Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Comp Neurol ; 532(1): e25581, 2024 01.
Article in English | MEDLINE | ID: mdl-38289187

ABSTRACT

The cerebellar projection from the trigeminal nuclear complex is one of the major populations of the cerebellar inputs. Although this projection is essential in cerebellar functional processing and organization, its morphological organization has not been systematically clarified. The present study addressed this issue by lobule-specific retrograde neuronal labeling and single axonal reconstruction with anterograde labeling. The cerebellar projection arose mainly from the interpolaris subdivision of the spinal trigeminal nucleus (Sp5I) and the principal trigeminal sensory nucleus (Pr5). Although crus II, paramedian lobule, lobule IX, and simple lobule were the major targets, paraflocculus, and other lobules received some projections. Reconstructed single trigeminocerebellar axons showed 77.8 mossy fiber terminals on average often in multiple lobules but no nuclear collaterals. More terminals were located in zebrin-negative or lightly-positive compartments than in zebrin-positive compartments. While Pr5 axons predominantly projected to ipsilateral crus II, Sp5I axons projected either predominantly to crus II and paramedian lobule often bilaterally, or predominantly to lobule IX always ipsilaterally. Lobule IX-predominant-type Sp5I neurons specifically expressed Gpr26. Gpr26-tagged neuronal labeling produced a peculiar mossy fiber distribution, which was dense in the dorsolateral lobule IX and extending transversely to the dorsal median apex in lobule IX. The projection to the cerebellar nuclei was observed in collaterals of ascending Sp5I axons that project to the diencephalon. In sum, multiple populations of trigeminocerebellar projections showed divergent projections to cerebellar lobules. The projection was generally complementary with the pontine projection and partly matched with the reported orofacial receptive field arrangement.


Subject(s)
Axons , Cerebellar Vermis , Animals , Mice , Neurons , Cerebellum , Cerebellar Nuclei
2.
Aging (Albany NY) ; 15(7): 2362-2363, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36996489
3.
J Dent Res ; 102(8): 938-946, 2023 07.
Article in English | MEDLINE | ID: mdl-36919893

ABSTRACT

The relationship between oral health and the development of Alzheimer's disease (AD) in the elderly is not yet well understood. In this regard, the association between aging or neurodegeneration of the trigeminal nervous system and the accumulation of amyloid-ß(1-42) (Aß42) oligomers in the pathogenesis of AD is unknown. We focused on selective autophagy in the trigeminal mesencephalic nucleus (Vmes) and the diffusion of Aß42 oligomers with respect to aging of the trigeminal nervous system and whether the degeneration of Vmes neurons affects the diffusion of Aß42 oligomers. We used female 2- to 8-mo-old transgenic 3xTg-AD mice and AppNL-G-F knock-in mice and immunohistochemically examined aging-related changes in selective autophagy and Aß42 oligomer processing in the Vmes, which exhibits high amyloid-ß (Aß) expression. We induced degeneration of Vmes neurons by extracting the maxillary molars and examined the changes in Aß42 oligomer kinetics. Autophagosome-like membranes, which stained positive for Aß, HO-1, and LC3B, were observed in Vmes neurons of 3xTg-AD mice, while there was weak immunoreactivity of the membranes for intraneuronal Aß in AppNL-G-F mice. By contrast, there was strong immunopositivity for extracellular Aß42 oligomers with the formation of Aß42 oligomer clusters in AppNL-G-F mice. The expression of Rubicon, which indicates age-related deterioration of autophagy, increased the diffusion of Aß42 oligomer with the age of Vmes neurons. Tooth extraction increased the extracellular immunopositivity for Aß42 oligomers in AppNL-G-F mice. These results suggest that autophagy maintains homeostasis in Vmes neurons and that deterioration of autophagy due to aging or neurodegeneration leads to the diffusion of Aß42 oligomers into the extracellular space and possibly the development of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Female , Mice , Animals , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Neurons/metabolism , Autophagy , Disease Models, Animal
4.
J Dent Res ; 102(2): 227-237, 2023 02.
Article in English | MEDLINE | ID: mdl-36303441

