Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001098

ABSTRACT

The quartz tuning fork (QTF) is a promising instrument for biosensor applications due to its advanced properties such as high sensitivity to physical quantities, cost-effectiveness, frequency stability, and high-quality factor. Nevertheless, the fork's small size and difficulty in modifying the prongs' surfaces limit its wide use in experimental research. Our study presents the development of a QTF immunosensor composed of three active layers: biocompatible natural melanin nanoparticles (MNPs), glutaraldehyde (GLU), and anti-IgG layers, for the detection of immunoglobulin G (IgG). Frequency shifts of QTFs after MNP functionalization, GLU activation, and anti-IgG immobilization were measured with an Asensis QTF F-master device. Using QTF immunosensors that had been modified under optimum conditions, the performance of QTF immunosensors for IgG detection was evaluated. Accordingly, a finite element method (FEM)-based model was produced using the COMSOL Multiphysics software program (COMSOL License No. 2102058) to simulate the effect of deposited layers on the QTF resonance frequency. The experimental results, which demonstrated shifts in frequency with each layer during QTF surface functionalization, corroborated the simulation model predictions. A modelling error of 0.05% was observed for the MNP-functionalized QTF biosensor compared to experimental findings. This study validated a simulation model that demonstrates the advantages of a simulation-based approach to optimize QTF biosensors, thereby reducing the need for extensive laboratory work.


Subject(s)
Biosensing Techniques , Immunoglobulin G , Melanins , Nanoparticles , Quartz , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanoparticles/chemistry , Melanins/chemistry , Quartz/chemistry , Immunoassay/methods , Immunoassay/instrumentation , Computer Simulation , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/chemistry , Humans
2.
Beilstein J Nanotechnol ; 15: 580-602, 2024.
Article in English | MEDLINE | ID: mdl-38887532

ABSTRACT

Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively evaluate the tip-sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representative of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.

3.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732828

ABSTRACT

Transformer oil, crucial for transformer and power system safety, demands effective monitoring. Aiming to address the problems of expensive and bulky equipment, poor real-time performance, and single parameter detection of traditional measurement methods, this study proposes a quartz tuning fork-based simultaneous measurement system for online monitoring of the density, viscosity, and dielectric constant of transformer oil. Based on the Butterworth-Van Dyke quartz tuning fork equivalent circuit model, a working mechanism of transformer oil density, viscosity, and dielectric constant was analyzed, and a measurement model for oil samples was obtained. A miniaturized simultaneous measurement system was designed based on a dedicated chip for vector current-voltage impedance analysis for data acquisition and a Savitzky-Golay filter for data filtering. A transformer oil test platform was built to verify the simultaneous measurement system. The results showed that the system has good repeatability, and the measurement errors of density, viscosity, and dielectric constant are lower than 2.00%, 5.50%, and 3.20%, respectively. The online and offline results showed that the system meets the requirements of the condition maintenance system for online monitoring accuracy and real-time detection.

4.
J Bodyw Mov Ther ; 38: 498-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763599

ABSTRACT

BACKGROUND: Musculoskeletal and neurological conditions disorders are important conditions that need to be assessed in clinical practice. The tuning fork (TF) has been proposed as a practical tool to investigate suspected fractures and for the evaluation of pallesthesia in subjects with peripheral neuropathy. OBJECTIVE: the aim of this study is to define whether the tuning fork can be useful in the clinical evaluation of patients with musculoskeletal disorders and deep somatosensory dysfunctions. METHODS: This scoping review was performed in accordance with Joanna Briggs Institute. MEDLINE, Cochrane Library, PEDro, CINAHL, Web of Science, UpToDate, Scopus Database were consulted. RESULTS: 14 studies were included in the final analysis. Nine studies regard the use of tuning fork to detect fractures. If the tuning fork was used with a stethoscope, the test reached a high sensitivity ranging between 83% and 94%. Five studies investigated the tool to evaluate pallesthesia dysfunctions among which possible differences between biceps femoris strain and simple clinical rules for detecting peripheral neuropathy. CONCLUSION: The 128 Hz tuning fork could be potentially useful to detect some type of traumatic fractures. The Rydel-Seiffer tuning fork appears to be a useful tool for assessing potential nerve conduction deficits in the evaluation of pallesthesia.


