Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Se Pu ; 41(12): 1062-1072, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38093536

ABSTRACT

Food safety has received increased attention, and food detection is of great significance. The food matrix is complex, and diverse food hazards have been identified. Thus, the detection methods and sample preparation techniques for food matrices must be continuously optimized and updated. Several steps are usually required when a chromatographic system is used to determine food hazards: sample preparation, that is, the separation of targets from different substrates using a suitable preprocessing method and target-substance separation and purification, which is usually achieved using chromatographic separation. The selection of an appropriate detector for qualitative and quantitative analyses is usually based on the properties of the target compound. The sample preparation procedure is considered the most time-consuming aspect of the entire food-analysis process. It is also prone to analytical errors. Therefore, optimization of the sample preparation process is a key issue in the field of chemical analysis. Researchers have developed a series of new, efficient, and accurate sample preprocessing methods, and an on-line sample-preparation system has been found to be a feasible approach. On-line sample preparation coupled with liquid chromatography-mass spectrometry (LC-MS) presents many advantages. First, manual operation could reduce analytical errors to ensure good accuracy and repeatability. It could also reduce the consumption of chemical reagents and avoid cross-contamination between samples. Furthermore, an on-line sample-preparation system could shorten the sample-preparation time and improve the detection efficiency. On-line sample preparation coupled with LC-MS has been widely applied in the fields of environment, biology, and food. On-line sample preparation systems coupled with LC-MS are divided into two modules: the first modules involves sample preparation and the second module involves the LC system. The first module remove impurities and isolates the target compounds in preparation for their qualitative and quantitative detection. The coupling of these two modules depends mainly on valve switching. In this paper, we introduce the most frequently used on-line sample-preparation techniques, including on-line solid phase extraction (on-line SPE), in-tube solid phase microextraction (in-tube SPME), and turbulent chromatography (TFC). We then describe the basic principles and coupling equipment of these three on-line analytical technologies in detail. The coupling equipment establishes a physical connection between the two modules. Next, we discuss the properties of different purification fillers in an on-line sample-preparation column. The applications and research progress of on-line systems for pesticide residues, veterinary drug residues, and biotoxins are also discussed. Compared with offline sample preparation, on-line analytical systems present several advantages. On-line analytical systems can not only greatly reduce the analysis time and solvent consumption but also improve the detection sensitivity and accuracy. Such systems can be used to determine food hazards to ensure food safety. Finally, the existing problems and development trends of on-line analytical systems are discussed and prospected. To promote the applications of on-line analytical technology in food-safety detection, we suggest that the following three aspects be considered. First, more on-line purification columns with novel fillers, in addition to C18 or polymer fillers, should be developed. Second, compared with ordinary detectors, high-resolution MS detectors have better precision and accuracy. Coupling on-line analytical technologies with a high-resolution mass spectrometer may be beneficial for the further development of on-line analyses. Third, different food matrices should be compared and evaluated to continuously optimize the detection process and improve the efficiency of on-line analytical systems. As concerns regarding food safety issues have increased, the applications of on-line analytical technologies for food detection can be expected to become increasingly important.


Subject(s)
Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction/methods , Solid Phase Extraction , Mass Spectrometry , Chromatography, High Pressure Liquid
2.
Methods Mol Biol ; 2511: 161-174, 2022.
Article in English | MEDLINE | ID: mdl-35838959

ABSTRACT

Testing of large populations for virus infection is now a reality worldwide due to the coronavirus (SARS-CoV-2) pandemic. The demand for SARS-CoV-2 testing using alternatives other than PCR led to the development of mass spectrometry (MS)-based assays. However, MS for SARS-CoV-2 large-scale testing have some downsides, including complex sample preparation and slow data analysis. Here, we describe a high-throughput targeted proteomics method to detect SARS-CoV-2 directly from nasopharyngeal and oropharyngeal swabs. This strategy employs fully automated sample preparation mediated by magnetic particles, followed by detection of SARS-CoV-2 nucleoprotein peptides by turbulent flow chromatography coupled with tandem mass spectrometry.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , Tandem Mass Spectrometry/methods
3.
J Chromatogr A ; 1667: 462886, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35193068