ABSTRACT

Stressful stimuli can activate the hypothalamic-pituitary-adrenal (HPA) axis. Clinically, it has been widely reported that stressful events are often accompanied by teeth clenching and bruxism, while mastication (chewing) can promote coping with stress. Trigeminal motoneurons in the trigeminal motor nucleus supplying the chewing muscles receive direct inputs from interneurons within the peritrigeminal premotor area (Peri5). Previous studies found that the paraventricular hypothalamic nucleus (PVH) participates in trigeminal activities during stressful events. However, the neural pathway by which the stress-induced oral movements alleviate stress is largely unknown. We hypothesized that paraventricular-trigeminal circuits might be associated with the stress-induced chewing movements and anxiety levels. First, we observed the stress-coping effect of wood gnawing on stress-induced anxiety, with less anxiety-like behaviors seen in the open field test and elevated plus maze, as well as decreased corticosterone and blood glucose levels, in response to stress in mice. We then found that excitotoxic lesions of PVH reduced the effect of gnawing on stress, reflected in more anxiety-like behaviors; this emphasizes the importance of the PVH in stress responses. Anterograde, retrograde, transsynaptic, and nontranssynaptic tracing through central and peripheral injections confirmed monosynaptic projections from PVH to Peri5. We discovered that PVH receives proprioceptive sensory inputs from the jaw muscle and periodontal ligaments, as well as provides motor outputs via the mesencephalic trigeminal nucleus (Me5) and Peri5. Next, pathway-specific functional manipulation by chemogenetic inhibition was conducted to further explore the role of PVH-Peri5 monosynaptic projections. Remarkably, PVH-Peri5 inhibition decreased gnawing but did not necessarily reduce stress-induced anxiety. Moreover, neuropeptide B (NPB) was expressed in Peri5-projecting PVH neurons, indicating that NPB signaling may mediate the effects of PVH-Peri5. In conclusion, our data revealed a PVH-Peri5 circuit that plays a role in the stress response via its associations with oromotor movements and relative anxiety-like behaviors.


Subject(s)
Neurons , Paraventricular Hypothalamic Nucleus , Mice , Animals , Paraventricular Hypothalamic Nucleus/physiology , Anxiety , Neural Pathways/physiology , Adaptation, Psychological
5.
Front Neurorobot ; 16: 817948, 2022.
Article in English | MEDLINE | ID: mdl-35770277

ABSTRACT

It is common for animals to use self-generated movements to actively sense the surrounding environment. For instance, rodents rhythmically move their whiskers to explore the space close to their body. The mouse whisker system has become a standard model for studying active sensing and sensorimotor integration through feedback loops. In this work, we developed a bioinspired spiking neural network model of the sensorimotor peripheral whisker system, modeling trigeminal ganglion, trigeminal nuclei, facial nuclei, and central pattern generator neuronal populations. This network was embedded in a virtual mouse robot, exploiting the Human Brain Project's Neurorobotics Platform, a simulation platform offering a virtual environment to develop and test robots driven by brain-inspired controllers. Eventually, the peripheral whisker system was adequately connected to an adaptive cerebellar network controller. The whole system was able to drive active whisking with learning capability, matching neural correlates of behavior experimentally recorded in mice.

6.
Life (Basel) ; 12(2)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35207502

ABSTRACT

Administration of dexmedetomidine significantly induces sedation and anti-nociception in several nociceptive models, but clinical trials are restricted due to adverse side effects, including lethargy, hypotension, and bradycardia. Herein, we investigated whether intraperitoneal inoculation of dexmedetomidine reduced the orofacial nociceptive response and affected motor coordination and blood pressure and examined whether a lower dose of dexmedetomidine in combination with 0.5% lidocaine produced an antinociceptive effect without any adverse side events in a murine model. To perform the experiment, 5% formalin (10 µL) was subcutaneously inoculated into the right upper lip, and the rubbing responses were counted for 45 min. Different doses of dexmedetomidine combined with 0.5% lidocaine were administered 10 and 30 min before formalin injection, respectively. Dexmedetomidine (10 µg/kg) significantly reduced orofacial nociceptive responses during the second phase of the formalin test and decreased the expression of Fos in trigeminal nucleus caudalis (TNC). Besides, a high dose of dexmedetomidine (30 µg/kg) induced lessening physical ability and significantly reduced systolic pressure and heart rate. When 0.5% lidocaine was injected subcutaneously, nociceptive responses were reduced only in the first phase. Interestingly, although a low dose of dexmedetomidine (3 µg/kg) alone did not show an antinociceptive effect, its co-administration with lidocaine significantly reduced the nociceptive response in both phases and decreased TNC Fos expression without motor dysfunction and hypotension. This finding suggests that the combination of a low-dose of systemic dexmedetomidine with lidocaine may be a safe medicinal approach for acute inflammatory pain management in the orofacial region, particularly mucogingival pain.

