Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Data Brief ; 54: 110368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623552

ABSTRACT

Atlantic bottlenose dolphins are extensively studied, though little has been published regarding their occurrence patterns in the large and highly urbanized estuary of the Chesapeake Bay, USA. To address this knowledge gap, the Chesapeake DolphinWatch project was initiated in the summer of 2017. Utilizing a citizen science (also known as volunteer science) methodology, members of the public were encouraged to report dolphin sightings through a specialized mobile (iOS and Android) and web-based (https://chesapeakedolphinwatch.org) application. This approach ensured extensive, yet non-invasive and financially-efficient, data collection. The dataset presented here includes bottlenose dolphin sighting reports submitted to Chesapeake DolphinWatch by citizen scientists over five years; from June 28, 2017 through December 9, 2022. These data have been quality checked by researchers at the University of Maryland Center for Environmental Science's (UMCES) Chesapeake Biological Laboratory (CBL) in Solomons, Maryland (USA). This dataset holds potential for various applications, such as analyzing the spatiotemporal patterns of dolphin presence within the Chesapeake Bay, investigating the behavior and movements of bottlenose dolphins in the mid-Atlantic, and serving as a comparative benchmark for studies in other estuarine systems. By integrating community engagement with technological platforms, the provided data showcases the invaluable role of citizen science in advancing marine ecological research.

2.
J Histotechnol ; : 1-8, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465369

ABSTRACT

Age determination of bottlenose dolphins (Tursiops truncatus) is a critical tool in understanding both individual and population health. There are many methods of aging bottlenose dolphins including analysis of teeth, pectoral flipper radiographs, and epigenetics. The most common and oldest method for aging toothed cetaceans is the counting of growth layer groups (GLGs) in the teeth. Current techniques have technical and repeatability challenges. Therefore, a processing technique that results in better resolution of GLGs is needed. This study compares different decalcifications and different histochemical staining techniques. Decalcification was done using 10% EDTA, Kristensen's decalcification, and Rapid Decalcification Solution (RDO). Following decalcification and routine processing, GLGs were assessed using Hematoxylin and Eosin (H&E), hematoxylin, Giemsa, Wright-Giemsa, Toluidine Blue (T-Blue), Masson's Trichrome, and Congo Red staining techniques. Decalcification with Kristensen's and staining with Masson's Trichrome and Congo Red were determined to best highlight GLGs. This processing and staining was then applied to a sample population of 102 bottlenose dolphins that were evaluated independently and blindly by two observers. Of the 102 dolphin samples, 13 (12.7%) were unable to age due to no clear distinction or distortion between GLGs.

3.
Animals (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539998

ABSTRACT

In recent decades, worldwide cetacean species have been protected, but they are still threatened. The bottlenose dolphin (Tursiops truncatus) is a vulnerable keystone species and a useful bioindicator of the health and balance of marine ecosystems in oceans all over the world. The genetic structure of the species is shaped by their niche specialization (along with other factors), leading to the classification of two ecotypes: coastal and pelagic. In this study, the genetic diversity, population structure, and ecotypes of bottlenose dolphins from the Canary Islands were assessed through the analysis of 49 new samples from biopsies and from stranded animals using the 636 bp portion of the mitochondrial control region and 343 individuals from databases (n = 392). The results reveal high genetic diversity in Canarian bottlenose dolphins (Hd = 0.969 and π = 0.0165) and the apparent lack of population genetic structure within this archipelago. High genetic structure (Fst, Φst) was found between the Canary Islands and coastal populations, while little to no structure was found with the pelagic populations. These results suggest that Canarian bottlenose dolphins are part of pelagic ecotype populations in the North Atlantic. The studied Special Areas of Conservation in the Canary Islands may correspond to a hotspot of genetic diversity of the species and could be a strategic area for the conservation of the oceanic ecotype of bottlenose dolphins.

4.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38305096

ABSTRACT

AIMS: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS: Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION: The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.


