Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L395-L405, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39076085

ABSTRACT

Pseudomonas aeruginosa utilizes a type 3 secretion system to intoxicate host cells with the nucleotidyl cyclase ExoY. After activation by its host cell cofactor, filamentous actin, ExoY produces purine and pyrimidine cyclic nucleotides, including cAMP, cGMP, and cUMP. ExoY-generated cyclic nucleotides promote interendothelial gap formation, impair motility, and arrest cell growth. The disruptive activities of cAMP and cGMP during the P. aeruginosa infection are established; however, little is known about the function of cUMP. Here, we tested the hypothesis that cUMP contributes to endothelial cell barrier disruption during P. aeruginosa infection. Using a membrane permeable cUMP analog, cUMP-AM, we revealed that during infection with catalytically inactive ExoY, cUMP promotes interendothelial gap formation in cultured pulmonary microvascular endothelial cells (PMVECs) and contributes to increased filtration coefficient in the isolated perfused lung. These findings indicate that cUMP contributes to endothelial permeability during P. aeruginosa lung infection.NEW & NOTEWORTHY During pneumonia, bacteria utilize a virulence arsenal to communicate with host cells. The Pseudomonas aeruginosa T3SS directly introduces virulence molecules into the host cell cytoplasm. These molecules are enzymes that trigger interkingdom communication. One of the exoenzymes is a nucleotidyl cyclase that produces noncanonical cyclic nucleotides like cUMP. Little is known about how cUMP acts in the cell. Here we found that cUMP instigates pulmonary edema during Pseudomonas aeruginosa infection of the lung.


Subject(s)
Endothelial Cells , Nucleotides, Cyclic , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Humans , Mice , Bacterial Proteins/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Gap Junctions/metabolism , Glucosyltransferases , Lung/microbiology , Lung/metabolism , Lung/pathology , Nucleotides, Cyclic/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Pseudomonas Infections/microbiology , Pseudomonas Infections/metabolism , Pseudomonas Infections/pathology , Type III Secretion Systems/metabolism
2.
Microbiol Spectr ; 11(6): e0097523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37815335

ABSTRACT

IMPORTANCE: The type 3 secretion system (T3SS) was obtained in many Gram-negative bacterial pathogens, and it is crucial for their pathogenesis. Environmental signals were found to be involved in the expression regulation of T3SS, which was vital for successful bacterial infection in the host. Here, we discovered that L-glutamine (Gln), the most abundant amino acid in the human body, could repress enterohemorrhagic Escherichia coli (EHEC) T3SS expression via nitrogen metabolism and therefore had potential as an antivirulence agent. Our in vitro and in vivo evidence demonstrated that Gln could decline EHEC infection by attenuating bacterial virulence and enhancing host defense simultaneously. We repurpose Gln as a potential treatment for EHEC infection accordingly.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Intestinal Diseases , Humans , Virulence , Virulence Factors/metabolism , Glutamine/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Type III Secretion Systems/metabolism , Enterohemorrhagic Escherichia coli/metabolism
3.
mSphere ; 8(5): e0037823, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37768049

ABSTRACT

Burkholderia pseudomallei (Bpm) is the causative agent of melioidosis disease. Bpm is a facultative intracellular pathogen with a complex life cycle inside host cells. Pathogenic success depends on a variety of virulence factors with one of the most critical being the type 6 secretion system (T6SS). Bpm uses the T6SS to move into neighboring cells, resulting in multinucleated giant cell (MNGC) formation, a strategy used to disseminate from cell to cell. Our prior study using a dual RNA-seq analysis to dissect T6SS-mediated virulence on intestinal epithelial cells identified BicA as a factor upregulated in a T6SS mutant. BicA regulates both type 3 secretion system (T3SS) and T6SSs; however, the extent of its involvement during disease progression is unclear. To fully dissect the role of BicA during systemic infection, we used two macrophage cell lines paired with a pulmonary in vivo challenge murine model. We found that ΔbicA has a distinct intracellular replication defect in both immortalized and primary macrophages, which begins as early as 1 h post-infection. This intracellular defect is linked with the lack of cell-to-cell dissemination and MNGC formation as well as a defect in T3SS expression. The in vitro phenotype translated in vivo as ΔbicA was attenuated in a pulmonary model of infection, demonstrating a distinct macrophage activation profile and a lack of pathological features present in the wild type. Overall, these results highlight the role of BicA in regulating intracellular virulence and demonstrate that specific regulation of secretion systems has a significant effect on host response and Bpm pathogenesis. IMPORTANCE Melioidosis is an understudied tropical disease that still results in ~50% fatalities in infected patients. It is caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm). Bpm is an intracellular pathogen that disseminates from the infected cell to target organs, causing disseminated disease. The regulation of secretion systems involved in entry and cell-to-cell spread is poorly understood. In this work, we characterize the role of BicA as a regulator of secretion systems during infection of macrophages in vitro and in vivo. Understanding how these virulence factors are controlled will help us determine their influence on the host cells and define the macrophage responses associated with bacterial clearance.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Type VI Secretion Systems , Humans , Animals , Mice , Burkholderia pseudomallei/genetics , Virulence , Melioidosis/microbiology , Macrophages/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , Type VI Secretion Systems/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
4.
Front Plant Sci ; 14: 1198160, 2023.
Article in English | MEDLINE | ID: mdl-37583594