Subject(s)
Musculoskeletal Diseases , Paresthesia , Humans , Fractures, Bone/diagnosis , Musculoskeletal Diseases/physiopathology , Musculoskeletal Diseases/diagnosis , Paresthesia/diagnosis , Paresthesia/physiopathology , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/physiopathology
5.
Indian J Otolaryngol Head Neck Surg ; 76(2): 1711-1715, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566725

ABSTRACT

Aim: Anaemia is a prevalent medical condition that impacts a significant proportion of the worldwide populace. While the cardiovascular and respiratory systems' influence on anaemia has been extensively researched, its effect on the auditory system remains unclear. The objective of this investigation was to assess the pure tone audiometry of individuals with anaemia and establish a connection between the type of hearing impairment and the level of anaemia, if any. Materials and Methods: This cross-sectional study comprised 100 patients who were diagnosed with anaemia. All study participants underwent a thorough general examination and hearing assessment, which encompassed tuning fork tests, and pure-tone audiometry. Statistical analysis was utilized to determine the type and severity of hearing loss and its correlation with the degree of anaemia. Results: Our research findings indicate that 46.8% of moderately anaemic patients and 62.9% of patients with severe anaemia exhibited sensorineural hearing loss. A significant correlation was observed between the degree of anaemia (p < 0.05) and hearing loss. Our research findings indicate that individuals with moderate and severe anaemia exhibit a notably greater incidence of hearing impairment in comparison to those with mild anaemia. Conclusion: The research findings thus suggest a potential correlation between anaemia and auditory impairment. The timely identification and management of anaemia could potentially play a crucial role in preventing or reducing hearing impairment among individuals with anaemia. Additional research is required to clarify the mechanisms that underlie this association and to investigate possible interventions for mitigating the risk of hearing impairment in individuals with anaemia.

6.
J Fluoresc ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568408

ABSTRACT

Tuning fork, consisting of two fork arms and a fork handle, has a stable and rigid structure. Inspired by this structure, a tuning fork-shaped DNA (TF-DNA) fluorescence aptasensor was constructed to detect ochratoxin A (OTA) and aflatoxin B1 (AFB1). A TF-DNA double-stranded structure capable of attaching both OTA aptamer labeled with the FAM fluorescent group (FAM-Apt) and AFB1 aptamer labeled with the ROX fluorescent group (ROX-Apt) was designed and linked to magnetic beads. This TF-DNA double-stranded structure can provide a stable platform for dual-target detection. In the presence of OTA and AFB1, FAM-Apt and ROX-Apt preferentially bound to them and detached from the TF-DNA double-stranded structure. Dual-signal fluorescent probes were collected from the supernatant by magnetic separation, and achieved fluorescence enhancement at 520 nm and 607 nm, respectively. The linear ranges are 0.05 ng/mL to 100 ng/mL for OTA and 0.1 ng/mL to 100 ng/mL for AFB1, and the detection limits are 0.015 ng/mL and 0.045 ng/mL, respectively. The developed sensor has the advantages of simple and fast preparation, good specificity and reproducibility, which is promising for the simultaneous determination of multiple hazardous substances in food.

7.
Cureus ; 16(3): e55849, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463405

ABSTRACT

INTRODUCTION: A medical emergency known as sudden sensorineural hearing loss (SSNHL) affects the ears suddenly, has a considerable probability of negative cognitive and functional outcomes, and can influence the patient's quality of life. Primary care physicians play a crucial role in diagnosing SSNHL and initiating prompt and efficient management since they are the ones who would likely encounter it initially. This study aims to evaluate the present knowledge, diagnostic, and management perspective of SSNHL among primary care physicians in Riyadh, Saudi Arabia. METHODS: A self-generated questionnaire with 17 questions was developed, and a link to the online survey was delivered to primary care physicians (PHPs) in Riyadh, Saudi Arabia, concerning the management of SSNHL. RESULTS: The knowledge level regarding SSNHL was evaluated, in which 21 (25%) of the participants had a low knowledge level, 34 (40.5%) had moderate knowledge, and 29 (34.5%) had a high knowledge level. Among 84 participants, 20 (23.8%) were confident in their ability to administer and understand the findings of tuning fork tests (TFT) to differentiate between sensorineural hearing loss and conductive hearing loss, whereas 64 (76.2%) were unsure about it. In addition, to distinguish between sensorineural hearing loss and conductive hearing loss, 62 (73.8%) participants were confident, and 22 (26.2%) participants were skeptical about their ability to interpret a formal audiogram. CONCLUSION: Considering SSNHL as a medical emergency, in our survey, many family doctors would make proper referral and treatment decisions. However, TFTs were underutilized for guiding management decisions compared to other ways to distinguish between conductive and sensorineural hearing loss.