7.
J Neurophysiol ; 125(4): 1517-1531, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33689491

ABSTRACT

The rat whisker system connects the tactile environment with the somatosensory thalamocortical system using only two synaptic stages. Encoding properties of the first stage, the primary afferents with somas in the trigeminal ganglion (TG), has been well studied, whereas much less is known from the second stage, the brainstem trigeminal nuclei (TN). The TN are a computational hub giving rise to parallel ascending tactile pathways and receiving feedback from many brain sites. We asked the question, whether encoding properties of TG neurons are kept by two trigeminal nuclei, the principalis (Pr5) and the spinalis interpolaris (Sp5i), respectively giving rise to two "lemniscal" and two "nonlemniscal" pathways. Single units were recorded in anesthetized rats while a single whisker was deflected on a band-limited white noise trajectory. Using information theoretic methods and spike-triggered mixture models (STM), we found that both nuclei encode the stimulus locally in time, i.e., stimulus features more than 10 ms in the past do not significantly influence spike generation. They further encode stimulus kinematics in multiple, distinct response fields, indicating encoding characteristics beyond previously described directional responses. Compared with TG, Pr5 and Sp5i gave rise to lower spike and information rates, but information rate per spike was on par with TG. Importantly, both brainstem nuclei were found to largely keep encoding properties of primary afferents, i.e. local encoding and kinematic response fields. The preservation of encoding properties in channels assumed to serve different functions seems surprising. We discuss the possibility that it might reflect specific constraints of frictional whisker contact with object surfaces.NEW & NOTEWORTHY We studied two trigeminal nuclei containing the second neuron on the tactile pathway of whisker-related tactile information in rats. We found that the subnuclei, traditionally assumed to give rise to functional tactile channels, nevertheless transfer primary afferent information with quite similar properties in terms of integration time and kinematic profile. We discuss whether such commonality may be due the requirement to adapt to physical constraints of frictional whisker contact.


Subject(s)
Electrophysiological Phenomena/physiology , Neurons, Afferent/physiology , Touch Perception/physiology , Trigeminal Nuclei/physiology , Vibrissae/physiology , Afferent Pathways/physiology , Animals , Biomechanical Phenomena , Rats , Time Factors
8.
Front Syst Neurosci ; 15: 641121, 2021.
Article in English | MEDLINE | ID: mdl-33716681

ABSTRACT

Prolonged mastication may induce an asymmetric modification of the local perfusion of the trigeminal principal nucleus. The aim of the present study was to evaluate the possible influence of vitamin C (vit. C) on such effect. Four groups of healthy volunteers underwent arterial spin labeling magnetic resonance imaging (ASL-MRI) to evaluate the local perfusion of the trigeminal nuclei after a vit. C-enriched lunch or a control lunch. Two ASL-MRI scans were acquired, respectively, before and after a 1 h-long masticating exercise or a 1 h long resting period. The results showed (i) an increased global perfusion of the brain in the vit. C-enriched lunch groups, (ii) an increased local perfusion of the right principal trigeminal nucleus (Vp) due to mastication, and (iii) a reduction of the rightward asymmetry of the Vp perfusion, due to mastication, after the vit C-enriched meal compared to the control meal. These results confirmed a long-lasting effect of prolonged mastication on Vp perfusion and also suggest a possible effect of vit. C on cerebral vascular tone regulation. Moreover, the data strongly draw attention on the side-to-side relation in Vp perfusion as a possible physiological parameter to be considered to understand the origin of pathological conditions like migraine.

