Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
1.
Open Med (Wars) ; 19(1): 20240967, 2024.
Article in English | MEDLINE | ID: mdl-38841174

ABSTRACT

Background: Rheumatoid arthritis (RA) is a chronic inflammatory and disabling disease that imposes significant economic and social costs. Tripterygium wilfordii Hook F (TwHF) has a long history of use in traditional Chinese medicine for treating joint disorders, and it has been shown to be cost-effective in treating RA, but its exact mechanism is unknown. Objective: The goal of the network pharmacology analysis and molecular docking was to investigate the potential active compounds and associated anti-RA mechanisms of TwHF. Methods: TCMSP and UniProt databases were searched for active compounds and related targets of TwHF. PharmGKB, DrugBank, OMIM, TTD, and the Human Gene Databases were used to identify RA-related targets. The intersected RA and TwHF targets were entered into the STRING database to create a protein-protein interaction network. R software was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking technology was used to analyze the optimal effective components from TwHF for docking with the selected target gene. Results: Following screening and duplicate removal, a total of 51 active compounds and 96 potential targets were chosen. The PPI network revealed that the target proteins are CXCL8, CXCL6, STAT3, STAT1, JUN, PPARG, TP53, IL14, MMP9, VEGFA, RELA, CASP3, PTGS2, IFNG, AKT1, FOS, ICAM1, and MAPK14. The results of the GO enrichment analysis focused primarily on the response to lipopolysaccharide, the response to molecules of bacterial origin, and the response to drugs. The KEGG results indicated that the mechanisms were closely related to lipid and atherosclerosis, chemical carcinogenesis-receptor activation, Kaposi sarcoma-associated, herpesvirus infection, hepatitis B, fluid shear stress and atherosclerosis, IL-17 signaling pathways, Th17-cell differentiation, and so on, all of which are involved in angiogenesis, immune cell chemotaxis, and inflammatory responses. Molecular docking results suggested that triptolide was the appropriate PTGS1, PTGS2, and TNF inhibitors. Conclusion: Our findings provide an essential role and basis for further immune inflammatory studies into the molecular mechanisms of TwHF and PTGS1, PTGS2, and TNF inhibitor development in RA.

2.
Front Pharmacol ; 15: 1339153, 2024.
Article in English | MEDLINE | ID: mdl-38841368

ABSTRACT

Treatment of glomerulonephritis presents several challenges, including limited therapeutic options, high costs, and potential adverse reactions. As a recognized Chinese patent medicine, Tripterygium wilfordii poly-glycosides (TWP) have shown promising benefits in managing autoimmune diseases. To evaluate clinical effectiveness and safety of TWP in treating glomerulonephritis, we systematically searched PubMed, Cochrane Library, Web of Science, and Embase databases for controlled studies published up to 12 July 2023. We employed weighted mean difference and relative risk to analyze continuous and dichotomous outcomes. This meta-analysis included 16 studies that included primary membranous nephropathy (PMN), type 2 diabetic kidney disease (DKD), and Henoch-Schönlein purpura nephritis (HSPN). Analysis revealed that additional TWP administration improved patients' outcomes and total remission rates, reduced 24-h urine protein (24hUP) and decreased relapse events. The pooled results demonstrated the non-inferiority of TWP to glucocorticoids in achieving total remission, reducing 24hUP, and converting the phospholipase A2 receptor (PLA2R) status to negative. For DKD patients, TWP effectively reduced 24hUP levels, although it did not significantly improve the estimated glomerular filtration rate (eGFR). Compared to valsartan, TWP showed comparable improvements in 24hUP and eGFR levels. In severe cases of HSPN in children, significant clinical remission and a reduction in 24hUP levels were observed with the addition of TWP treatment. TWP did not significantly increase the incidence of adverse reactions. Therefore, TWP could offer therapeutic benefits to patients with PMN, DKD, and severe HSPN, with a minimal increase in the risk of side effects.