8.
Photoacoustics ; 36: 100592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38322619

ABSTRACT

Methane (CH4) is a greenhouse gas as well as being flammable and explosive. In this manuscript, quartz-enhanced photoacoustic spectroscopy (QEPAS) and heterodyne QEPAS (H-QEPAS) exploring a self-designed quartz tuning fork (QTF) with resonance frequency (f0) of ∼8.7 kHz was utilized to achieve sensitive CH4 detection. Compared with the standard commercial 32.768 kHz QTF, this self-designed QTF with a low f0 and large prong gap has the merits of long energy accumulation time and low optical noise. The strongest line located at 6057.08 cm-1 in the 2v3 overtone band of CH4 was chosen as the target absorption line. A diode laser with a high output power of > 30 mW was utilized as the excitation source. Acoustic micro-resonators (AmRs) were added to the sensor architecture to amplify the intensity of acoustic waves. Compared to the bare QTF, after the addition of AmRs, a signal enhancement of 149-fold and 165-fold were obtained for QEPAS and H-QEPAS systems, respectively. The corresponding minimum detection limits (MDLs) were 711 ppb and 1.06 ppm for QEPAS and H-QEPAS sensors. Furthermore, based on Allan variance analysis the MDLs can be improved to 19 ppb and 27 ppb correspondingly. Compared to the QEPAS sensor, the H-QEPAS sensor shows significantly shorter measurement timeframes, allowing for measuring the gas concentration quickly while simultaneously obtaining f0 of QTF.

9.
Cureus ; 16(1): e51465, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298305

ABSTRACT

This paper is a summary of the evolution of the tuning fork, a crucial part of the cranial nerves and auditory examination. The tuning fork is a two-pronged fork that resonates at a specific pitch when struck against a surface and has been proven to be incredibly useful in diagnosing and detecting hearing disorders. The tuning fork, an unassuming device in modern medicine, traces its origins back to an era when scientific understanding and medical diagnostics were in their nascent stages. Since its inception, this unpretentious instrument has played a pivotal role in the hands of healthcare practitioners, aiding in the diagnosis and assessment of various medical conditions. This paper embarks on a captivating journey through time to explore the origin, evolution, and significant milestones in the development of the tuning fork. From the first suggestion of differentiating hearing disorders to present-day tuning forks, this paper maps the different stages that the tuning fork has gone through and how its use has changed over time. Along the way, we will discover how the tuning fork has harmonized with music, medicine, and various scientific pursuits, enriching our understanding of sound and resonance while leaving an indelible mark on the course of human history. Delving into the historical context of its creation, this review uncovers the ingenious minds that birthed this innovative device and the pivotal moments that brought it to the forefront of human endeavors.

10.
Photoacoustics ; 35: 100580, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163005

ABSTRACT

Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy (FO-QEPA-PTS) is reported for the first time. In FO-QEPA-PTS, the detection of the photoacoustic and photothermal hybrid signal is achieved through the use of a custom quartz tuning fork (QTF), thereby mitigating the issue of resonant frequency mismatch typically encountered in quartz-enhanced photoacoustic-photothermal spectroscopy employing multiple QTFs. A multi-laser beam, created by a multi-pass cell (MPC) with a designed single-line spot pattern, partially strikes the inner edge of the QTF and partially passes through the prong of the QTF, thereby generating photoacoustic and photothermal hybrid signals. To assess the performance of FO-QEPA-PTS, 1 % acetylene is selected as the analyte gas and the 2f signals produced by the photoacoustic, the photothermal, and their hybrid effects are measured. Comparative analysis against QEPAS and QEPTS reveals signal gain factors of ∼ 79 and ∼ 14, respectively, when these laser beams created by MPC excite the QTF operating at fundamental resonance mode in phase. In the FO-QEPA-PTS signal, the proportions of the photoacoustic and the photothermal effects induced by the multiple beams are ∼7 % and 93 %, respectively.