9.
J Alzheimers Dis ; 76(4): 1443-1459, 2020.
Article in English | MEDLINE | ID: mdl-32651317

ABSTRACT

BACKGROUND: The mesencephalic trigeminal nucleus (Vmes) is not only anatomically adjacent to the locus coeruleus (LC) but is also tightly associated with the function of the LC. The LC can be the first area in which Alzheimer's disease (AD) develops, although it is unclear how LC neuronal loss occurs. OBJECTIVE: We investigated whether neuronal death in the Vmes can be spread to adjacent LC in female triple transgenic (3×Tg)-AD mice, how amyloid-ß (Aß) is involved in LC neuronal loss, and how this neurodegeneration affects cognitive function. METHODS: The molars of 3×Tg-AD mice were extracted, and the mice were reared for one week to 4 months. Immunohistochemical analysis, and spatial learning/memory assessment using the Barnes maze were carried out. RESULTS: In 4-month-old 3×Tg-AD mice, aggregated cytotoxic Aß42 was found in granules in Vmes neurons. Neuronal death in the Vmes occurred after tooth extraction, resulting in the release of cytotoxic Aß42 and an increase in CD86 immunoreactive microglia. Released Aß42 damaged the LC, in turn inducing a significant reduction in hippocampal neurons in the CA1 and CA3 regions receiving projections from the LC. Based on spatial learning/memory assessment, after the tooth extraction in the 4-month-old 3×Tg-AD mice, increased latency was observed in 5-month-old 3×Tg-AD mice 1 month after tooth extraction, which is similar increase of latency observed in control 8-month-old 3×Tg-AD mice. Measures of cognitive deficits suggested an earlier shift to dementia-like behavior after tooth extraction. CONCLUSION: These findings suggest that tooth extraction in the predementia stage can trigger the spread of neurodegeneration from the Vmes, LC, and hippocampus and accelerate the onset of dementia.


Subject(s)
Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Neurons/metabolism , Tooth Loss/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cognition Disorders/complications , Cognition Disorders/pathology , Cognitive Dysfunction/complications , Disease Models, Animal , Disease Progression , Mice, Transgenic , Neurons/pathology , Tooth Loss/metabolism , tau Proteins/metabolism
10.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 55(4): 259-263, 2020 Apr 09.
Article in Chinese | MEDLINE | ID: mdl-32268626

ABSTRACT

Objective: To determine the opening and closing action of the external muscle, the projection pathway of the axon terminal of trigeminal motor nucleus (Vmo) neuron to the lateral pterygoid muscle was revealed. Methods: In this study, 10 SD rats of 8 weeks old were included. The left lateral pterygoid muscle of SD rats was surgically exposed, and the wound was closed after intramuscular injection of hydroxystilbamidine/fluorogold (FG) 3-5 µl. Seven days after the operation, the experimental animals were perfused, samples collected and sectioned for immunofluorescence staining. After FG injection into the lateral pterygoid muscle, the FG reversed in the Vmo neurons. Results: In the Vmo neurons on the FG injection side (left side), a large number of FG reversed neurons were found in the corpus luteum and dendrites. These neurons were not only distributed in the dorsolateral part of the trigeminal motor nucleus that innervated the closed muscle, but also in the ventral medial portion of the trigeminal nucleus of the open muscle. Conclusions: The neuronal conduction pathway between the Vmo and the lateral pterygoid muscle innervates the lateral pterygoid muscle. The neurons are distributed both in the dorsolateral and in the nucleus of the ventral ventricle. It is concluded that the lateral pterygoid muscle involve in the jaw closing and opening movement.


Subject(s)
Pterygoid Muscles , Trigeminal Motor Nucleus , Animals , Female , Jaw , Movement , Neurons , Pterygoid Muscles/anatomy & histology , Pterygoid Muscles/innervation , Rats , Rats, Sprague-Dawley , Trigeminal Motor Nucleus/anatomy & histology , Trigeminal Nuclei
11.
Front Neurol ; 11: 14, 2020.
Article in English | MEDLINE | ID: mdl-32117001

ABSTRACT

Seemingly unrelated symptoms in the head and neck region are eliminated when a patch is applied on specific locations on the Tympanic Membrane. Clinically, two distinct patient populations can be distinguished; cervical and masticatory muscle tensions are involved, and mental moods of anxiety or need. Clinical observations lead to the hypothesis of a "Tympanic Resonance Regulating System." Its controller, the Trigeminocervical complex, integrates external auditory, somatosensory, and central impulses. It modulates auditory attention, and directs it toward unpredictable external or expected domestic and internal sounds: peripherally by shifting the resonance frequencies of the Tympanic Membrane; centrally by influencing the throughput of auditory information to the neural attention networks that toggle between scanning and focusing; and thus altering the perception of auditory information. The hypothesis leads to the assumption that the Trigeminocervical complex is composed of a dorsal component, and a ventral one which may overlap with the concept of "Trigeminovagal complex." "Tympanic Dissonance" results in a host of local and distant symptoms, most of which can be attributed to activation of the Trigeminocervical complex. Diagnostic and therapeutic measures for this "Tympanic Dissonance Syndrome" are suggested.