4.
Nat Prod Res ; : 1-8, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629167

ABSTRACT

Tripterygium wilfordii has been historically employed as a conventional botanical insecticide and a plant of medicinal significance. A new dihydroagarofuran sesquiterpene (1) and a new acyclic compound (2), along with seven known compounds (3-9), have been isolated from the aerial parts of Tripterygium wilfordii. The identification of the structures of novel compounds were accomplished through comprehensive spectroscopic analyses, encompassing HRESIMS, NMR, UV, IR, and a comparative analysis with spectroscopic data from compounds previously characterised. In in-vitro bioassay, compound 8 exhibited significant inhibitory activity for NO release in LPS-induced RAW 264.7 cells, with an IC50 value of 15.7 µM.

5.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38437887

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Subject(s)
Kidney Diseases , Renal Insufficiency, Chronic , Triterpenes , Ureteral Obstruction , Humans , Mice , Animals , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney , Renal Insufficiency, Chronic/metabolism , Oxidative Stress , Fibrosis , Ureteral Obstruction/metabolism
6.
Food Chem ; 447: 139044, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513481

ABSTRACT

The object of this study was to trace TwHf-derived toxins in raw honey and clarify their acute toxic effect related to the addition of honey or sugars. TwHf flowers, raw honey from TwHf planting base and from beekeepers in high-risk area were detected using LC-MS/MS. The results revealed five target toxins were detected in TwHf flowers; only celastrol was detected in one raw honey sample, as a food safety risk factor, celastrol had been traced back to TwHf flowers from raw honey. In a series of acute toxic tests on zebrafish, toxification effects were observed when honey, mimic honey or sugar was mixed with toxins. The degree of toxicity varied among various sugar-based solutions. At the same mass concentration, they follow this order: raw honey/mimic honey > glucose > fructose. The main toxic target organs of triptolide and celastrol with honey were the heart and liver.


Subject(s)
Diterpenes , Honey , Pentacyclic Triterpenes , Phenanthrenes , Tripterygium , Animals , Honey/analysis , Chromatography, Liquid , Zebrafish , Tandem Mass Spectrometry , Sugars , Epoxy Compounds
7.
J Ethnopharmacol ; 327: 117939, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38382651

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii polyglycosides (TWP) tablet is the most widely used traditional Chinese medicine preparation for the treatment of rheumatoid arthritis (RA), but the hepatotoxicity often limits its widespread application. In traditional use, Salvia miltiorrhiza has cardioprotective and hepatoprotective effects. Salvianolic acid extract (SA) is a hydrophilic component of Salvia miltiorrhiza and has significant antioxidant and hepatoprotective effects. AIM OF THE STUDY: To investigate the protective effects of SA on the TWP-induced acute liver injury in rats and to explore the related mechanisms by integration of metabolomics and transcriptomics. MATERIALS AND METHODS: SA and TWP extracts were identified by UPLC-Q/TOF-MS. SA (200 mg/kg) was administered for consecutive 7 days. On day 7, TWP (360 mg/kg) was administered by gavage to induce the acute liver injury in rats. Serum biochemical assay and H&E staining were used to evaluate liver damage. Liver metabolomics and transcriptomics were used to explore the potential mechanisms, and further molecular biological experiments such as qPCR and IHC were utilized to validate the relevant signaling pathways. RESULTS: SA can prevent liver injury symptoms caused by TWP, such as elevated liver index, elevated ALT and AST, and pathological changes in liver tissue. Liver metabolomics studies showed that TWP can significantly alter the content of individual bile acid in the liver and SA had the most significant impact on the biosynthetic pathway of bile acids. The transcriptomics results of the liver indicated that the genes changed in the SA + TWP group were mainly involved in sterol metabolism, lipid regulation and bile acid homeostasis pathways. The gene expression of Nr1h4, which encodes farnesoid X receptor (FXR), an important regulator of bile acid homeostasis, was significantly changed. Further studies confirmed that SA can prevent the downregulation of FXR and its downstream signaling induced by TWP, thereby regulating bile acid metabolism, ultimately preventing acute liver injury caused by TWP. CONCLUSION: Our results demonstrated that SA could protect the liver from TWP-induced hepatic injury by modulation of the bile acid metabolic pathway. SA may provide a new strategy for the protection against TWP-induced acute liver injury.