11.
Photoacoustics ; 34: 100573, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076438

ABSTRACT

A proof-of-concept gas sensor based on a miniaturized and integrated fiber-optic photoacoustic detection module was introduced and demonstrated for the purpose of developing a custom tuning-fork (TF)-enhanced photoacoustic gas sensor. Instead of piezoelectric quartz tuning fork (QTF) in conventional quartz-enhanced photoacoustic spectroscopy (QEPAS), a low-cost custom aluminum alloy TF fabricated by mechanical processing was employed as a photoacoustic transducer and the vibration of TF was measured by fiber-optic Fabry-Pérot (FP) interferometer (FPI). The mechanical processing-based TF design scheme greatly increases the flexibility of the TF design with respect to the complex and expensive manufacture process of custom QTFs, and thus it can be better exploited to detect gases with slow vibrational-translational (V-T) relaxation rates and combine with light sources with poor beam quality. The resonance frequency and the quality factor of the designed custom TF at atmospheric pressure were experimentally determined to be 7.3 kHz and 4733, respectively. Dual-prong differential measurement method was proposed to double the photoacoustic signal and suppress the external same-direction noise. After detailed optimizing and investigating for the operating parameters by measuring H2O, the feasibility of the developed sensor for gas detection was demonstrated with a H2O minimum detection limit (MDL) of 1.2 ppm, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.8 × 10-8 cm-1 W/Hz1/2, which are better than the QTF-based photoacoustic sensors. The proposed gas sensing approach combined the advantages of QEPAS and fiber-optic sensing, which can greatly expand the application domains of PAS-based gas sensors.

12.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38138307

ABSTRACT

The unique double-cantilever beam structure and vibration mode of the tuning fork enable the measuring of fluid density and viscosity synchronously in a decoupling manner. Therefore, it is widely employed in oil and gas development and in petrochemical, food, textile, and other industries. In this paper, quality factors are used to characterize the energy losses of lithium niobate tuning forks when vibrating in a fluid, and the influence parameters, such as length, width, and thickness of the tuning fork arm, etc., of different quality factors are examined with a focus on the viscous quality factor of the fluid. The optimized design of lithium niobate tuning fork dimensions is carried out on this premise, and the analytical solution of the optimal dimension of the lithium niobate tuning fork in the air is obtained. Secondly, the optimal dimension of the lithium niobate tuning fork in fluids is given out by finite element simulation, and the sensitivity of the optimized fork to the viscosity of fluids is investigated. The results show that the optimized tuning fork has a higher quality factor, and thus has a larger parameter measurement range as well as being more sensitive to the change in the fluid density and viscosity. Therefore, the results are of great significance for guiding the preparation and practical application of lithium niobate tuning forks.

13.
Photoacoustics ; 33: 100557, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021284

ABSTRACT

We present a quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensor designed for precise monitoring of ammonia (NH3) at ppb-level concentrations. The sensor is based on a novel custom quartz tuning fork (QTF) with a mid-infrared quantum cascade laser emitting at 9.55 µm. The custom QTF with a hammer-shaped prong geometry which is also modified by surface grooves is designed as the acoustic transducer, providing a low resonance frequency of 9.5 kHz and a high-quality factor of 10263 at atmospheric pressure. In addition, a temperature of 50 °C and a large gas flow rate of 260 standard cubic centimeters per minute (sccm) are applied to mitigate the adsorption and desorption effect arising from the polarized molecular of NH3. With 80-mW optical power and 300-ms lock-in integration time, the detection limit is achieved to be 2.2 ppb which is the best value reported in the literature so far for NH3 QEPAS sensors, corresponding to a normalized noise equivalent absorption coefficient of 1.4 × 10-8 W cm-1 Hz-1/2. A five-day continuous monitoring for atmospheric NH3 is performed, verifying the stability and robustness of the presented QEPAS-based NH3 sensor.