12.
Lasers Med Sci ; 35(2): 447-453, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31292820

ABSTRACT

This study analyzed the effects of photobiomodulation (PBM) with low-level laser therapy on nociceptive behavior and neuronal activity in the trigeminal nucleus after experimental unilateral temporomandibular joint (TMJ) disc injury. The animals were divided into 4 groups (n = 10 each): group 1, surgical injury of the articular disc and PBM; group 2, sham-operated subjected to PBM; group 3, surgical injury of the articular disc; and group 4, control (Naïve). Ten sessions of PBM were performed using GaAs laser with a wavelength of 904 nm, power of 75 W pico, average power of 0.043 W, area of the beam of 0.13 cm2, duration of the pulses of 60 nseg (in the frequency of 9500 Hz), energy density of 5.95 J/cm2, energy per point of 0.7 J, and power density of 333.8 mW/cm2, and the irradiation was done for 18 s per point. Neuropathic symptoms were evaluated using the von Frey test. Trigeminal ganglion samples underwent immunoblotting to examine the expression of substance P, vanilloid transient potential receptor of subtype-1 (TRPV-1), and peptide related to the calcitonin gene (CGRP). There was a total decrease in pain sensitivity after the second session of PBM in operated animals, and this decrease remains until the last session. There was a significant decrease in the expression of SP, TRPV-1, and CGRP after PBM. Photobiomodulation therapy was effective in reducing nociceptive behavior and trigeminal nucleus neuronal activity after TMJ disc injury.


Subject(s)
Low-Level Light Therapy , Neuropeptides/metabolism , Pain Threshold , Pain/radiotherapy , Temporomandibular Joint/pathology , Temporomandibular Joint/radiation effects , Animals , Behavior, Animal , Calcitonin Gene-Related Peptide/metabolism , Lasers, Semiconductor , Male , Rats, Wistar , Substance P/metabolism , TRPV Cation Channels/metabolism , Treatment Outcome
13.
Med Hypotheses ; 125: 90-93, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30902160

ABSTRACT

BACKGROUND: Migraine is a highly prevalent, disabling, and costly disorder worldwide. From a long time ago, headaches have been known to be associated with gastrointestinal (GI) disorders. Headaches originating from gastric complaints were appreciated by Persian Medicine (PM) scholars. Today, functional GI disorders are shown to have high comorbidity with migraines; however, a causal relationship is not accepted today and pathophysiological explanations for this comorbidity are scarce. Therefore, based on the PM philosophy and the existing evidence, we aimed to propose an explanation for the co-morbidity of migraine and GI disorders. SUMMARY: Noxious stimuli from the GI tract are relayed to the nucleus tractus solitarius (NTS) in the brain stem, which is located close to the trigeminal nucleus caudalis (TNC). TNC has shown projections to (NTS) through which frequent GI stimuli may antidromically reach the TNC and finally result in neurogenic inflammation. In addition, immune products, particularly histamine, are released in the submucosa of the GI tract and absorbed into the systemic circulation, which renders migraineurs more prone to attacks.


Subject(s)
Gastrointestinal Diseases/complications , Migraine Disorders/complications , Brain Stem/physiopathology , Comorbidity , Gastrointestinal Diseases/physiopathology , Headache/complications , Histamine/chemistry , Humans , Inflammation , Migraine Disorders/physiopathology , Models, Biological , Treatment Outcome , Trigeminal Caudal Nucleus/physiopathology
14.
Neuron ; 95(3): 673-682.e4, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28735746

ABSTRACT

Animals employ active touch to optimize the acuity of their tactile sensors. Prior experimental results and models lead to the hypothesis that sensory inputs are used in a recurrent manner to tune the position of the sensors. A combination of electrophysiology, intersectional genetic viral labeling and manipulation, and classical tracing allowed us to identify second-order sensorimotor loops that control vibrissa movements by rodents. Facial motoneurons that drive intrinsic muscles to protract the vibrissae receive a short latency inhibitory input, followed by synaptic excitation, from neurons located in the oralis division of the trigeminal sensory complex. In contrast, motoneurons that retract the mystacial pad and indirectly retract the vibrissae receive only excitatory input from interpolaris cells that further project to the thalamus. Silencing this feedback alters retraction. The observed pull-push circuit at the lowest-level sensorimotor loop provides a mechanism for the rapid modulation of vibrissa touch during exploration of peri-personal space.