Subject(s)
Alkenes , Polyphenols , Salvia miltiorrhiza , Tripterygium , Rats , Animals , Liver , Bile Acids and Salts , Salvia miltiorrhiza/chemistry , Lipid Metabolism
8.
Comput Biol Chem ; 109: 108030, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387122

ABSTRACT

BACKGROUND: Tripterygium wilfordii Hook. f. (TW) shows anticancer activity, and no study has comprehensively investigated the effects of TW in treating cholangiocarcinoma (CHOL). This study was designed to identify the therapeutic role and the mechanism of TW against CHOL to obtain anti-CHOL candidate components and targets. METHODS: Ingredients of TW were collected from the Traditional Chinese Medicine System Pharmacology Database and literature. Limma package and weighted gene co-expression network analysis were used to identify the genes related to CHOL. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) was performed by R package Cluster-Profiler and Metascape, respectively. Protein-Protein Interaction (PPI) network was used to select core genes in the treatment of CHOL by TW, followed by GEPIA2, UALCAN database, and ROC curves to assess their diagnostic and prognostic capability. Molecular docking and molecular dynamics simulation were applied to explore the binding affinity and stability of the complex between the bioactive ingredients in TW and core targets. RESULTS: A total of 67 ingredients in TW were collected, and 495 genes were obtained as genes of CHOL. 55 common TW-CHOL targets were identified. 171 biological process terms and 100 KEGG pathways were enriched. 12 genes were regarded as core genes through PPI analysis, such as CYP3A4, CES1, GC, and PLG, whose good diagnostic and prognostic capability were identified. Ten ingredients were selected through the construction of Herb-Components-Targets-Disease network. Molecular docking and molecular dynamics simulation both confirmed the good binding affinity and stability of the ligand-protein complexes. CONCLUSION: This study identified the therapeutic role and predicted the mechanism of TW against CHOL, where TW may combat CHOL through the regulation of metabolic conditions of the body, bile acid secretion, xenobiotics metabolism, and the inflammatory response. Celastrol, triptonide, triptolide and wilforlide A emerged as promising anti-CHOL candidates. So, this study offered a reference for the treatment of CHOL and the development of anti-CHOL drugs.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Drugs, Chinese Herbal , Molecular Dynamics Simulation , Molecular Docking Simulation , Tripterygium , Computational Biology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic , Drugs, Chinese Herbal/pharmacology
9.
Ren Fail ; 46(1): 2295425, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38178377

ABSTRACT

AIM: Tripterygium wilfordii Hook F (TwHF) has been shown to substantially reduce proteinuria in patients with diabetic kidney disease (DKD); however, the effect of TwHF on renal outcomes in DKD remains unknown. Accordingly, we aimed to establish the effects of TwHF on renal outcomes in patients with DKD. METHODS: Overall, 124 patients with DKD, induced by type 2 diabetes mellitus, with 24-h proteinuria > 2 g, and an estimated glomerular filtration rate > 30 mL/min/1.73 m2 were retrospectively investigated. The renal outcomes were defined as doubling serum creatinine levels or end-stage kidney disease. Kaplan-Meier curves and Cox regression analyses were performed to analyze prognostic factors for renal outcomes. RESULTS: By the end of the follow-up, renal outcomes were observed in 23 and 11 patients in the non-TwHF and TwHF groups, respectively (p = 0.006). TwHF significantly reduced the risk of renal outcomes (adjusted hazard ratio [HR] 0.271, 95% confidence interval [CI] 0.111-0.660, p = 0.004) in patients with chronic kidney disease (CKD) G3 (adjusted HR 0.274, 95%CI 0.081-0.932, p = 0.039). Based on the Kaplan-Meier analysis, 1- and 3-year proportions of patients without renal outcomes were significantly lower in the non-TwHF group than those in the TwHF group (92.8% vs. 95.5% and 47.2% vs. 76.8%, respectively; p = 0.0018). CONCLUSION: In DKD patients with severe proteinuria, TwHF could prevent DKD progression, especially in patients with CKD G3. A randomized clinical trial is needed to elucidate the benefits of TwHF on renal outcomes in patients with DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Diabetic Nephropathies/complications , Diabetic Nephropathies/drug therapy , Tripterygium , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Retrospective Studies , Proteinuria/drug therapy , Proteinuria/etiology
10.
Int J Rheum Dis ; 27(1): e15031, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287544