ABSTRACT

Human placental JEG-3 cells conserve a high P450 aromatase activity and are therefore suitable to evaluate how contaminants may interfere with the routes involved in estrogen synthesis during pregnancy. This has been traditionally assessed by measuring aromatase activity through the amount of tritiated water (3H2O) formed during the aromatization of 1ß-3H-androst-4-ene-3,17-dione (3H-AD). This work presents a greener and safer analytical approach for this purpose, which consists of the determination of the trace amounts of the steroids (estradiol, estrone, testosterone, and androstenedione) present in the culture medium. Turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS) delivered the high selectivity and sensitivity (limits of detection between 2 and 5 pg/mL) required for these measurements. Moreover, its automation allows high-throughput of samples with minimum sample handling and achieves high precision in the analysis (relative standard deviation values <6%). As a proof of concept, the method was applied to evaluate the effect of monohaloacetic acid exposure on the steroid profile of JEG-3 cells. Iodoacetic acid showed an estrogenic effect (statistically significant increase of estradiol levels compared to unexposed cells) at the highest concentration level tested (0.5 µM) that deserves further evaluation.


Subject(s)
Placenta , Tandem Mass Spectrometry , Cell Culture Techniques , Cell Line, Tumor , Estrone , Female , Humans , Pregnancy , Tandem Mass Spectrometry/methods
5.
J Chromatogr A ; 1570: 135-147, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30072230

ABSTRACT

The resolution power of turbulent flow chromatography using carbon dioxide as the mobile phase and coated (crosslinked methyl phenyl polysiloxane) open tube columns (OTCs) as the stationary phase was investigated under retentive conditions (0

Subject(s)
Benz(a)Anthracenes/analysis , Carbon Dioxide/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Polycyclic Compounds/analysis , Benz(a)Anthracenes/chemistry , Benz(a)Anthracenes/isolation & purification , Molecular Weight , Polycyclic Compounds/chemistry , Polycyclic Compounds/isolation & purification
6.
J Chromatogr A ; 1564: 176-187, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-29891403

ABSTRACT

The average dispersion coefficients, Da¯, of two small molecules (acetonitrile and coronene) were measured under laminar, transient, and sustained turbulent flow regimes along fused silica open tubular capillary (OTC) columns (180 µm inner diameter by 20 m length). Carbon dioxide was used as the mobile phase at room temperature (296 K) and at average pressures in the range from 1500 to 2700 psi. The Reynolds number (Re) was increased from 600 to 5000. The measurement of Da¯ is based on the observed plate height of the non-retained analytes as a function of the applied Reynolds number. Da¯ values are directly estimated from the best fit of the general Golay HETP equation to the experimental plate height curves. The experimental data revealed that under a pre-turbulent flow regime (Re < 2000), Da¯ is 2-6 times larger (3.5 × 10-4 cm2/s) than the bulk diffusion coefficients Dm of the analyte (1.6 × 10-4 and 5.8 × 10-5 cm2/s for acetonitrile and coronene, respectively). This result was explained by the random formation of decaying or vanishing turbulent puffs under pre-turbulent flow regime. Yet, the peak width remains controlled exclusively by the slow mass transfer in the mobile phase across the inner diameter (i.d.) of the OTC. Under sustained turbulent flow regime (Re > 2500), Da¯ is about four to five orders of magnitude larger than Dm. The experimental data slightly overestimated the turbulent dispersion coefficients predicted by Flint-Eisenklam model (Da¯=4 cm2/s). The discrepancy is explained by the approximate nature of the general Golay equation, which assumes that Da¯ is strictly uniform across the entire i.d. of the OTC. In fact, both the viscous and buffer wall layers, in which viscous effects dominate inertial effects, cannot be considered as fully developed turbulent regions. Remarkably, the mass transfer mechanism in OTC under sustained turbulent flow regime is not only controlled by longitudinal dispersion but also by a slow mass transfer in the mobile phase across the thick buffer layer and the thin viscous layer. Altogether, these layers occupy as much as 35% of the OTC volume at Re = 4000. From a theoretical viewpoint, the general Golay HETP equation is only an approximate model which should be refined based on the actual profile of the analyte dispersion coefficient across the OTC i.d. In practice, the measured plate height of non-retained analytes under sustained turbulent flow of carbon dioxide are two orders of magnitude smaller than those expected under hypothetical laminar flow regime.