Subject(s)
Behavior, Animal/physiology , Brain Stem/physiology , Feedback , Movement/physiology , Vibrissae/physiology , Animals , Female , Male , Mice , Motor Neurons/metabolism , Rats, Long-Evans , Thalamus/physiology , Touch/physiology
15.
Neuroscience ; 311: 75-80, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26477983

ABSTRACT

Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing.


Subject(s)
Mastication/physiology , Trigeminal Nuclei/blood supply , Trigeminal Nuclei/physiology , Adult , Chewing Gum , Female , Humans , Magnetic Resonance Imaging , Male , Masseter Muscle/blood supply , Masseter Muscle/physiology , Time Factors , Young Adult
16.
Article in English | MEDLINE | ID: mdl-26483640

ABSTRACT

The primary (S1) and secondary (S2) somatosensory cortices project to several trigeminal sensory nuclei. One putative function of these corticofugal projections is the gating of sensory transmission through the trigeminal principal nucleus (Pr5), and some have proposed that S1 and S2 project differentially to the spinal trigeminal subnuclei, which have inhibitory circuits that could inhibit or disinhibit the output projections of Pr5. Very little, however, is known about the origin of sensorimotor corticofugal projections and their patterns of termination in the various trigeminal nuclei. We addressed this issue by injecting anterograde tracers in S1, S2 and primary motor (M1) cortices, and quantitatively characterizing the distribution of labeled terminals within the entire rostro-caudal chain of trigeminal sub-nuclei. We confirmed our anterograde tracing results by injecting retrograde tracers at various rostro-caudal levels within the trigeminal sensory nuclei to determine the position of retrogradely labeled cortical cells with respect to S1 barrel cortex. Our results demonstrate that S1 and S2 projections terminate in largely overlapping regions but show some significant differences. Whereas S1 projection terminals tend to cluster within the principal trigeminal (Pr5), caudal spinal trigeminal interpolaris (Sp5ic), and the dorsal spinal trigeminal caudalis (Sp5c), S2 projection terminals are distributed in a continuum across all trigeminal nuclei. Contrary to the view that sensory gating could be mediated by differential activation of inhibitory interconnections between the spinal trigeminal subnuclei, we observed that projections from S1 and S2 are largely overlapping in these subnuclei despite the differences noted earlier.


Subject(s)
Neuroanatomical Tract-Tracing Techniques/methods , Somatosensory Cortex/anatomy & histology , Trigeminal Motor Nucleus/anatomy & histology , Trigeminal Nucleus, Spinal/anatomy & histology , Vibrissae/physiology , Animals , Female , Male , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/physiology , Trigeminal Motor Nucleus/physiology , Trigeminal Nucleus, Spinal/physiology
17.
Somatosens Mot Res ; 32(3): 187-99, 2015.
Article in English | MEDLINE | ID: mdl-26235095

ABSTRACT

Specializations of the trigeminal sensory system are present in all three infraclasses of mammals (metatheria, eutheria, prototheria or monotremata). The trigeminal sensory system has been suggested as a critically important modality for sampling the path to the pouch and detecting the nipple or milk patch, but the degree to which that system may be required to function at birth varies significantly. Archived sections of the snout and brainstem of embryonic and postnatal mammals were used to test the relationship between structural maturity of the two ends of the trigeminal nerve pathway and the body size of mammalian young in metatherians, rodents and monotremes. A system for staging different levels of structural maturity of the vibrissae and trigeminal sensory was applied to embryos, pouch young and hatchlings and correlated with body length. Dasyurids are born at the most immature state with respect to vibrissal and trigeminal sensory nucleus development of any available metatherian, but these components of the trigeminal system are also developmentally advanced relative to body size when dasyurids are compared to other metatherians. Vibrissal and trigeminal sensory nucleus development is at a similar stage of development at birth and for a given body size in non-dasyurid metatherians; and trigeminal sensory nucleus development in monotremes is at a similar stage at birth to metatherians. Rodents reach a far more advanced stage of vibrissal and trigeminal sensory nucleus development at birth than do metatherians, and in the case of the mouse have a more developmentally advanced trigeminal system than all available metatherians at any given body length. Precocious development of the trigeminal sensory pathway relative to body size is evident in dasyurids, as might be expected given the small birth size of those metatherians. Nevertheless, the trigeminal sensory system in metatherians in general is not precocious relative to body size when these species are considered alongside the pace of trigeminal somatosensory development in rodents.