ABSTRACT

OBJECTIVES: To evaluate the efficacy and safety of adalimumab (ADA) combined with Tripterygium wilfordii Hook F (TwHF) in the treatment of methotrexate (MTX)-inadequate response patients with rheumatoid arthritis (RA). METHODS: In this multicenter, open-label, randomized controlled clinical trial, 64 RA patients with inadequate response to MTX were 1:1 randomly assigned into treatment or control groups. The treatment group was treated with ADA in combination with TwHF, and the control group was treated with ADA in combination with MTX for 24 weeks. The primary endpoint was the percentage of patients having low disease activity (2.6 ≤ DAS28-ESR < 3.2) and remission rates (DAS28-ESR < 2.6) at week 24. RESULTS: In total, 53 of the 64 patients (82.8%) completed this 24-week clinical trial. By intent-to-treat (ITT) analysis, a comparable outcome was observed between the two groups. The percentage of patients achieving low disease activity in the treatment group and control group were 43.8% and 46.9% (95% CI, 21.28 to 27.48, p = .802). Percentage of patients achieving low disease activity rates were respectively 28.1% and 31.3% in the treatment group and control group (95% CI, 19.18 to 25.58, p = .784). In per-protocol (PP) analysis, the results were consistent with the ITT model. The incidence of adverse events was comparable between the two groups. CONCLUSIONS: There were no significant differences in efficacy and safety between ADA combined with TwHF versus ADA combined with MTX in the treatment of RA. TwHF might be an alternative treatment for RA patients who are intolerant to MTX.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Adalimumab/adverse effects , Antirheumatic Agents/adverse effects , Tripterygium , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/chemically induced , Methotrexate/adverse effects , Drug Therapy, Combination , Treatment Outcome
11.
Chin J Integr Med ; 30(3): 222-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37597119

ABSTRACT

OBJECTIVE: To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective. METHODS: Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction. RESULTS: TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01). CONCLUSIONS: TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.


Subject(s)
Dermatitis , Psoriasis , Skin Diseases , Male , Animals , Mice , Tripterygium , Psoriasis/drug therapy , Keratinocytes , Skin Diseases/metabolism , Cytokines/metabolism , Imiquimod/adverse effects , Imiquimod/metabolism , Dermatitis/metabolism , Dermatitis/pathology , Disease Models, Animal , Mice, Inbred BALB C , Skin/metabolism
12.
Chin J Integr Med ; 30(4): 322-329, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37861963

ABSTRACT

OBJECTIVE: To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells. METHODS: Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and ß-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored. RESULTS: Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3ß and down-regulated the expression of ß-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of ß-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01). CONCLUSIONS: Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/ß-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.


Subject(s)
Glioblastoma , Pentacyclic Triterpenes , Wnt Signaling Pathway , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Ligands , Cell Line, Tumor , Apoptosis , Tumor Necrosis Factors/pharmacology , Cell Proliferation , Cell Movement , Epithelial-Mesenchymal Transition
13.
New Phytol ; 241(4): 1720-1731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013483

ABSTRACT

Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.


Subject(s)
Oleanolic Acid/analogs & derivatives , Saccharomyces cerevisiae , Triterpenes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Triterpenes/metabolism , Anti-Inflammatory Agents/metabolism
14.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010311

ABSTRACT

OBJECTIVE@#To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.@*METHODS@#Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.@*RESULTS@#TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).@*CONCLUSIONS@#TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.


