Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 457
Filter
1.
J Inflamm Res ; 17: 4105-4116, 2024.
Article in English | MEDLINE | ID: mdl-38948195

ABSTRACT

Purpose: We aimed to explore changes in plasma and urine indole lactic acid (ILA) levels and the relationship between inflammation and ILA in chronic kidney disease (CKD) patients and healthy people. Patients and Methods: Forty-seven CKD patients and 30 healthy individuals were included in this study. One-way ANOVA was used for variables with normal distribution and homogeneous variance. A rank-sum test was performed for non-normally distributed variables. Correlation analyses were performed using Pearson's or Spearman correlation analyses. Independent relationship between patients and CKD was analyzed using ordinal and binary logistic regressions. Receiver operating characteristic (ROC) curve was used. Results: Plasma and urine ILA levels were positively correlated (r = 0.51, P < 0.01). Plasma ILA was positively correlated with BMI, age, creatinine, BUN, triglycerides, and uric acid and negatively correlated with hemoglobin levels. Urine ILA levels were positively correlated with age, creatinine, BUN, and uric acid and negatively correlated with hemoglobin and albumin levels. Ordered logistic regression analysis showed that CKD was significantly correlated with plasma ILA (OR=4.49, P < 0.01), urinary ILA (OR=2.14,P < 0.01), urea levels (OR=1.43, P < 0.01) and hemoglobin levels (OR=0.95, P < 0.01) were significantly related. ROC curves indicated that plasma and urinary ILA were reliable predictors of CKD. CKD was correlated with plasma, urine ILA (OR=5.92, P < 0.01; OR=2.79, P < 0.01) and Hs-CRP (OR=2.45, P < 0.01). Conclusion: Plasma and urine ILA can potentially be used as biomarkers of CKD and inflammatory status.

2.
Life Sci ; 351: 122790, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852795

ABSTRACT

AIMS: Atorvastatin is a commonly used cholesterol-lowering drug that possesses non-canonical anti-inflammatory properties. However, the precise mechanism underlying its anti-inflammatory effects remains unclear. MATERIALS AND METHODS: The acute phase of ulcerative colitis (UC) was induced using a 5 % dextran sulfate sodium (DSS) solution for 7 consecutive days and administrated with atorvastatin (10 mg/kg) from day 3 to day 7. mRNA-seq, histological pathology, and inflammatory response were determined. Intestinal microbiota alteration, tryptophan, and its metabolites were analyzed through 16S rRNA sequencing and untargeted metabolomics. KEY FINDINGS: Atorvastatin relieved the DSS-induced UC in mice, as evidenced by colon length, body weight, disease activity index score and pathological staining. Atorvastatin treatment reduced the level of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Atorvastatin also relieved the intestinal microbiota disorder caused by UC and decreased the proliferation of pernicious microbiota such as Akkermansia and Bacteroides. Atorvastatin dramatically altered tryptophan metabolism and increased the fecal contents of tryptophan, indolelactic acid (ILA), and indole-3-acetic acid (IAA). Furthermore, atorvastatin enhanced the expression level of aryl hydrocarbon receptor (AhR) and interleukin-22 (IL-22) and further promoted the expression level of intestinal tight junction proteins, such as ZO-1 and occludin, in colitis mice. SIGNIFICANCE: These findings indicated that atorvastatin could alleviate UC by regulating intestinal flora disorders, promoting microbial tryptophan metabolism, and repairing the intestinal barrier.

