nitrogen/metabolism , Oxygen/metabolism
15.
Front Microbiol ; 13: 879970, 2022.
Article in English | MEDLINE | ID: mdl-35707175

ABSTRACT

Trichodesmium are filamentous cyanobacteria of key interest due to their ability to fix carbon and nitrogen within an oligotrophic marine environment. Their blooms consist of a dynamic assemblage of subpopulations and colony morphologies that are hypothesized to occupy unique niches. Here, we assessed the poorly studied diversity of Trichodesmium in the Red Sea, based on metagenome-assembled genomes (MAGs) and hetR gene-based phylotyping. We assembled four non-redundant MAGs from morphologically distinct Trichodesmium colonies (tufts, dense and thin puffs). Trichodesmium thiebautii (puffs) and Trichodesmium erythraeum (tufts) were the dominant species within these morphotypes. While subspecies diversity is present for both T. thiebautii and T. erythraeum, a single T. thiebautii genotype comprised both thin and dense puff morphotypes, and we hypothesize that this phenotypic variation is likely attributed to gene regulation. Additionally, we found the rare non-diazotrophic clade IV and V genotypes, related to Trichodesmium nobis and Trichodesmium miru, respectively that likely occurred as single filaments. The hetR gene phylogeny further indicated that the genotype in clade IV could represent the species Trichodesmium contortum. Importantly, we show the presence of hetR paralogs in Trichodesmium, where two copies of the hetR gene were present within T. thiebautii genomes. This may lead to the overestimation of Trichodesmium diversity as one of the copies misidentified T. thiebautii as Trichodesmium aureum. Taken together, our results highlight the importance of re-assessing Trichodesmium taxonomy while showing the ability of genomics to capture the complex diversity and distribution of Trichodesmium populations.

16.
Front Microbiol ; 13: 853519, 2022.
Article in English | MEDLINE | ID: mdl-35531286

ABSTRACT

Trichodesmium spp. is a colonial diazotrophic cyanobacterium found in the oligotrophic (sub)tropical oceans, where dissolved inorganic phosphorus (DIP) can be depleted. To cope with low P concentrations, P can be scavenged from the dissolved organic P (DOP) pool. This requires the deployment of multiple enzymes activated by trace metals, potentially enhancing metal requirements under stronger P limitations. To test this, we grew Trichodesmium under trace-metal-controlled conditions, where P was supplied as either DIP or DOP (methylphosphonic acid). Mean steady-state biomass under the DOP treatment was only 40% of that grown under equivalent DIP supply, carbon normalized alkaline phosphorus activity was elevated 4-fold, and the zinc (Zn)-carbon ratio was elevated 3.5-fold. Our finding matches the known, dominant Zn requirement across a diversity of enzymes involved in P stress responses and supports an important interaction in the oceanic cycles of these two nutrients.