Subject(s)
Male , Animals , Mice , Tripterygium , Psoriasis/drug therapy , Keratinocytes , Skin Diseases/metabolism , Cytokines/metabolism , Imiquimod/metabolism , Dermatitis/pathology , Disease Models, Animal , Mice, Inbred BALB C , Skin/metabolism
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003425

ABSTRACT

Tripterygium wilfordii is widely used in the treatment of immune system disease and has a remarkable curative effect. Triptolide and Tripterygium glycosides are the most commonly used active ingredients in clinical practice, but their treatment window is narrow and there are many side effects. The damage involves the reproductive system, blood system, cardiovascular system, digestive system, etc. Based on clinical observations and literature summaries, the symptoms of adverse reactions mostly occur in the digestive system (liver and gastrointestinal tract). Relevant scholars have launched a lot of studies of the manifestations of liver injury induced by T. wilfordii and the mechanism of liver injury. The mechanism is mainly related to liver cell apoptosis, induction of oxidative stress, immune injury, excessive autophagy of liver cells, abnormal fatty acid metabolism, and abnormal enzyme metabolism in liver tissues. This article reviewed and summarized relevant literature on gastrointestinal injury caused by T. wilfordii, but there are few studies on the manifestations and mechanisms of adverse reactions, which still need further research by scholars. In addition, this article also summarized the research on how to reduce toxicity and enhance efficacy of prescriptions prepared from T. wilfordii in the digestive system, mainly involving compatibility with western medicines (Methotrexate, Leflunomide, Iguratimod, etc.), use along or combination with Chinese medicines (single Chinese medicine, Chinese medicine monomers, and Chinese medicine compounds), acupuncture and moxibustion (electroacupuncture and moxibustion), dosage form improvement (glycol plastid gel, self-dissolving microneedle, solid lipid nanoparticles, gastric floating sustained-release capsules, etc.), processing (steaming, stir-frying, radish seed processing, money grass processing, licorice processing, etc.), and other methods to reduce toxicity. To sum up, this article analyzed the manifestations, mechanisms, and methods of reducing toxicity and enhancing efficacy of T. wilfordii-induced liver injury and gastrointestinal injury by sorting out relevant literature, in order to provide a reference for the clinical application of T. wilfordii and some research ideas for the future in-depth study of T. wilfordii-induced digestive system injury.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016481

ABSTRACT

Tripterygium wilfordii polyglycosides are one of the most commonly used Tripterygium wilfordii preparations, which have anti-inflammatory and immune-regulating effects. Their unique therapeutic effect on some autoimmune diseases and kidney diseases is almost irreplaceable by other similar drugs, but the possible reproductive damage is the bottleneck that hinders their clinical application. In clinical use, female patients often suffer from menstrual cycle disorders, decreased menstrual flow, even amenorrhea, infertility, and other symptoms, and the main toxic mechanism lies in damaging the reproductive and endocrine functions of the ovary and inhibiting the growth and development of follicles. Therefore, it is particularly necessary to understand the toxic and side effects of Tripterygium wilfordii polyglycosides on female reproduction and master the detoxification methods during clinical use. However, there is no clear solution to these problems. According to the theory of traditional Chinese medicine, "kidney governs reproduction", and the relationship between kidney Yin, kidney essence, and female ovum is close. Therefore, by considering that the damage to the reproductive system caused by Tripterygium wilfordii polyglycosides belongs to the category of kidney deficiency, Yin damage, and essence deficiency, the "strengthening kidney Yin" method is proposed. It points out that the reproductive toxicity damage of Tripterygium wilfordii polyglycosides on the female can be effectively alleviated by tonifying kidney and Yin essence in clinical use. The relevant research on traditional Chinese medicine, classical prescription, test prescription, and acupuncture is summarized to verify the necessity of the "strengthening kidney Yin" method, so as to provide a theoretical basis for the safe and rational clinical use of Tripterygium wilfordii.

17.
Drug Des Devel Ther ; 17: 3767-3781, 2023.
Article in English | MEDLINE | ID: mdl-38144417

ABSTRACT

Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.