3.
Pharmaceuticals (Basel) ; 17(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38931352

ABSTRACT

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder. Plexiform neurofibromas (PNFs) are benign tumors commonly formed in patients with NF1. PNFs have a high incidence of developing into malignant peripheral nerve sheath tumors (MPNSTs) with a 5-year survival rate of only 30%. Therefore, the accurate diagnosis and differentiation of MPNSTs from benign PNFs are critical to patient management. We studied a fluorine-18 labeled tryptophan positron emission tomography (PET) radiotracer, 1-(2-[18F]fluoroethyl)-L-tryptophan (L-[18F]FETrp), to detect NF1-associated tumors in an animal model. An ex vivo biodistribution study of L-[18F]FETrp showed a similar tracer distribution and kinetics between the wild-type and triple mutant mice with the highest uptake in the pancreas. Bone uptake was stable. Brain uptake was low during the 90-min uptake period. Static PET imaging at 60 min post-injection showed L-[18F]FETrp had a comparable tumor uptake with [18F]fluorodeoxyglucose (FDG). However, L-[18F]FETrp showed a significantly higher tumor-to-brain ratio than FDG (n = 4, p < 0.05). Sixty-minute-long dynamic PET scans using the two radiotracers showed similar kidney, liver, and lung kinetics. A dysregulated tryptophan metabolism in NF1 mice was further confirmed using immunohistostaining. L-[18F]FETrp is warranted to further investigate differentiating malignant NF1 tumors from benign PNFs. The study may reveal the tryptophan-kynurenine pathway as a therapeutic target for treating NF1.

4.
Chemosphere ; 362: 142571, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876325

ABSTRACT

Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.

5.
BMC Complement Med Ther ; 24(1): 219, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849824

ABSTRACT

Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Humans , Animals , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/drug effects
6.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833985

ABSTRACT

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Subject(s)
Cadmium , Catechin , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Tryptophan/metabolism , Tryptophan/analogs & derivatives , Cadmium/toxicity , Signal Transduction/drug effects , Male , Intestines/drug effects , Intestines/pathology , Mice, Inbred C57BL , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Indoles/pharmacology , Carbazoles/pharmacology
7.
Phytomedicine ; 131: 155766, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865935

ABSTRACT

BACKGROUND: Migraine is widely recognized as the third most prevalent medical condition globally. Tianshu capsule (TSC), derived from "Da Chuan Xiong Fang" of the Jin dynasty, is integral in the clinical treatment of migraine. However, the chemical properties and therapeutic mechanisms of TSC different portions remain unclear. PURPOSE: This study was designed to investigate the effects of TSC different portions (including small molecular TSCP-SM and polysaccharides TSC-P) on migraine and explore the underlying mechanisms. STUDY DESIGN AND METHODS: First of all, migraine rats were established by nitroglycerin injection and treated with TSC, TSC-P, and TSC-SM. ELISA, qPCR, and immunofluorescence were used to evaluate the pharmacological effects on migraine rats. Secondly, UPLC-Q/TOF-MS and GC--MS were employed to detect the components of TSC-SM. PMP-HPLC, NMR, FT-IR, UV-Vis, AFM, and SEM were used for the chemical profiling of polysaccharides. Thirdly, the metabolic behavior profile of TSC-P was characterized by oral administrated fluorescence-labeled TSC-P and detected by NIRF imaging. Finally, the anti-migraine mechanisms were explored by determining the composition of gut microbiota, analyzing colonic short-chain fatty acids (SCFAs), and examining serum tryptophan-related metabolites. RESULTS: Both small molecules (45 volatiles and 114 small molecules) and polysaccharides (including Glc, Ara, Gal, and Gal A) have exhibited effectiveness in alleviating migraine, and this efficacy is associated with reduced CGRP and iNOS levels, along with increased ß-EP expressions. Further mechanistic exploration revealed that small-molecules exhibited effectiveness in migraine treatment by exerting antioxidative actions, while polysaccharides demonstrated superior therapeutic effects in regulating 5-HT levels. By monitoring the metabolic behavior of polysaccharides with fluorescent labeling, it was observed that TSC-P exhibited poor absorption. Instead, TSC-P demonstrated its therapeutic effects by modulating the aberrations in gut microbiota (including Alloprevotella, Muribaculaceae_ge, and Ruminococcaceae_UCG-005), cecum short-chain fatty acids (such as isobutyric, isovaleric, and valeric acids), and serum tryptophan-related metabolites (including indole-3-acetamide, tryptophol, and indole-3-propionic acid). CONCLUSION: This research provides innovative insights into chemical composition, metabolic behavior, and proposed anti-migraine mechanisms of TSC from a polarity-based perspective, and pioneering an exploration focused on the polysaccharide components within TSC for the first time.