14.
Photoacoustics ; 33: 100553, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021294

ABSTRACT

We present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen sulfide (H2S) in sulfur hexafluoride (SF6). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.58 µm near-infrared distributed feedback (DFB) laser with an optical power of 30 mW serves as the excitation source. The sensor achieved a minimum detection limit (MDL) of ∼300 ppb at an integration time of 300 ms, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 3.96 × 10-9 W·cm-1·Hz-1/2. By extending the integration time to 100 s, the MDL can be reduced to ∼25 ppb. The sensor exhibits a response time of ∼1 min for a gas flow rate of 70 sccm.

15.
Molecules ; 28(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836651

ABSTRACT

Quartz tuning forks (QTFs), which were coated with gold and with self-assembled monolayers (SAM) of a lower-rim functionalized calix[4]arene methoxy ester (CME), were used for the detection of benzene, toluene, and ethylbenzene in water samples. The QTF device was tested by measuring the respective frequency shifts obtained using small (100 µL) samples of aqueous benzene, toluene, and ethylbenzene at four different concentrations (10-12, 10-10, 10-8, and 10-6 M). The QTFs had lower limits of detection for all three aromatic hydrocarbons in the 10-14 M range, with the highest resonance frequency shifts (±5%) being shown for the corresponding 10-6 M solutions in the following order: benzene (199 Hz) > toluene (191 Hz) > ethylbenzene (149 Hz). The frequency shifts measured with the QTFs relative to that in deionized water were inversely proportional to the concentration/mass of the analytes. Insights into the effects of the alkyl groups of the aromatic hydrocarbons on the electronic interaction energies for their hypothetical 1:1 supramolecular host-guest binding with the CME sensing layer were obtained through density functional theory (DFT) calculations of the electronic interaction energies (ΔIEs) using B3LYP-D3/GenECP with a mixed basis set: LANL2DZ and 6-311++g(d,p), CAM-B3LYP/LANL2DZ, and PBE/LANL2DZ. The magnitudes of the ΔIEs were in the following order: [Au4-CME⊃[benzene] > [Au4-CME]⊃[toluene] > [Au4-CME]⊃[ethylbenzene]. The gas-phase BSSE-uncorrected ΔIE values for these complexes were higher, with values of -96.86, -87.80, and -79.33 kJ mol-1, respectively, and -86.39, -77.23, and -67.63 kJ mol-1, respectively, for the corresponding BSSE-corrected values using B3LYP-D3/GenECP with LANL2dZ and 6-311++g(d,p). The computational findings strongly support the experimental results, revealing the same trend in the ΔIEs for the proposed hypothetical binding modes between the tested analytes with the CME SAMs on the Au-QTF sensing surfaces.

16.
Micromachines (Basel) ; 14(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37893400

ABSTRACT

The development of sensor technology enables the creation of DNA-based biosensors for biomedical applications. Herein, a quartz tuning fork (QTF) sensing system was employed as a transducer for biomedical applications to address indirect DNA damage associated with gold nanoparticles (GNPs) and enhance the effectiveness of low-dose gamma radiation in radiation therapy. The experiment included two stages, namely during and after irradiation exposure; shift frequencies (Δf) were measured for 20 min in each stage. During the irradiation stage, the QTF response to DNA damage was investigated in a deionized aqueous solution with and without 100 nm GNPs at different concentrations (5, 10, 15, and 20 µg/mL). Upon exposure to gamma radiation for 20 min at a dose rate of 2.4 µGy/min, the ratio of Δf/ΔT indicates increased fork displacement frequencies with or without GNPs. Additionally, DNA damage associated with high and low GNP concentrations was evaluated using the change in the resonance frequency of the QTF. The results indicate that GNPs at 15 and 10 µg/mL were associated with high damage-enhancement ratios, while saturation occurred at 20 µg/mL. At 15 µg/mL, significant radiotherapy enhancement occurred compared to that at 10 µg/mL at 10 min after exposure. In the post-irradiation stage, the frequency considerably differed between 15 and 10 µg/mL. Finally, these results significantly depart from the experimental predictions in the post-radiation stage. They exhibited no appreciable direct effect on DNA repair owing to the absence of an environment that promotes DNA repair following irradiation. However, these findings demonstrate the potential of enhancing damage by combining GNP-mediated radiation sensitization and biosensor technology. Thus, QTF is recommended as a reliable measure of DNA damage to investigate the dose enhancement effect at various GNP concentrations.