Subject(s)
Bottle-Nosed Dolphin , Gastrointestinal Microbiome , Animals , Fecal Microbiota Transplantation/methods , Prospective Studies , Feces , Treatment Outcome
5.
J Anat ; 244(4): 628-638, 2024 04.
Article in English | MEDLINE | ID: mdl-38168875

ABSTRACT

Odontocetes primarily rely on fish, cephalopods, and crustaceans as their main source of nutrition. In the digestive system, their polygastric complex exhibits similarities to that of their closest terrestrial relatives such as cows, sheep, and giraffes, while the entero-colic tract shares similarities with terrestrial carnivores. The morphology, caliber, and structure of the odontocete intestine are relatively constant, and, since there is no caecum, a distinction between the small and large intestine and their respective subdivisions is difficult. To address this issue, we used the intestinal vascularization pattern, specifically the course and branching of the celiac artery (CA) and the cranial and caudal mesenteric arteries (CrMA and CdMA). A series of pictures and dissections of 10 bottlenose dolphins (Tursiops truncatus) were analyzed. Additionally, we performed a cast by injecting colored polyurethane foam in both arteries and veins to measure the caliber of the arteries and clarify their monopodial or dichotomous branching. Our results showed the presence of multiple duodenal arteries (DAs) detaching from the CA. The CrMA gave origin to multiple jejunal arteries, an ileocolic artery (ICA), and, in six cases, a CdMA. In four specimens, the CdMA directly originated from the abdominal aorta. The ICA gave rise to the mesenteric ileal branches (MIB) and mesenteric anti-ileal branches and the right colic arteries (RCA) and the middle colic arteries. From the CdMA originated the left colic and cranial rectal arteries (LCA and CrRA). The measurements revealed a mixed monopodial and dichotomous branching scheme. The analysis of the arteries and their branching gave us an instrument, based on comparative anatomy, to distinguish between the different intestinal compartments. We used the midpoint of anastomoses between MIB and RCA to indicate the border between the small and the large intestine, and the midpoint of anastomoses between LCA and CrRA, to tell the colon from the rectum. This pattern suggested an elongation of the duodenum and a shortening of the colic tract that is still present in this species. These findings might be related to the crucial need to possess a long duodenal tract to digest prey ingested whole without chewing. A short aboral part is also functional to avoid gas-producing colic fermentation. The rare origin of the CdMA on the CrMA might instead be a consequence of the cranial thrust of the abdominopelvic organs related to the loss of the pelvic girdle that occurred during the evolution of cetaceans.


Subject(s)
Bottle-Nosed Dolphin , Colic , Female , Animals , Cattle , Sheep , Intestines , Mesenteric Arteries/anatomy & histology , Veins
6.
Environ Pollut ; 342: 123027, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38016588

ABSTRACT

The North Sea is an ecologically rich habitat for marine wildlife which has also been impacted by industrial developments and anthropogenic emissions of contaminants such as mercury. Marine mammals are particularly susceptible to mercury exposure, due to their trophic position, long lifespan, and dependence on (increasingly contaminated) aquatic prey species. To mitigate impact, marine mammals can detoxify methylmercury by binding it to selenium-containing biomolecules, creating insoluble mercury selenide granules. Here, liver, kidney, muscle, and brain samples from an adult male bottlenose dolphin (Tursiops truncatus) with known elevated mercury concentrations were analysed through scanning electron microscopy (SEM). Tiemannite (HgSe) deposits were identified in all organs, ranging from 400 nm to 5 µm in diameter, with particle size being organ-dependent. Although reported in other studies, this is the first time that the three-dimensional nature of tiemannite is captured in marine mammal tissue.


Subject(s)
Bottle-Nosed Dolphin , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Male , Mercury/analysis , Water Pollutants, Chemical/analysis , Methylmercury Compounds/analysis , Bottle-Nosed Dolphin/metabolism , Liver/metabolism
7.
Biol Lett ; 19(12): 20230321, 2023 12.
Article in English | MEDLINE | ID: mdl-38053365

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses infect numerous non-human species. Spillover of SARS-CoV-2 into novel animal reservoirs may present a danger to host individuals of these species, particularly worrisome in populations already endangered or threatened by extinction. In addition, emergence in new reservoirs could pose spillback threats to humans, especially in the form of virus variants that further mutate when infecting other animal hosts. Previous work suggests beluga whales (Delphinapterus leucas) and bottlenose dolphins (Tursiops truncatus) may be at risk owing to their formation of social groups, contact with humans, exposure to contaminated wastewater, and structure of their angiotensin-converting enzyme 2 (ACE2) proteins, which SARS-CoV-2 uses as a cellular receptor. We examined marine-mammal susceptibility to virus infection by challenging 293T cells expressing beluga or dolphin ACE2 with pseudovirions bearing the SARS-CoV-2 spike protein. Beluga and dolphin ACE2 were sufficient to allow cell entry by an early pandemic isolate (Wuhan-Hu-1) and two evolved variants (Delta B.1.617.2 and Omicron BA.1 strains). We conclude that SARS-CoV-2 poses a potential threat to marine mammal reservoirs that should be considered in surveillance efforts.