Subject(s)
Carbon Dioxide/chemistry , Rheology , Acetonitriles/chemistry , Diffusion , Molecular Weight , Polycyclic Compounds/chemistry , Pressure , Silicon Dioxide , Viscosity
7.
Environ Res ; 161: 532-539, 2018 02.
Article in English | MEDLINE | ID: mdl-29232646

ABSTRACT

UV filters (UV-Fs) are a group of hormonally active chemical compounds used to protect against the deleterious effects of UVA and UVB solar radiation, which are currently present in most consumer goods (personal care products, plastics, fabrics, paints, etc). Last years the concern about these emerging contaminants has been on the rise, and increasing efforts are being taken in order to properly asses the hazard that the exposure to these compounds in the early stages of life may pose. In this study, a new method for the analysis of 11 UV-Fs residues in human breast milk samples has been developed. The method is based on turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS). The validated method was successfully applied to 79 human breast milk samples from mothers in Barcelona (Spain). Twenty-four per cent of the samples contained UV-Fs, with major contributors being oxybenzone (benzophenone 3, BP3), its metabolite 4,4'-dihydroxybenzophenone (4DHB), and UV320 showing maximum concentrations of 779.9, 73.3, and 523.6ngg-1 milk, respectively. Additionally, the plastic containers of the milks were also analysed, revealing high concentrations of BP3 and 4DHB, up to 10.6µgg-1 plastic. The calculated mean ΣUV-Fs were useful to estimate the daily intake (EDI) by babies, which were 69.1µg d-1kg-1 body weight.


Subject(s)
Sunscreening Agents , Tandem Mass Spectrometry , Adult , Chromatography, Liquid , Female , Humans , Infant , Milk, Human/chemistry , Spain , Sunscreening Agents/analysis
8.
Chemosphere ; 184: 1054-1070, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28658740

ABSTRACT

The removal of 27 endocrine-disrupting compounds and related compounds (suspect effect) from a reverse osmosis concentrate using an alternative decontamination method based on a fungal treatment involving Trametes versicolor was assessed. In addition to chemical analysis, the toxicity of the treated water during the treatment was monitored using a bioluminescence inhibition test and estrogenic and anti-estrogenic tests. The compounds 1H-benzotriazole (BTZ) and two tolyltriazoles (TTZs), 4-methyl-1H-benzotriazole (4-MBTZ) and 5-methyl-1H-benzotriazole (5-MBTZ), were present in the reverse osmosis concentrate at the highest concentrations (7.4 and 12.8 µg L-1, respectively) and were partially removed by the fungal treatment under sterile conditions (58% for BTZ and 92% for TTZs) and non-sterile conditions, although to lesser extents (32% for BTZ and 50% for TTZs). Individual biotransformation studies of BTZ and the TTZs by T. versicolor in a synthetic medium and further analysis via on-line turbulent flow chromatography coupled to an HRMS-Orbitrap allowed the tentative identification of the transformation products (TPs). Six TPs were postulated for BTZ, two TPs were postulated for 4-MBTZ, and four TPs were postulated for 5-MBTZ. Most of these TPs are suggested to have been generated by conjugation with some sugars and via the methylation of the triazole group. Only TP 148 A, postulated to be derived from the biotransformation of BTZ, was observed in the effluent of the bioreactor treating the reverse osmosis concentrate.