Subject(s)
Body Size , Marsupialia/physiology , Monotremata/physiology , Rodentia/physiology , Trigeminal Nerve/physiology , Trigeminal Nuclei/physiology , Afferent Pathways/physiology , Age Factors , Animals , Animals, Newborn , Biological Evolution , Embryo, Mammalian , Species Specificity , Trigeminal Nerve/anatomy & histology , Trigeminal Nuclei/anatomy & histology , Vibrissae/physiology
18.
J Comp Neurol ; 522(7): 1597-617, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24178892

ABSTRACT

Intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus that project to the principal nucleus (Pr5) play an active role in shaping the receptive fields of other neurons, at different levels in the ascending sensory system that processes information originating from the vibrissae. By using retrograde labeling and digital reconstruction, we investigated the morphometry and topology of the dendritic trees of these neurons and the changes induced by long-term experience-dependent plasticity in adult male rats. Primary afferent input was either eliminated by transection of the right infraorbital nerve (IoN), or selectively altered by repeated whisker clipping on the right side. These neurons do not display asymmetries between sides in basic metric and topologic parameters (global number of trees, nodes, spines, or dendritic ends), although neurons on the left tend to have longer terminal segments. Ipsilaterally, both deafferentation (IoN transection) and deprivation (whisker trimming) reduced the density of spines, and the former also caused a global increase in total dendritic length and a relative increase in more complex arbors. Contralaterally, deafferentation reduced more complex dendritic trees, and caused a moderate decline in dendritic length and spatial reach, and a loss of spines in number and density. Deprivation caused a similar, but more profound, effect on spines. Our findings provide original quantitative descriptions of a scarcely known cell population, and show that denervation- or deprivation-derived plasticity is expressed not only by neurons at higher levels of the sensory pathways, but also by neurons in key subcortical circuits for sensory processing.


Subject(s)
Dendrites/physiology , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/physiology , Trigeminal Nuclei/cytology , Trigeminal Nuclei/physiology , Animals , Dendritic Spines/physiology , Denervation , Face/innervation , Face/physiology , Functional Laterality , Image Processing, Computer-Assisted , Male , Neuroanatomical Tract-Tracing Techniques , Photomicrography , Physical Stimulation , Rats , Rats, Sprague-Dawley , Sensory Deprivation/physiology , Synaptic Transmission/physiology , Touch Perception/physiology , Vibrissae/physiology
19.
Front Hum Neurosci ; 7: 569, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-24062670

ABSTRACT

Over the past half a century, many investigations in experimental animal have explored the functional roles of specific regions in the brainstem. Despite the accumulation of a considerable body of knowledge in, primarily, anesthetized preparations, relatively few studies have explored brainstem function in awake humans. It is important that human brainstem function is explored given that many neurological conditions, from obstructive sleep apnea, chronic pain, and hypertension, likely involve significant changes in the processing of information within the brainstem. Recent advances in the collection and processing of magnetic resonance images have resulted in the possibility of exploring brainstem activity changes in awake healthy individuals and in those with various clinical conditions. We and others have begun to explore changes in brainstem activity in humans during a number of challenges, including cutaneous and muscle pain, as well as during maneuvers that evoke increases in sympathetic nerve activity. More recently we have successfully recorded sympathetic nerve activity concurrently with functional magnetic resonance imaging of the brainstem, which will allow us, for the first time to explore brainstem sites directly responsible for conditions such as hypertension. Since many pathophysiological conditions no doubt involve changes in brainstem function and structure, defining these changes will likely result in a greater ability to develop more effective treatment regimens.

20.
J Clin Neurosci ; 20(11): 1608-10, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23591181

ABSTRACT

Inferior alveolar nerve blocks are commonly performed for dental anaesthesia. The procedure is generally safe with a low rate of complications. We report a patient with a reproducible, delayed-onset sensory deficit associated with contrast-enhancing lesions in the trigeminal nerve, pons and medulla following inferior alveolar nerve local anaesthesia. We propose that this previously undescribed condition is a form of Type IV hypersensitivity reaction.


Subject(s)
Anesthesia, Dental/adverse effects , Anesthetics, Local/adverse effects , Brain/pathology , Mandibular Nerve/drug effects , Nerve Block/adverse effects , Trigeminal Nerve/pathology , Anesthesia, Dental/methods , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...