17.
Ultramicroscopy ; 253: 113772, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37329810

ABSTRACT

This article provides a careful comparison between the electric and mechanical excitation of a tuning fork for shear force feedback in scanning probe microscopy, an analysis not found in present literature. A setup is designed and demonstrated for robust signal and noise measurements at comparable levels of physical movement of the probe. Two different signal amplification methods, combined with two excitation ways provide three possible configurations. For each method a quantitative analysis, supported by analytical elaboration and numerical simulations, is provided. Finally, it is shown that in practical circumstances electric excitation followed by detection with a transimpedance amplifier provides the best result.

18.
Photoacoustics ; 31: 100515, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37252649

ABSTRACT

A light-induced thermoelastic spectroscopy (LITES) gas detection method based on CH3NH3PbI3 perovskite-coated quartz tuning fork (QTF) was proposed. By coating CH3NH3PbI3 thin film on the surface of ordinary QTF, a Schottky junction with silver electrodes was formed. The co-coupling of photoelectric effect and thermoelastic effect of CH3NH3PbI3-QTF results in a significant improvement in detection performance. The oxygen (O2) was select as the target analyte for measurement, and experimental results show that compared with the commercial standard QTF, the introduction of CH3NH3PbI3 perovskite Schottky junction increases the 2f signal amplitude and signal-to-noise ratio (SNR) by ∼106 times and ∼114 times, respectively. The minimum detection limit (MDL) of this LITES system is 260 ppm, and the corresponding normalized noise equivalent absorption coefficient (NNEA) is 9.21 × 10-13 cm-1·W·Hz-1/2. The Allan analysis of variance results indicate that when the average time is 564 s, the detection sensitivity can reach 83 ppm. This is the first time that QTF resonance detection has been combined with perovskite Schottky junctions for highly sensitive optical gas detection.

19.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112263

ABSTRACT

Quartz tuning forks (QTFs) are self-sensing and possess a high quality factor, allowing them to be used as probes for atomic force microscopes (AFMs) for which they offer nano-scale resolution of sample images. Since recent work has revealed that utilizing higher-order modes of QTFs can offer better resolution of AFM images and more information on samples, it is necessary to understand the relationship between the vibration characteristics of the first two symmetric eigenmodes of quartz-based probes. In this paper, a model that combines the mechanical and electrical characteristics of the first two symmetric eigenmodes of a QTF is presented. Firstly, the relationships between the resonant frequency, amplitude, and quality factor between the first two symmetric eigenmodes are theoretically derived. Then, a finite element analysis is conducted to estimate the dynamic behaviors of the analyzed QTF. Finally, experimental tests are executed to verify the validity of the proposed model. The results indicate that the proposed model can accurately describe the dynamic properties of a QTF in the first two symmetric eigenmodes either under electrical or mechanical excitation, which will provide a reference for the description of the relationship between the electrical and mechanical responses of the QTF probe in the first two symmetric eigenmodes as well as the optimization of higher modal responses of the QTF sensor.

20.
Micromachines (Basel) ; 14(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985025

ABSTRACT

Quartz tuning forks (QTFs) are employed as sensitive elements for gas sensing applications implementing quartz-enhanced photoacoustic spectroscopy. Therefore, proper design of the QTF read-out electronics is required to optimize the signal-to-noise ratio (SNR), and in turn, the minimum detection limit of the gas concentration. In this work, we present a theoretical study of the SNR trend in a voltage-mode read-out of QTFs, mainly focusing on the effects of (i) the noise contributions of both the QTF-equivalent resistor and the input bias resistor RL of the preamplifier, (ii) the operating frequency, and (iii) the bandwidth (BW) of the lock-in amplifier low-pass filter. A MATLAB model for the main noise contributions was retrieved and then validated by means of SPICE simulations. When the bandwidth of the lock-in filter is sufficiently narrow (BW = 0.5 Hz), the SNR values do not strongly depend on both the operating frequency and RL values. On the other hand, when a wider low-pass filter bandwidth is employed (BW = 5 Hz), a sharp SNR peak close to the QTF parallel-resonant frequency is found for large values of RL (RL > 2 MΩ), whereas for small values of RL (RL < 2 MΩ), the SNR exhibits a peak around the QTF series-resonant frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...