Subject(s)
Endocrine Disruptors/analysis , Triazoles/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Bioreactors/microbiology , Biotransformation , Endocrine Disruptors/metabolism , Osmosis , Trametes/metabolism , Triazoles/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Purification
9.
J Pharm Biomed Anal ; 145: 46-51, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28648787

ABSTRACT

A high throughput method for simultaneous screening of anabolic steroids and their metabolites (4-esterendione, trenbolone, boldenone, oxandrolone, nandrolone, methandrostenolone, testosterone, 1-androstendione, ethisterone, normethandrolone, methyltestosterone, 16ß-Hydroxystanozolol, epitestosterone, bolasterone, norethandrolone, danazol, stanozolol and androstadienone) in equine urine by online turbulent flow extraction coupled with liquid chromatography-tandem mass spectrometry was developed. The use of turbulent flow chromatography could simplify pretreatment of horse urine, which has complex matrices as well as high viscosity. The urine was extracted by mixed-mode cation exchange solid phase extraction, and hydrolyzed using ß-glucuronidase/arylsulfatase. Then, the sample was automatically loaded on the TurboFlow Cyclone extraction column for removal of further matrix, followed by separation on a fused core C18 column before MS/MS detection. Optimization and validation of the method were discussed in detail. All analytes were rapidly detected within 10min with high sensitivity (picogram to nanogram per milliliter level), and no interference was observed. The linearity range was from 0.1-10ng/mL for nine steroids and 1.0-50ng/mL for the others, with correlation of coefficient values over 0.995. Precision and accuracy ranged from 0.1 to 14.5% and 1.7 to 12.4%, respectively. The developed method was successfully applied to the analysis of anabolic steroids in horse urine after administration of a model drug.


Subject(s)
Horses , Anabolic Agents , Animals , Chromatography, High Pressure Liquid , Doping in Sports , Reproducibility of Results , Steroids , Tandem Mass Spectrometry , Testosterone Congeners
10.
Acta Pharm Sin B ; 6(6): 540-551, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27818920

ABSTRACT

Biological sample pretreatment is an important step in biological sample analysis. Due to the diversity of biological matrices, the analysis of target substances in these samples presents significant challenges to sample processing. To meet these emerging demands on biopharmaceutical analysis, this paper summarizes several new techniques of on-line biological sample processing: solid phase extraction, solid phase micro-extraction, column switching, limited intake filler, molecularly imprinted solid phase extraction, tubular column, and micro-dialysis. We describe new developments, principles, and characteristics of these techniques, and the application of liquid chromatography-mass spectrometry (LC-MS) in biopharmaceutical analysis with these new techniques in on-line biological sample processing.

11.
J Chromatogr A ; 1465: 90-7, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27567141

ABSTRACT

Rhamnolipids are biosurfactants produced by a variety of bacterial species that present a promising alternative to surfactants from petrochemical or oleochemical origin. The success of the fermentation is evaluated by subsequent qualitative and quantitative analysis. However, the sample preparation for high numbers of samples is often laborious and inefficient. In this study an online sample preparation is developed for the qualitative and quantitative analysis of rhamnolipids by LC-MS/MS. Online sample preparation is carried out on a TurboFlow Cyclone MAX column using turbulent flow chromatography. Sample preparation prior the analysis is minimized to a dilution and syringe filtration step leading to an instrumental analysis time of 33min. The limit of detection and the limit of quantification were 0.4ng and 0.6ng on column, respectively. Recovery of the main mono- and di-rhamnolipids from a fermentation sample was 102-104%. Additionally, the rhamnolipid biosynthetic precursors 3-hydroxy(alkanoyloxy)alkanoic acids (HAAs) are covered, albeit extraction is not quantitative (85-90%). The analysis of rhamnolipids from four different microbial species was in good agreement with previous reports. The presented method allows rapid and comprehensive analysis of rhamnolipids with minimal sample preparation directly from the fermentation broth. The application of complementary data-dependent MS/MS acquisition enables non-target screening of rhamnolipids.