ABSTRACT

Acquisition of the pathogenicity plasmid pPATH that encodes a type III secretion system (T3SS) and effectors (T3Es) has likely led to the transition of a non-pathogenic bacterium into the tumorigenic pathogen Pantoea agglomerans. P. agglomerans pv. gypsophilae (Pag) forms galls on gypsophila (Gypsophila paniculata) and triggers immunity on sugar beet (Beta vulgaris), while P. agglomerans pv. betae (Pab) causes galls on both gypsophila and sugar beet. Draft sequences of the Pag and Pab genomes were previously generated using the MiSeq Illumina technology and used to determine partial T3E inventories of Pab and Pag. Here, we fully assembled the Pab and Pag genomes following sequencing with PacBio technology and carried out a comparative sequence analysis of the Pab and Pag pathogenicity plasmids pPATHpag and pPATHpab. Assembly of Pab and Pag genomes revealed a ~4 Mbp chromosome with a 55% GC content, and three and four plasmids in Pab and Pag, respectively. pPATHpag and pPATHpab share 97% identity within a 74% coverage, and a similar GC content (51%); they are ~156 kb and ~131 kb in size and consist of 198 and 155 coding sequences (CDSs), respectively. In both plasmids, we confirmed the presence of highly similar gene clusters encoding a T3SS, as well as auxin and cytokinins biosynthetic enzymes. Three putative novel T3Es were identified in Pab and one in Pag. Among T3SS-associated proteins encoded by Pag and Pab, we identified two novel chaperons of the ShcV and CesT families that are present in both pathovars with high similarity. We also identified insertion sequences (ISs) and transposons (Tns) that may have contributed to the evolution of the two pathovars. These include seven shared IS elements, and three ISs and two transposons unique to Pab. Finally, comparative sequence analysis revealed plasmid regions and CDSs that are present only in pPATHpab or in pPATHpag. The high similarity and common features of the pPATH plasmids support the hypothesis that the two strains recently evolved into host-specific pathogens.

5.
Microbiol Spectr ; 11(4): e0485122, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37272817

ABSTRACT

Vibrio parahaemolyticus is a bacterial pathogen that becomes lethal to Penaeus shrimps when acquiring the pVA1-type plasmid carrying the PirABvp genes, causing acute hepatopancreatic necrosis disease (AHPND). This disease causes significant losses across the world, with outbreaks reported in Southeast Asia, Mexico, and South America. Virulence level and mortality differences have been reported in isolates from different locations, and whether this phenomenon is caused by plasmid-related elements or genomic-related elements from the bacteria remains unclear. Here, nine genomes of South American AHPND-causing V. parahaemolyticus (VPAHPND) isolates were assembled and analyzed using a comparative genomics approach at (i) whole-genome, (ii) secretion system, and (iii) plasmid level, and then included for a phylogenomic analysis with another 86 strains. Two main results were obtained from our analyses. First, all isolates contained pVA1-type plasmids harboring the toxin coding genes, and with high similarity with the prototypical sequence of Mexican-like origin, while phylogenomic analysis showed some level of heterogeneity with discrete clusters and wide diversity compared to other available genomes. Second, although a high genomic similarity was observed, variation in virulence genes and clusters was observed, which might be relevant in the expression of the disease. Overall, our results suggest that South American pathogenic isolates are derived from various genetic lineages which appear to have acquired the plasmid through horizontal gene transfer. Furthermore, pathogenicity seems to be a multifactorial trait where the degree of virulence could be altered by the presence or variations of several virulence factors. IMPORTANCE AHPND have caused losses of over $2.6 billion to the aquaculture industry around the world due to its high mortality rate in shrimp farming. The most common etiological agent is V. parahaemolyticus strains possessing the pVA1-type plasmid carrying the PirABvp toxin. Nevertheless, complete understanding of the role of genetic elements and their impact in the virulence of this pathogen remains unclear. In this work, we analyzed nine South American AHPND-causing V. parahaemolyticus isolates at a genomic level, and assessed their evolutionary relationship with other 86 strains. We found that all our isolates were highly similar and possessed the Mexican-type plasmid, but their genomic content did not cluster with other Mexican strains, but instead were spread across all isolates. These results suggest that South American VPAHPND have different genetic backgrounds, and probably proceed from diverse geographical locations, and acquire the pVA1-type plasmid via horizontal gene transfer at different times.