Subject(s)
Beluga Whale , Bottle-Nosed Dolphin , COVID-19 , Animals , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
8.
Animals (Basel) ; 13(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003059

ABSTRACT

Although the Port of Corpus Christi, Texas, has become a top oil exporter, it is unknown if local dolphins are disturbed by high year-round vessel traffic. A shore-based digital theodolite and automatic identification system receiver were used to record data to assess common bottlenose dolphin (Tursiops truncatus) behavioral states and movement patterns in the Corpus Christi Ship Channel (CCSC) in relation to vessel traffic. Multinomial logistic regression and generalized additive models were applied to analyze the data. Vessels were present within 300 m of dolphins during 80% of dolphin observations. Dolphins frequently foraged (40%), traveled (24%), socialized (15%), and milled (14%), but rarely oriented against the current (7%) or rested (1% of observations). Season, time of day, group size, vessel type, vessel size, and number of vessels were significant predictors of dolphin behavioral state. Significant predictors of dolphin movement patterns included season, time of day, group size, calf presence, vessel type, and vessel numbers. The CCSC is an important foraging area for dolphins, yet the high level of industrial activity puts the dolphins at risk of human-related disturbance and injury. There is a crucial need to monitor the impact of increased anthropogenic influences on federally protected dolphins in the active CCSC, with broad application to dolphins in other ports.

9.
Emerg Infect Dis ; 29(12): 2561-2563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987589

ABSTRACT

We diagnosed fatal Erysipelothrix rhusiopathiae sepsis in 3 stranded bottlenose dolphins (Tursiops truncatus) during summer 2022, in San Diego, California, USA. The previously undetected disease in this relatively small, regional population of dolphins most likely indicates an environmental or biological change in the coastal ocean or organisms.


Subject(s)
Bottle-Nosed Dolphin , Erysipelas , Erysipelothrix , Sepsis , Animals , California/epidemiology
10.
PeerJ ; 11: e16111, 2023.
Article in English | MEDLINE | ID: mdl-37790616

ABSTRACT

Background: Sustainable management requires spatial mapping of both species distribution and human activities to identify potential risk of conflict. The common bottlenose dolphin (Tursiops truncatus) is a priority species of the European Union Habitat Directive, thus, to promote its conservation, the understanding of habitat use and distribution, as well as the identification and spatial trend of the human activities which may directly affect populations traits, is pivotal. Methods: A MaxEnt modeling approach was applied to predict the seasonal (from April to September) habitat use of a small population of bottlenose dolphins in the north-western Sardinia (Mediterranean Sea) in relation to environmental variables and the likelihoods of boat and fishing net presence. Then, the overlapping areas between dolphin, fishing net and boat presence were identified to provide insights for the marine spatial management of this area. Results: Three of the main factors influencing the seasonal distribution of bottlenose dolphins in the area are directly (boating and fishing) or indirectly (ocean warming) related to human activities. Furthermore, almost half of the most suitable area for dolphins overlapped with areas used by fishing and boating. Finally, relying on fishing distribution models, we also shed light on the potential impact of fishing on the Posidonia oceanica beds, a protected habitat, which received higher fishing efforts than other habitat types. Discussion: Modelling the spatial patterns of anthropogenic activities was fundamental to understand the ecological impacts both on cetacean habitat use and protected habitats. A greater research effort is suggested to detect potential changes in dolphin habitat suitability, also in relation to ocean warming, to assess dolphin bycatch and the status of target fish species, and to evaluate sensitive habitats conditions, such as the Posidonia oceanica meadow.