Subject(s)
Chromatography, High Pressure Liquid/methods , Glycolipids/analysis , Surface-Active Agents/analysis , Tandem Mass Spectrometry/methods , Bacteria/metabolism , Batch Cell Culture Techniques , Chromatography, High Pressure Liquid/instrumentation , Limit of Detection , Tandem Mass Spectrometry/instrumentation
12.
J Chromatogr A ; 1454: 58-66, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27268518

ABSTRACT

Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper.


Subject(s)
Chromatography, Liquid/methods , Feces/chemistry , Tandem Mass Spectrometry/methods , Reproducibility of Results
13.
J Chromatogr A ; 1453: 62-70, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27237594

ABSTRACT

An on-line TFC (Turbulent Flow Chromatography) clean up procedures coupled with UHPLC-MS/MS (Ultra High Performance Liquid Chromatography Mass Spectrometry) multi-residue method was developed for the simultaneous determination of 8 perfluroalkyl carboxylic acids (PFCA, from 5 to 12 carbon atoms) and 3 perfluoroalkyl sulfonic acids (PFSA, from 4 to 8 carbon atoms) in environmental solid matrices. Fast sample preparation procedure was based on a sonication-assisted extraction with acetonitrile. Phospholipids in biological samples were fully removed by an off-line SPE purification before injection, using HybridSPE(®) Phospholipid Ultra cartridges. The development of the on-line TFC clean-up procedure regarded the choice of the stationary phase, the optimization of the mobile phase composition, flow rate and injected volume. The validation of the optimized method included the evaluation of matrix effects, accuracy and reproducibility. Signal suppression in the analysis of fortified extracts ranged from 1 to 60%, and this problem was overcome by using isotopic dilution. Since no certified reference materials were available for PFAS in these matrices, accuracy was evaluated by recoveries on spiked clam samples which were 98-133% for PFCAs and 40-60% for PFSAs. MLDs and MLQs ranged from 0.03 to 0.3ngg(-1) wet weight and from 0.1 to 0.9ngg(-1) wet weight respectively. Repeatability (intra-day precision) and reproducibility (inter-day precision) showed RSD from 3 to 13% and from 4 to 27% respectively. Validated on-line TFC/UHPLC-MS/MS method has been applied for the determination of perfluoroalkyl acids in different solid matrices (sediment, fish, bivalves and bird yolk).


Subject(s)
Chromatography, Liquid/methods , Fluorocarbons/analysis , Fluorocarbons/isolation & purification , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Animals , Bivalvia/chemistry , Carboxylic Acids/analysis , Chromatography, High Pressure Liquid , Fishes , Geologic Sediments/chemistry , Phospholipids/isolation & purification , Reproducibility of Results , Sulfonic Acids/analysis
14.
J Chromatogr A ; 1438: 189-97, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26896915