Subject(s)
Toxins, Biological , Vibrio parahaemolyticus , Humans , Vibrio parahaemolyticus/genetics , Plasmids/genetics , Genomics , Aquaculture , Necrosis
6.
Int Rev Cell Mol Biol ; 377: 65-86, 2023.
Article in English | MEDLINE | ID: mdl-37268351

ABSTRACT

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.


Subject(s)
Epithelial Cells , Mitochondria , Animals , Humans , Mice , Citrobacter rodentium/physiology
7.
Front Cell Infect Microbiol ; 13: 1111502, 2023.
Article in English | MEDLINE | ID: mdl-37065208

ABSTRACT

Introduction: Bordetella are respiratory pathogens comprised of three classical Bordetella species: B. pertussis, B. parapertussis, and B. bronchiseptica. With recent surges in Bordetella spp. cases and antibiotics becoming less effective to combat infectious diseases, there is an imperative need for novel antimicrobial therapies. Our goal is to investigate the possible targets of host immunomodulatory mechanisms that can be exploited to promote clearance of Bordetella spp. infections. Vasoactive intestinal peptide (VIP) is a neuropeptide that promotes Th2 anti-inflammatory responses through VPAC1 and VPAC2 receptor binding and activation of downstream signaling cascades. Methods: We used classical growth in vitro assays to evaluate the effects of VIP on Bordetella spp. growth and survival. Using the three classical Bordetella spp. in combination with different mouse strains we were able to evaluate the role of VIP/VPAC2 signaling in the infectious dose 50 and infection dynamics. Finally using the B. bronchiseptica murine model we determine the suitability of VPAC2 antagonists as possible therapy for Bordetella spp. infections. Results: Under the hypothesis that inhibition of VIP/VPAC2 signaling would promote clearance, we found that VPAC2-/- mice, lacking a functional VIP/VPAC2 axis, hinder the ability of the bacteria to colonize the lungs, resulting in decreased bacterial burden by all three classical Bordetella species. Moreover, treatment with VPAC2 antagonists decrease lung pathology, suggesting its potential use to prevent lung damage and dysfunction caused by infection. Our results indicate that the ability of Bordetella spp. to manipulate VIP/VPAC signaling pathway appears to be mediated by the type 3 secretion system (T3SS), suggesting that this might serve as a therapeutical target for other gram-negative bacteria. Conclusion: Taken together, our findings uncover a novel mechanism of bacteria-host crosstalk that could provide a target for the future treatment for whooping cough as well as other infectious diseases caused primarily by persistent mucosal infections.


Subject(s)
Bordetella Infections , Vasoactive Intestinal Peptide , Animals , Mice , Bordetella Infections/microbiology , Bordetella pertussis , Lung/microbiology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Signal Transduction , Type III Secretion Systems , Vasoactive Intestinal Peptide/metabolism
8.
Front Immunol ; 14: 1129705, 2023.
Article in English | MEDLINE | ID: mdl-36895557

ABSTRACT

COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Live-attenuated strains of Pseudomonas aeruginosa (aPA) were constructed which express the recombinant RBD and effectively deliver RBD protein into various antigen presenting cells through bacterial type 3 secretion system (T3SS) in vitro. In mice, two-dose of intranasal aPA-RBD vaccinations elicited the development of RBD-specific serum IgG and IgM. Importantly, the sera from the immunized mice were able to neutralize host cell infections by SARS-CoV-2 pseudovirus as well as the authentic virus variants potently. T-cell responses of immunized mice were assessed by enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) assays. aPA-RBD vaccinations can elicit RBD-specific CD4+and CD8+T cell responses. T3SS-based RBD intracellular delivery heightens the efficiency of antigen presentation and enables the aPA-RBD vaccine to elicit CD8+T cell response. Thus, aPA vector has the potential as an inexpensive, readily manufactured, and respiratory tract vaccination route vaccine platform for other pathogens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Type III Secretion Systems , COVID-19/prevention & control , Pandemics , SARS-CoV-2
9.
Infect Immun ; 91(2): e0057822, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36722978

ABSTRACT

Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative dmsABC operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an S. Typhimurium mutant with loss of function in all three putative DMSO reductases (ΔdmsA3) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of S. Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.