Subject(s)
Bottle-Nosed Dolphin , Animals , Humans , Fisheries , Conservation of Natural Resources , Human Activities , European Union
11.
J Wildl Dis ; 59(4): 616-628, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37846908

ABSTRACT

Mortality patterns in cetaceans are critical to understanding population health. Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River Lagoon (IRL), Florida have been subjected to four unusual mortality events (UMEs), highlighting the need to evaluate morbidity and mortality patterns. Complete gross examinations were conducted on 392 stranded dolphins and histopathological analyses were conducted for 178 animals (2002-2020). The probable causes of mortality were grouped by etiologic category: degenerative, metabolic, nutritional, inflammatory (infectious and noninfectious disease), and trauma. Probable cause of mortality was determined in 57% (223/392) of cases. Inflammatory disease (infectious/noninfectious) and trauma were the most common. Inflammatory disease accounted for 41% of cases (91/223), with the lungs (pneumonia) most commonly affected. Trauma accounted for 36% of strandings (80/223). The majority of trauma cases were due to anthropogenic activities (entanglement, fishing gear or other debris ingestion, and propeller strikes), accounting for 58% of trauma cases (46/80). Natural trauma (prey-associated esophageal obstruction or asphyxiation, shark bites, and stingray interactions) accounted for 12% of all cases (26/223), and trauma of undetermined origin was identified in 4% of cases (8/223). Starvation or inanition (nutritional) were the probable cause of mortality in 17% of cases and peaked during the 2013 UME (61% of cases). Degenerative and metabolic etiologies accounted for 5% of cases. This study represents the most comprehensive evaluation of morbidity and mortality patterns in IRL dolphins. Because IRL dolphins are routinely exposed to anthropogenic threats and have endured multiple UMEs, these baseline data are critical to the conservation and management of this population.


Subject(s)
Bottle-Nosed Dolphin , Communicable Diseases , Animals , Florida/epidemiology , Communicable Diseases/veterinary , Morbidity , Rivers , Cetacea
12.
Environ Monit Assess ; 195(7): 898, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37369947

ABSTRACT

Due to anthropogenic pressures, estuarine systems are among the most broadly impacted areas for marine top predator species. Given this, it is crucial to study the interaction between the vulnerable marine species that inhabit these regions with environmental and anthropogenic variables. This study aims to determine whether nutrient pollution is related to the presence of bottlenose dolphins in a coastal environment. Using a multi-year dataset and GAMs, we studied the relationship between marine pollutants and the presence of bottlenose dolphins in this highly impacted coastal marine environment. We observed that urban fertilizers were linked to the spatial distribution of bottlenose dolphins. There was a higher presence of bottlenose dolphins in areas with high levels of phosphoric acid. In contrast, at higher concentrations of nitrate, the presence of bottlenose dolphins decreased.


Subject(s)
Bottle-Nosed Dolphin , Environmental Pollutants , Animals , Environmental Monitoring , Environment , Environmental Pollution
13.
Mar Environ Res ; 188: 106014, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148717

ABSTRACT

Dolphin preference and usage of various habitats along the Israeli shallow coastal shelf were investigated between 2019 and 2021 with passive acoustic monitoring devices. A hurdle model was used to examine the dolphins' visiting probability (chance of detection) and visit duration (length of stay once detected) across habitats, with diel cycle and season as explanatory variables. The influence of spatiotemporal prohibitions placed on trawler activity was also examined. It was found that dolphins exhibited higher presence in the vicinity of fish farms, up to three orders of magnitude, and even more so during periods when trawler activity was halted. The study also found a higher presence during the winter season and nighttime. Modeling did not find significant differences in the visiting probability or the visit duration between any non-farm-associated sites, including areas where trawling is prohibited. Further restrictions on the fishing industry may induce recovery of the benthic ecosystem and lower competition for resources, thus promoting higher dolphin presence in natural habitats along the shelf.


Subject(s)
Bottle-Nosed Dolphin , Dolphins , Animals , Ecosystem , Fisheries , Israel , Acoustics
14.
Mar Environ Res ; 188: 105993, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084688

ABSTRACT

The Adriatic Sea is one of the areas most exposed to trawling, worldwide. We used four years (2018-2021) and 19,887 km of survey data to investigate factors influencing daylight dolphin distribution in its north-western sector, where common bottlenose dolphins Tursiops truncatus routinely follow fishing trawlers. We validated Automatic Identification System information on the position, type and activity of three types of trawlers based on observations from boats, and incorporated this information in a GAM-GEE modelling framework, together with physiographic, biological and anthropogenic variables. Along with bottom depth, trawlers (particularly otter and midwater trawlers) appeared to be important drivers of dolphin distribution, with dolphins foraging and scavenging behind trawlers during 39.3% of total observation time in trawling days. The spatial dimension of dolphin adaptations to intensive trawling, including distribution shifts between days with and without trawling, sheds light on the magnitude of ecological change driven by the trawl fishery.