ABSTRACT

Incompatibility between the conventional pressurized liquid extraction (PLE) devices and high performance liquid chromatography (HPLC) extensively hinders direct and green chemical analysis of herbal materials. Herein, a facile PLE module was configured, and then it was online hyphenated with HPLC via a turbulent flow chromatography (TFC) column. Regarding PLE module, a long PEEK tube (0.13 × 1000 mm) was employed to generate desired pressure (approximately 13.0 MPa) when warm acidic water (70 °C) was delivered as extraction solvent at a high flow rate (2.5 mL/min), and a hollow guard column (3.0 × 4.0 mm) was implemented to hold crude materials. Effluent was collected from the outlet of PEEK tube, concentrated, and subjected onto HPLC coupled with hybrid ion trap-time of flight mass spectrometer to assess the extraction efficiency and also to profile the chemical composition of Cistanche deserticola (CD) that is honored as "Ginseng of the desert". Afterwards, a TFC column was introduced to accomplish online transmission of low molecule weight components from PLE module to HPLC coupled with diode array detection, and two electronic 6-port/2-channel valves were in charge of alternating the whole system between extraction (0-3.0 min) and elution (3.0-35.0 min) phases. Quantitative method was developed and validated for simultaneous determination of eight primary phenylethanoid glycosides in CD using online PLE-TFC-HPLC. All findings demonstrated that the home-made platform is advantageous at direct chemical analysis, as well as time-, solvent-, and material-savings, suggesting a robust tool for chemical fingerprinting of herbs.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid , Chromatography, Liquid , Cistanche/chemistry , Liquid-Liquid Extraction , Chemistry Techniques, Analytical/instrumentation , Glycosides
15.
J Sep Sci ; 39(7): 1266-72, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26833996

ABSTRACT

In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures.


Subject(s)
Chromatography/methods , Lignans/analysis , Magnolia/chemistry , Solid Phase Extraction , Chromatography, High Pressure Liquid , Molecular Conformation , Tandem Mass Spectrometry
16.
Clin Chim Acta ; 455: 46-54, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26812390

ABSTRACT

BACKGROUND: In clinical and forensic toxicology, fast and specific methods are needed for the screening of different classes of drugs. A complete general unknown screening procedure was developed using turbulent flow chromatography with electrospray ionization and Orbitrap mass spectrometry. METHODS: After protein precipitation, samples were injected directly into the turbulent flow chromatographic system and analyzed with an Orbitrap mass spectrometer. The Exactive® operated in positive and negative modes with alternated high collision dissociation in order to obtain characteristic fragments. We built a library containing 616 compounds by analyzing a reference standard for all the molecules. RESULTS: Identification was based on retention time, accurate measured mass, isotopic pattern and presence of specific fragments. For each substance, we set a calibration range encompassing infra-therapeutic, therapeutic, supra-therapeutic and toxic concentrations in order to generate semi-quantitative result. For 65% of the components, the limit of detection was below 5 ng/mL. The validation process showed the approach to be selective, sensitive, accurate and precise. CONCLUSION: The method has been accredited by COFRAC (French Accreditation Committee) according to the ISO 15189 standard. Applicability was successfully tested by analyzing authentic serum, urine and whole blood samples.


Subject(s)
Automation , Chromatography/methods , Spectrometry, Mass, Electrospray Ionization/methods , Toxicity Tests , Humans , Reproducibility of Results
17.
Acta Pharmaceutica Sinica B ; (6): 540-551, 2016.
Article in English | WPRIM (Western Pacific) | ID: wpr-256797

ABSTRACT

Biological sample pretreatment is an important step in biological sample analysis. Due to the diversity of biological matrices, the analysis of target substances in these samples presents significant challenges to sample processing. To meet these emerging demands on biopharmaceutical analysis, this paper summarizes several new techniques of on-line biological sample processing: solid phase extraction, solid phase micro-extraction, column switching, limited intake filler, molecularly imprinted solid phase extraction, tubular column, and micro-dialysis. We describe new developments, principles, and characteristics of these techniques, and the application of liquid chromatography-mass spectrometry (LC-MS) in biopharmaceutical analysis with these new techniques in on-line biological sample processing.