Subject(s)
Drugs, Chinese Herbal , Migraine Disorders , Polysaccharides , Rats, Sprague-Dawley , Migraine Disorders/drug therapy , Animals , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Rats , Polysaccharides/pharmacology , Polysaccharides/chemistry , Disease Models, Animal , Capsules
8.
Int J Biol Macromol ; 273(Pt 1): 132735, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825293

ABSTRACT

Polysaccharides extracted from Hericium erinaceus (HEP) exhibit hepatoprotective activity in the alleviation of non-alcoholic fatty liver disease (NAFLD); however, the mechanisms underlying whether and how HEP regulation of the gut microbiota to alleviate liver-associated metabolic disorders are not well understood. This study used an aged laying hen model to explore the mechanisms through which HEP alleviates NAFLD, with a focus on regulatory function of HEP in the gut microbiome. The results showed that HEP ameliorated hepatic damage and metabolic disorders by improving intestinal barrier function and shaping the gut microbiota and tryptophan metabolic profiles. HEP increased the abundance of Lactobacillus and certain tryptophan metabolites, including indole-3-carboxylic acid, kynurenic acid, and tryptamine in the cecum. These metabolites upregulated the expression of ZO-1 and Occludin by activating the AhR and restoring the intestinal barrier integrity. The increased intestinal barrier functions decreased LPS transferring from the intestine to the liver, inhibited hepatic LPS/TLR4/MyD88/NF-κB pathway activation, and reduced hepatic inflammatory response and apoptosis. Fecal microbiota transplantation experiments further confirmed that the hepatoprotective effect is likely mediated by HEP-altered gut microbiota and their metabolites. Overall, dietary HEP could ameliorate the hepatic damage and metabolic disorders of NAFLD through regulating the "gut-liver" axis.

9.
Br J Nutr ; : 1-29, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38826077

ABSTRACT

This study aimed to investigate whether psychological distress, whole grain consumption, and tryptophan metabolism are associated in participants undergoing weight management intervention. Seventy-nine women and men (mean age 49.7 ± 9.0 years; BMI 34.2 ± 2.5 kg/m2) participated in a 7-week weight-loss period (WL), and in a 24-week weight maintenance intervention period (WM). Whole grain consumption was measured using 4-day food diaries. Psychological distress was assessed with the General Health Questionnaire-12 (GHQ), and participants were divided into three GHQ groups based on the GHQ scores before WL. Tryptophan metabolites were determined from the participants' fasting plasma using liquid chromatography-mass spectrometry. GHQ scores were not associated with the whole grain consumption. A positive association was observed between the whole grain consumption and indole propionic acid (IPA) during the WM (p = 0.033). Serotonin levels were higher after the WL in the lowest GHQ tertile (p = 0.033), while the level at the end of the WM was higher compared to other timepoints in the highest GHQ tertile (p = 0.015 and p = 0.001). This difference between groups was not statistically significant. Furthermore, levels of several tryptophan metabolites changed within the groups during the study. Tryptophan metabolism changed during the study in the whole study group, independently from the level of psychological distress. The association between whole grain consumption and IPA is possibly explained by the effects of dietary fibre on gut microbiota. This broadens the understanding of the pathways behind the health benefits associated with the intake of whole grains.

10.
J Ethnopharmacol ; 333: 118458, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871010

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia argyi essential oil (AAEO) is a traditional herbal remedy for asthma. However, the potential effect of AAEO on asthma has not been elucidated. AIM OF THE STUDY: To investigate the protective properties of AAEO upon asthma and elucidate its mechanism. MATERIALS AND METHODS: The effects of AAEO in asthma were assessed by histology and biochemical analysis. Then, we integrated real-time reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry and metabolomics analysis to reveal its mechanism. RESULTS: In vivo, AAEO reduced the counts of white blood cells (WBCs) and cytokines in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of OVA-sIgE and muc5ac. Metabolomics results showed that AAEO can exert therapeutic effects on asthmatic mice by regulating disordered arachidonic acid metabolism and tryptophan metabolism. Further studies shown that AAEO inhibited the expression of 5-LOX and reduced the accumulation of CysLTs in mice. Meanwhile, AAEO promoted the activity of IDO-1, facilitated the conversion of tryptophan to kynurenine, and regulated the imbalance of Treg/Th17 immunity. Immunohistochemical results showed that AAEO promoted the expression of IDO-1. RT-qPCR results showed that AAEO promoted the expression of IL-10 and Foxp3 mRNA, and inhibited the expression of IL-17A and RORγt mRNA, thus regulated the imbalance of Treg/Th17 immunity and exerted its therapeutic effects. CONCLUSION: AAEO treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating lung tissue metabolism. The anti-asthmatic activity of AAEO may be achieved by reprogramming 5-LOX-CysLTs and IDO-1-KYN pathways.