Subject(s)
Bottle-Nosed Dolphin , Animals , Fisheries , Ships , Surveys and Questionnaires
15.
Biology (Basel) ; 12(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36829603

ABSTRACT

Along the Mediterranean coast of Israel, two near-shore dolphin species are prevalent; Tursiops truncatus (least concern, IUCN) and Delphinus delphis (endangered, IUCN). Ship-board surveys and sporadic sightings over the last two decades have shown that the two differ in distribution-T. truncatus is found along the entire coast and D. delphis only in the south. The environmental and anthropological factors affecting these species' spatial distribution and determining their habitat preferences in this area are largely unknown. This work is a first attempt at summarizing 20 years of observations and studying habitat preferences for both species, by use of Generalized Additive Models. T. truncatus was found to be present in all areas of the continental shelf where survey effort coverage was sufficient, with a high affinity towards bottom trawlers. Model results showed D. delphis distribution to be associated to (shallow) water depths, though the factors driving their limited latitudinal distribution currently remain unknown. It is evident that T. truncatus and D. delphis are present in segregated areas of the Israeli continental shelf and T. truncatus currently sustains a delicate balance with continuously shifting human activities, while the drivers of D. delphis distribution are more specified, yet still not fully understood.

16.
Emerg Infect Dis ; 29(1): 179-183, 2023 01.
Article in English | MEDLINE | ID: mdl-36573620

ABSTRACT

Photobacterium damselae subspecies damselae, an abundant, generalist marine pathogen, has been reported in various cetaceans worldwide. We report a bottlenose dolphin in the eastern Mediterranean Sea that was found stranded and dead. The dolphin had a severe case of chronic suppurative pneumonia and splenic lymphoid depletion caused by this pathogen.


Subject(s)
Bottle-Nosed Dolphin , Pneumonia , Animals , Mediterranean Sea , Pneumonia/veterinary
17.
Front Neuroanat ; 17: 1330384, 2023.
Article in English | MEDLINE | ID: mdl-38250022

ABSTRACT

Introduction: The auditory system of dolphins and whales allows them to dive in dark waters, hunt for prey well below the limit of solar light absorption, and to communicate with their conspecific. These complex behaviors require specific and sufficient functional circuitry in the neocortex, and vicarious learning capacities. Dolphins are also precocious animals that can hold their breath and swim within minutes after birth. However, diving and hunting behaviors are likely not innate and need to be learned. Our hypothesis is that the organization of the auditory cortex of dolphins grows and mature not only in the early phases of life, but also in adults and aging individuals. These changes may be subtle and involve sub-populations of cells specificall linked to some circuits. Methods: In the primary auditory cortex of 11 bottlenose dolphins belonging to three age groups (calves, adults, and old animals), neuronal cell shapes were analyzed separately and by cortical layer using custom computer vision and multivariate statistical analysis, to determine potential minute morphological differences across these age groups. Results: The results show definite changes in interneurons, characterized by round and ellipsoid shapes predominantly located in upper cortical layers. Notably, neonates interneurons exhibited a pattern of being closer together and smaller, developing into a more dispersed and diverse set of shapes in adulthood. Discussion: This trend persisted in older animals, suggesting a continuous development of connections throughout the life of these marine animals. Our findings further support the proposition that thalamic input reach upper layers in cetaceans, at least within a cortical area critical for their survival. Moreover, our results indicate the likelihood of changes in cell populations occurring in adult animals, prompting the need for characterization.