18.
Article in English | MEDLINE | ID: mdl-25952817

ABSTRACT

A novel, fully automated method based on dual-column switching using online turbulent flow chromatography followed by LC-MS/MS was developed for the determination of aflatoxin B1 and M1 in milk, fresh milk and milk powder samples. After ultrasound-assisted extraction, samples were directly injected into the chromatographic system and the analytes were concentrated on the clean-up loading column. Through purge switch, analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlow(TM) columns, transfer flow rates and transfer times were optimised. Method limits of detection obtained for AFB1 and AFM1 were 0.05 µg kg(-1), and limits of quantification were 0.1 µg kg(-1). Recoveries of aflatoxin B1 and M1 were in range of 81.1-102.1% for all samples. Matrix effects of aflatoxin B1 and M1 were in range of 63.1-94.3%. The developed method was successfully used for the analysis of aflatoxin B1 and M1 in real samples.


Subject(s)
Aflatoxin B1/chemistry , Aflatoxin M1/chemistry , Chromatography, Liquid/methods , Milk/chemistry , Tandem Mass Spectrometry/methods , Animals , Cattle , Food Analysis/methods , Food Contamination/analysis , Sensitivity and Specificity
19.
J Sep Sci ; 38(8): 1310-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25683560

ABSTRACT

A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography with tandem mass spectrometry was developed for the determination of aflatoxin B1 , B2 , G1 , and G2 in corn powder, edible oil, peanut butter, and soy sauce samples. After ultrasound-assisted extraction, samples were directly injected to the chromatographic system and the analytes were concentrated into the clean-up loading column. Through purge switching, the analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlow(TM) columns, transfer flow rate, transfer time were optimized. The limits of detection and quantification of this method ranged between 0.2-2.0 and 0.5-4.0 µg/kg for aflatoxins in different matrixes, respectively. Recoveries of aflatoxins were in range of 83-108.1% for all samples, matrix effects were in range of 34.1-104.7%. The developed method has been successfully applied in the analysis of aflatoxin B1 , B2 , G1 , and G2 in real samples.


Subject(s)
Aflatoxins/analysis , Arachis/chemistry , Plant Oils/analysis , Soy Foods/analysis , Zea mays/chemistry , Aflatoxin B1/analysis , Calibration , Chromatography, High Pressure Liquid , Chromatography, Liquid , Limit of Detection , Solid Phase Extraction , Tandem Mass Spectrometry , Ultrasonics
20.
J Chromatogr A ; 1352: 29-37, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24909438

ABSTRACT

A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography coupled to tandem mass spectrometry (TFC-LC-MS/MS) was applied for the determination of endocrine disruptors (EDCs) and related compounds in sediment and sewage sludge samples. This method allows the unequivocal identification and quantification of the most relevant environmental EDCs such as natural and synthetic estrogens and their conjugates, antimicrobials, parabens, bisphenol A (BPA), alkylphenolic compounds, benzotriazoles, and organophosphorus flame retardants, minimizing time of analysis and alleviating matrix effects. Applying this technique, after the extraction of the target compounds by pressurized liquid extraction (PLE), sediment and sewage sludge extracts were directly injected to the chromatographic system and the analytes were concentrated into the clean-up loading column. Using six-port switching system, the analytes were transferred to the analytical column for subsequent detection by MS-MS (QqQ). In order to optimize this multiplexing system, a comparative study employing six types of TurboFlow™ columns, with different chemical modifications, was performed to achieve the maximum retention of analytes and best elimination of matrix components. Using the optimized protocol low limits of quantification (LOQs) were obtained ranging from 0.0083 to 1.6 ng/g for sediment samples and from 0.10 to 125 ng/g for sewage sludge samples (except for alkylphenol monoethoxylate). The method was used to evaluate the presence and fate of target EDCs in the Ebro River which is the most important river in Spain with intensive agricultural and industrial activities in the basin that contribute to deteriorating soil and water quality.


Subject(s)
Chromatography, Liquid , Endocrine Disruptors/analysis , Environmental Monitoring/instrumentation , Environmental Pollutants/analysis , Geologic Sediments/chemistry , Sewage/chemistry , Tandem Mass Spectrometry , Rivers/chemistry , Spain
SELECTION OF CITATIONS
SEARCH DETAIL