11.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927027

ABSTRACT

Microbiota tryptophan metabolism and the biosynthesis of indole derivatives play an important role in homeostasis and pathogenesis in the human body and can be affected by the gut microbiota. However, studies on the interplay between gut microbiota and tryptophan metabolites in patients undergoing dialysis are lacking. This study aimed to identify the gut microbiota, the indole pathway in tryptophan metabolism, and significant functional differences in ESRD patients with regular hemodialysis. We performed the shotgun metagenome sequencing of stool samples from 85 hemodialysis patients. Using the linear discriminant analysis effect size (LEfSe), we examined the composition of the gut microbiota and metabolic features across varying concentrations of tryptophan and indole metabolites. Higher tryptophan levels promoted tyrosine degradation I and pectin degradation I metabolic modules; lower tryptophan levels were associated with glutamate degradation I, fructose degradation, and valine degradation modules. Higher 3-indoxyl sulfate concentrations were characterized by alanine degradation I, anaerobic fatty acid beta-oxidation, sulfate reduction, and acetyl-CoA to crotonyl-CoA. Contrarily, lower 3-indoxyl sulfate levels were related to propionate production III, arabinoxylan degradation, the Entner-Doudoroff pathway, and glutamate degradation II. The present study provides a better understanding of the interaction between tryptophan, indole metabolites, and the gut microbiota as well as their gut metabolic modules in ESRD patients with regular hemodialysis.


Subject(s)
Gastrointestinal Microbiome , Indoles , Renal Dialysis , Tryptophan , Humans , Tryptophan/metabolism , Indoles/metabolism , Male , Female , Middle Aged , Aged , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/microbiology , Feces/microbiology , Metabolic Networks and Pathways , Adult , Metagenome
12.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731707

ABSTRACT

Asthma is a prevalent respiratory disease. The present study is designed to determine whether gut microbiota-derived tryptophan metabolites alleviate allergic asthma inflammation in ovalbumin (OVA)-induced mice and explore the effect and potential mechanism therein. Asthma model mice were constructed by OVA treatment, and kynurenine (KYN), indole-3-lactic acid (ILA), in-dole-3-carbaldehyde (I3C), and indole acetic acid (IAA) were administered by intraperitoneal injection. The percent survival, weight and asthma symptom score of mice were recorded. The total immunoglobulin E and OVA-specific (s)IgE in the serum and the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) were detected by the corresponding ELISA kits. The composition of the gut microbiota and tryptophan-targeted metabolism in mouse feces were analyzed using 16S rRNA gene sequencing and targeted metabolomics, respectively. The four tryptophan metabolites improved the percent survival, weight and asthma symptoms of mice, and reduced the inflammatory cells in lung tissues, especially I3C. I3C and IAA significantly (p < 0.05) downregulated the levels of OVA-IgE and inflammatory cytokines. KYN was observed to help restore gut microbiota diversity. Additionally, I3C, KYN, and ILA increased the relative abundance of Anaeroplasma, Akkermansia, and Ruminococcus_1, respectively, which were connected with tryptophan metabolic pathways. IAA also enhanced capability of tryptophan metabolism by the gut microbiota, restoring tryptophan metabolism and increasing production of other tryptophan metabolites. These findings suggest that tryptophan metabolites may modulate asthma through the gut microbiota, offering potential benefits for clinical asthma management.

13.
Biology (Basel) ; 13(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38785778

ABSTRACT

BACKGROUND: Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS: Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS: In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS: This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.