18.
PeerJ ; 10: e14074, 2022.
Article in English | MEDLINE | ID: mdl-36225904

ABSTRACT

In the presence of vessels, dolphins have been found to change their habitat, behavior, group composition and whistle repertoire. The modification of the whistle parameters is generally considered to be a response to the engine noise. Little is known about the impact of the physical presence of vessels on dolphin acoustics. Whistle parameters of the coastal and oceanic ecotypes of common bottlenose dolphins in La Paz Bay, Mexico, were measured after the approach of the research vessel and its engine shutdown. Recordings of 10 min were made immediately after turning off the engine. For analysis, these recordings were divided from minute 0 to minute 5, and from minute 5:01 to minute 10. The whistles of the oceanic ecotype showed higher maximum, minimum and peak frequency in the second time interval compared to the first one. The whistle rate decreased in the second time interval. The whistles of the coastal ecotype showed no difference between the two time intervals. The physical presence of the research vessel could have induced a change in the whistle parameters of the oceanic dolphins until habituation to the vessel disturbance. The oceanic ecotype could increase the whistle rate and decrease the whistle frequencies to maintain acoustic contact more frequently and for longer distances. The coastal ecotype, showing no significant changes in the whistle parameters, could be more habituated to the presence of vessels and display a higher tolerance.


Subject(s)
Bottle-Nosed Dolphin , Common Dolphins , Animals , Bottle-Nosed Dolphin/physiology , Vocalization, Animal , Ecotype , Noise , Acoustics
19.
Vet Sci ; 9(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36288184

ABSTRACT

To histologically evaluate the gastric compartments of Risso's (Grampus griseus) and bottlenose dolphins (Tursiops truncatus) and provide suggestions for the diet of Risso's dolphins in captivity, we examined 12 stomachs from both species. While slight differences in keratinization were observed in the forestomach, significant differences came to light in the second stomach's mucosa. At this level, in Risso's dolphin, the principal cells are markedly reduced in size and located externally to the parietal cells, not interspersed between them, compared to bottlenose dolphins; differences were also observed in the structure and concentration of the parietal and principal cells of the gastric body glands (p < 0.0001). The quantitative results of G- and D-cell counts in the gastric mucosa show a clear difference, with a higher concentration of G cells in the mucosa of Risso's dolphin (t = 7.334; p < 0.0001) and a higher level of D cells in bottlenose dolphin mucosa (t = 3.123; p = 0.0049). These results suggest that parietal cells undergo greater stimulation by gastrin produced by G cells, with greater acid secretion in G. griseus. Further studies are needed to understand whether an inappropriate diet could lead to severe clinical signs due to gastric acidity in Risso's dolphin.

20.
Ecotoxicol Environ Saf ; 244: 113980, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36057203

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants in aquatic ecosystems worldwide. Marine mammals, as top predators, are constantly exposed to several PFAS compounds that accumulate in different tissues. As a proxy to assess cytotoxicity of PFAS in the bottlenose dolphin (Tursiops truncatus), we generated a new immortalized cell line derived from skin samples of bottlenose dolphin. Using high content imaging, we assessed the effects of increasing concentrations of PFOS, PFOA, PFBS, PFBA and C6O4 on cell viability and cell cycle phases. In particular, we classified all cells based on multiple morphometric differences of the nucleus in three populations, named respectively "Normal" (nuclei in G0, S and M phase); "Large" (nuclei showing characteristics of senescence) and "Small" (nuclei with fragmentation and condensed chromatin). Combining this approach with cell cycle analysis we determined which phases of the cell cycle were influenced by PFAS. The results revealed that the presence of PFOS, PFBS and PFBA could increase the number of cells in G0+G1 phase and decrease the number of those in the S phase. Moreover, PFOS and PFBS lowered the fraction of cells in the M phase. Interestingly PFOS, PFBS and PFBA reduced the prevalence of the senescence phenotype ("large" nuclei), suggesting a potential tumorigenic effect. Besides, the presence of PFOS and PFBS correlated also with a significant decrease in the number of "small" nuclei. The C6O4 exposure did not highlighted morphometric alteration or cell cycle modification bottlenose dolphin skin cell nuclei. While the effects of PFAS on cell cycle was clear, no significant change was detected either in term of cell proliferation or of viability. This study fosters the overall knowledge on the cellular effects of perfluoroalkyl substances in marine mammals.


Subject(s)
Alkanesulfonic Acids , Bottle-Nosed Dolphin , Fluorocarbons , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/toxicity , Animals , Cell Cycle , Chromatin , Ecosystem , Fluorocarbons/analysis , Fluorocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...