17.
Front Microbiol ; 13: 813573, 2022.
Article in English | MEDLINE | ID: mdl-35464918

ABSTRACT

Fast repetition rate fluorometry (FRRf) allows for rapid non-destructive assessment of phytoplankton photophysiology in situ yet has rarely been applied to Trichodesmium. This gap reflects long-standing concerns that Trichodesmium (and other cyanobacteria) contain pigments that are less effective at absorbing blue light which is often used as the sole excitation source in FRR fluorometers-potentially leading to underestimation of key fluorescence parameters. In this study, we use a multi-excitation FRR fluorometer (equipped with blue, green, and orange LEDs) to investigate photophysiological variability in Trichodesmium assemblages from two sites. Using a multi-LED measurement protocol (447+519+634 nm combined), we assessed maximum photochemical efficiency (F v /F m ), functional absorption cross section of PSII (σ PSII ), and electron transport rates (ETRs) for Trichodesmium assemblages in both the Northwest Pacific (NWP) and North Indian Ocean in the vicinity of Sri Lanka (NIO-SL). Evaluating fluorometer performance, we showed that use of a multi-LED measuring protocol yields a significant increase of F v /F m for Trichodesmium compared to blue-only excitation. We found distinct photophysiological differences for Trichodesmium at both locations with higher average F v /F m as well as lower σ PSII and non-photochemical quenching (NPQ NSV ) observed in the NWP compared to the NIO-SL (Kruskal-Wallis t-test df = 1, p < 0.05). Fluorescence light response curves (FLCs) further revealed differences in ETR response with a lower initial slope (α ETR ) and higher maximum electron turnover rate ( E T R P S I I m a x ) observed for Trichodesmium in the NWP compared to the NIO-SL, translating to a higher averaged light saturation E K (= E T R P S I I m a x /α ETR ) for cells at this location. Spatial variations in physiological parameters were both observed between and within regions, likely linked to nutrient supply and physiological stress. Finally, we applied an algorithm to estimate primary productivity of Trichodesmium using FRRf-derived fluorescence parameters, yielding an estimated carbon-fixation rate ranging from 7.8 to 21.1 mgC mg Chl-a-1 h-1 across this dataset. Overall, our findings demonstrate that capacity of multi-excitation FRRf to advance the application of Chl-a fluorescence techniques in phytoplankton assemblages dominated by cyanobacteria and reveals novel insight into environmental regulation of photoacclimation in natural Trichodesmium populations.

18.
J Phycol ; 58(3): 377-391, 2022 06.
Article in English | MEDLINE | ID: mdl-35212412

ABSTRACT

The nitrogen-fixing, non-heterocystous cyanobacterium Hydrocoleum sp. (Oscillatoriales) is a common epiphytic and benthic bloom-former in tropical and subtropical shallow water systems but shares high phylogenetic similarity with the planktonic, globally important diazotroph Trichodesmium. Multiphasic observations in this study resulted in unexpected identification of Hydrocoleum sp. in mass accumulations in a coastal lagoon in the Western temperate North Atlantic Ocean. Hydrocoleum physiology was examined in situ through measurements of N2 and CO2 fixation rates and expression of genes involved with N2 fixation, CO2 fixation, and phosphorus (P) stress. Bulk N2 fixation rates and Hydrocoleum nifH expression peaked at night and were strongly suppressed by dissolved inorganic nitrogen (DIN). The expression of high affinity phosphate transporter (pstS) and alkaline phosphatase (phoA) genes of Hydrocoleum was elevated during the night and negatively responded to phosphate amendments, as evidence that these mechanisms contribute to P acquisition during diazotrophic growth of Hydrocoleum in situ. This discovery at the edge of the previously known Hydrocoleum habitat range in the warming oceans raises intriguing questions about diazotrophic cyanobacterial adaptations and transitions on the benthic-pelagic continuum.


Subject(s)
Cyanobacteria , Nitrogen Fixation , Carbon Dioxide/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Phylogeny , Seawater/microbiology
19.
Trends Microbiol ; 30(3): 229-240, 2022 03.
Article in English | MEDLINE | ID: mdl-34175176

ABSTRACT

Iron is an essential micronutrient for the ecologically important photoautotrophic cyanobacteria which are found across diverse aquatic environments. Low concentrations and poor bioavailability of certain iron species exert a strong control on cyanobacterial growth, affecting ecosystem structure and biogeochemical cycling. Here, we review the iron-acquisition pathways cyanobacteria utilize for overcoming these challenges. As the molecular details of cyanobacterial iron transport are being uncovered, an overall scheme of how cyanobacteria handle and exploit this scarce and redox-active micronutrient is emerging. Importantly, the range of biological solutions used by cyanobacteria to increase iron fluxes goes beyond transport and includes behavioral traits of colonial cyanobacteria and intricate cyanobacteria-bacteria interactions.


Subject(s)
Cyanobacteria , Ecosystem , Cyanobacteria/metabolism , Iron/metabolism , Oxidation-Reduction
20.
J Proteome Res ; 21(1): 77-89, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34855411

ABSTRACT

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.


Subject(s)
Cyanobacteria , Trichodesmium , Cyanobacteria/metabolism , Environmental Biomarkers , Proteome/genetics , Proteome/metabolism , Transcriptome , Trichodesmium/genetics , Trichodesmium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...