14.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791512

ABSTRACT

Although migraine belongs to the main causes of disability worldwide, the mechanisms of its pathogenesis are poorly known. As migraine diagnosis is based on the subjective assessment of symptoms, there is a need to establish objective auxiliary markers to support clinical diagnosis. Tryptophan (TRP) metabolism has been associated with the pathogenesis of neurological and psychiatric disorders. In the present work, we investigated an association between migraine and the urine concentration of TRP and its metabolites 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA) in 21 low-frequency episodic migraine patients and 32 controls. We chose the interictal phase as the episodic migraine patients were recruited from the outpatient clinic and had monthly migraine days as low as 1-2 in many cases. Migraine patients displayed lower urinary levels of 5-HIAA (p < 0.01) and KYNA (p < 0.05), but KYN and QA were enhanced, as compared with the controls (p < 0.05 and 0.001, respectively). Consequently, the patients were characterized by different values of the 5-HIAA/TRP, KYN/TRP, KYNA/KYN, and KYNA/QA ratios (p < 0.001 for all). Furthermore, urinary concentration of 5-HIAA was negatively correlated with Migraine Disability Assessment score and monthly migraine and monthly headache days. There was a negative correlation between Patient Health Questionnaire 9 scores assessing depression. In conclusion, the urinary 5-HIAA level may be further explored to assess its suitability as an easy-to-determine marker of migraine.


Subject(s)
Biomarkers , Hydroxyindoleacetic Acid , Kynurenic Acid , Kynurenine , Migraine Disorders , Tryptophan , Humans , Hydroxyindoleacetic Acid/urine , Migraine Disorders/urine , Migraine Disorders/metabolism , Female , Adult , Male , Kynurenine/urine , Kynurenine/metabolism , Biomarkers/urine , Kynurenic Acid/urine , Tryptophan/urine , Tryptophan/metabolism , Quinolinic Acid/urine , Middle Aged , Case-Control Studies , Young Adult
15.
Int J Tryptophan Res ; 17: 11786469241248287, 2024.
Article in English | MEDLINE | ID: mdl-38757094

ABSTRACT

Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.

16.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734097

ABSTRACT

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Subject(s)
Polybrominated Biphenyls , Animals , Mice , Female , Polybrominated Biphenyls/toxicity , Metabolic Networks and Pathways/drug effects , Liver/metabolism , Liver/drug effects , Environmental Pollutants/toxicity
17.
Anim Nutr ; 17: 123-133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766516

ABSTRACT

The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.

18.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597152

ABSTRACT

Our previous studies have shown that Lactiplantibacillus plantarum DPUL-S164-derived indole-3-lactic acid (ILA) ameliorates intestinal epithelial cell barrier injury by activating aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways and promoting tight junction protein expression. This study further explored the crucial substances of L. plantarum DPUL-S164 in alleviating intestinal barrier damage in mice through a dextran sodium sulfate-induced ulcerative colitis mouse model. Compared to dead L. plantarum DPUL-S164 (D-S164), live L. plantarum DPUL-S164 (S164) and its tryptophan metabolite, ILA, showed an effective ameliorating effect on the intestinal barrier injury of mice treated by antibiotic cocktail and sodium dextran sulfate, suggesting that the crucial substances of L. plantarum DPUL-S164 ameliorating intestinal barrier injury are its extracellular metabolites. Furthermore, S164 and its tryptophan metabolite, ILA, ameliorate intestinal barrier injury and suppress intestinal inflammation by activating the AhR-Nrf2 pathway and inhibiting the nuclear factor kappa-B (NF-κB) pathway. These results suggest that L. plantarum DPUL-S164 ameliorates intestinal epithelial barrier damage in mice, primarily by producing ILA as a ligand to activate the AhR pathway.