Subject(s)
Autoimmune Diseases , Drugs, Chinese Herbal , Psoriasis , Humans , Tripterygium , Plant Extracts/adverse effects , Quality of Life , Psoriasis/drug therapy , Psoriasis/metabolism , Skin/metabolism , Autoimmune Diseases/drug therapy , Drugs, Chinese Herbal/therapeutic use
18.
Arthritis Res Ther ; 25(1): 243, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38098062

ABSTRACT

BACKGROUND: Wilforine (WFR) is a monomeric compound of the anti-RA plant Tripterygium wilfordii Hook. f. (TwHF). Whether WFR has anti-RA effect, its molecular mechanism has not been elucidated. AIM OF THE STUDY: Our study aims to clarify how WFR inhibits fibroblast-like synovial cells (FLS) activation and improves RA through Wnt11 action on the Wnt11/ß-catenin signaling pathway. METHODS: The therapeutic effect of WFR on collagen-induced arthritis (CIA) rats was evaluated using methods such as rat arthritis score. The inhibitory effects and signaling pathways of WFR on the proliferation and inflammatory response of CIA FLS and RA FLS were studied using ELISA, CCK-8, RT-qPCR, Western blot, and immunofluorescence methods. RESULTS: WFR could effectively alleviate the arthritis symptoms of CIA rats; reduce the levels of IL-6, IL-1ß, and TNF-α in the peripheral blood of CIA rats; and inhibit the expression of MMP3 and fibronectin. The data showed that WFR has a significant inhibitory effect on FLS proliferation. Furthermore, WFR inhibited the activation of Wnt/ß-catenin signaling pathway and decreased the expression of Wnt11, ß-catenin, CCND1, GSK-3ß, and c-Myc, while the effects of WFR were reversed after overexpression of Wnt11. CONCLUSIONS: WFR improves RA by inhibiting the Wnt11/ß-catenin signaling pathway, and Wnt11 is the direct target of WFR. This study provides a new molecular mechanism for WFR to improve RA and contributes to the clinical promotion of WFR.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Rats , Animals , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Cell Proliferation , Arthritis, Rheumatoid/metabolism , Synoviocytes/metabolism , Arthritis, Experimental/metabolism , Wnt Signaling Pathway , Fibroblasts/metabolism , Cells, Cultured , Synovial Membrane/metabolism , Wnt Proteins/metabolism
19.
Eur J Med Res ; 28(1): 547, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017514

ABSTRACT

BACKGROUND: Triptonodiol is a very promising antitumor drug candidate extracted from the Chinese herbal remedy Tripterygium wilfordii Hook. F., and related studies are underway. METHODS: To explore the mechanism of triptonodiol for lung cancer treatment, we used network pharmacology, molecular docking, and ultimately protein validation. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were performed through the David database. Molecular docking was performed using PyMoL2.3.0 and AutoDock Vina software. After screening, the major targets of triptonodiol were identified for the treatment of lung cancer. Target networks were established, Protein-protein interaction (PPI) network topology was analyzed, then KEGG pathway enrichment analysis was performed. Useful proteins were screened by survival analysis, and Western blot analysis was performed. RESULTS: Triptonodiol may regulate cell proliferation, drug resistance, metastasis, anti-apoptosis, etc., by acting on glycogen synthase kinase 3 beta (GSK3B), protein kinase C (PKC), p21-activated kinase (PAK), and other processes. KEGG pathway enrichment analysis showed that these targets were associated with tumor, erythroblastic oncogene B (ErbB) signaling, protein phosphorylation, kinase activity, etc. Molecular docking showed that the target protein GSK has good binding activity to the main active component of triptonodiol. The protein abundance of GSK3B was significantly downregulated in non-small-cell lung cancer cells H1299 and A549 treated with triptonodiol for 24 h. CONCLUSION: The cellular-level studies combined with network pharmacology and molecular docking approaches provide new ideas for the development and therapeutic application of triptonodiol, and identify it as a potential GSK inhibitor.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Network Pharmacology , Tripterygium/chemistry , Drugs, Chinese Herbal/pharmacology
20.
Front Pharmacol ; 14: 1282610, 2023.
Article in English | MEDLINE | ID: mdl-38027004

ABSTRACT

Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.

SELECTION OF CITATIONS
SEARCH DETAIL
...