19.
J Dairy Sci ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608939

ABSTRACT

Ketosis, a commonly observed energy metabolism disorder in dairy cows during the peripartal period, is distinguished by increased concentrations of ß-hydroxybutyrate (BHB) in blood. This condition has a negative impact on milk production and quality, causing financial losses. An untargeted metabolomics approach was performed on plasma samples from cows between 5 and 7 DIM diagnosed as controls (CON, BHB <1.2 mM, n = 30), subclinically ketotic (SCK, 1.2 < BHB <3.0 mM, n = 30), or clinically ketotic (CK, BHB >3.0 mM, n = 30). Cows were selected from a commercial farm of 214 Holstein cows (average 305-d yield in the previous lactation of 35.42 ± 7.23 kg/d; parity, 2.41 ± 1.12; body condition score, 3.1 ± 0.45). All plasma and milk samples (n = 90) were subjected to Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomic analysis. Statistical analyses was performed using the Graph Pad Prism 8.0, MetaboAnalyst 4.0 and R packages (version 4.1.3). Compared with the CON group, both SCK and CK groups had greater milk fat, freezing point, and fat-to-protein ratio and lower milk protein, lactose, solids-nonfat, and milk density. Within 21 d after calving, compared with CON, the SCK group experienced a reduction of 2.65 kg/d in milk yield, while the CK group experienced a decrease of 7.7 kg/d. Untargeted metabolomics analysis facilitated the annotation of a total of 5,259 and 8,423 metabolites in plasma and milk. Differentially affected metabolites were screened in CON vs. SCK, CON vs. CK, and SCK vs. CK (unpaired t-test, False discovery rate <0.05; and absolute value of log(2)-fold change >1.5). A total of 1,544 and 1,888 differentially affected metabolites were detected in plasma and milk. In plasma, glycerophospholipid metabolism, pyrimidine metabolism, tryptophan metabolism, sphingolipid metabolism, amino sugar and nucleotide sugar metabolism, phenylalanine metabolism, steroid hormone biosynthesis were identified as significant pathways. Weighted gene co-expression network analysis (WGCNA) indicated that tryptophan metabolism is a key pathway associated with the occurrence and development of ketosis. Increases in 5-Hydroxytryptophan and decreases in kynurenine and 3-indoleacetic acid in SCK and CK were suggestive of an impact at the gut level. The decrease of most glycerophospholipids indicated that ketosis is associated with disordered lipid metabolism. For milk, pyrimidine metabolism, purine metabolism, pantothenate and CoA biosynthesis, amino sugar and nucleotide sugar metabolism, nicotinate and nicotinamide metabolism, sphingolipid metabolism, fatty acid degradation were identified as significant pathways. The WGCNA indicated that purine and pyrimidine metabolism in plasma was highly correlated with milk yield during the peripartal period. Alterations in purine and pyrimidine metabolism characterized ketosis, with lower levels of these metabolites in both milk and blood underscoring reduced efficiency in nitrogen metabolism. Our results may help to establish a foundation for future research investigating mechanisms responsible for the occurrence and development of ketosis in peripartal cows.

20.
J Pineal Res ; 76(3): e12954, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618998

ABSTRACT

Osteoporosis (OP) is a severe global health issue that has significant implications for productivity and human lifespan. Gut microbiota dysbiosis has been demonstrated to be closely associated with OP progression. Melatonin (MLT) is an important endogenous hormone that modulates bone metabolism, maintains bone homeostasis, and improves OP progression. Multiple studies indicated that MLT participates in the regulation of intestinal microbiota and gut barrier function. However, the promising effects of gut microbiota-derived MLT in OP remain unclear. Here, we found that OP resulted in intestinal tryptophan disorder and decreased the production of gut microbiota-derived MLT, while administration with MLT could mitigate OP-related clinical symptoms and reverse gut microbiota dysbiosis, including the diversity of intestinal microbiota, the relative abundance of many probiotics such as Allobaculum and Parasutterella, and metabolic function of intestinal flora such as amino acid metabolism, nucleotide metabolism, and energy metabolism. Notably, MLT significantly increased the production of short-chain fatty acids and decreased trimethylamine N-oxide-related metabolites. Importantly, MLT could modulate the dynamic balance of M1/M2 macrophages, reduce the serum levels of pro-inflammatory cytokines, and restore gut-barrier function. Taken together, our results highlighted the important roles of gut microbially derived MLT in OP progression via the "gut-bone" axis associated with SCFA metabolism, which may provide novel insight into the development of MLT as a promising drug for treating OP.


Subject(s)
Melatonin , Humans , Melatonin/pharmacology , Tryptophan , Dysbiosis/drug therapy , Methylamines
SELECTION OF CITATIONS
SEARCH DETAIL
...