Subject(s)
Dimethyl Sulfoxide , Type III Secretion Systems , Animals , Virulence , Anaerobiosis , Type III Secretion Systems/metabolism , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/metabolism , Serogroup , Oxidoreductases/metabolism , Salmonella typhimurium , Mammals
10.
Infect Immun ; 91(1): e0050522, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36511702

ABSTRACT

The NleGs are the largest family of type 3 secreted effectors in attaching and effacing (A/E) pathogens, such as enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and Citrobacter rodentium. NleG effectors contain a conserved C-terminal U-box domain acting as a ubiquitin protein ligase and target host proteins via a variable N-terminal portion. The specific roles of these effectors during infection remain uncertain. Here, we demonstrate that the three NleG effectors-NleG1Cr, NleG7Cr, and NleG8Cr-encoded by C. rodentium DBS100 play distinct roles during infection in mice. Using individual nleGCr knockout strains, we show that NleG7Cr contributes to bacterial survival during enteric infection while NleG1Cr promotes the expression of diarrheal symptoms and NleG8Cr contributes to accelerated lethality in susceptible mice. Furthermore, the NleG8Cr effector contains a C-terminal PDZ domain binding motif that enables interaction with the host protein GOPC. Both the PDZ domain binding motif and the ability to engage with host ubiquitination machinery via the intact U-box domain proved to be necessary for NleG8Cr function, contributing to the observed phenotype during infection. We also establish that the PTZ binding motif in the EHEC NleG8 (NleG8Ec) effector, which shares 60% identity with NleG8Cr, is engaged in interactions with human GOPC. The crystal structure of the NleG8Ec C-terminal peptide in complex with the GOPC PDZ domain, determined to 1.85 Å, revealed a conserved interaction mode similar to that observed between GOPC and eukaryotic PDZ domain binding motifs. Despite these common features, nleG8Ec does not complement the ΔnleG8Cr phenotype during infection, revealing functional diversification between these NleG effectors.


Subject(s)
Enterobacteriaceae Infections , Enterohemorrhagic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Humans , Animals , Mice , Citrobacter rodentium/genetics , Enterobacteriaceae Infections/microbiology , Biological Transport , Escherichia coli Proteins/genetics , Enteropathogenic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/genetics , Golgi Matrix Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
11.
Methods Appl Fluoresc ; 11(1)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36541558

ABSTRACT

The resolution achievable with the established super-resolution fluorescence nanoscopy methods, such as STORM or STED, is in general not sufficient to resolve protein complexes or even individual proteins. Recently, minimal photon flux (MINFLUX) nanoscopy has been introduced that combines the strengths of STED and STORM nanoscopy and can achieve a localization precision of less than 5 nm. We established a generally applicable workflow for MINFLUX imaging and applied it for the first time to a bacterial molecular machinein situ, i.e., the injectisome of the enteropathogenY. enterocolitica. We demonstrate with a pore protein of the injectisome that MINFLUX can achieve a resolution down to the single molecule levelin situ. By imaging a sorting platform protein using 3D-MINFLUX, insights into the precise localization and distribution of an injectisome component in a bacterial cell could be accomplished. MINFLUX nanoscopy has the potential to revolutionize super-resolution imaging of dynamic molecular processes in bacteria and eukaryotes.


Subject(s)
Bacteria , Microscopy, Fluorescence/methods
12.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500441

ABSTRACT

The overuse of antibiotics has led to severe bacterial drug resistance. Blocking pathogen virulence devices is a highly effective approach to combating bacterial resistance worldwide. Type three secretion systems (T3SSs) are significant virulence factors in Gram-negative pathogens. Inhibition of these systems can effectively weaken infection whilst having no significant effect on bacterial growth. Therefore, T3SS inhibitors may be a powerful weapon against resistance in Gram-negative bacteria, and there has been increasing interest in the research and development of T3SS inhibitors. This review outlines several reported small-molecule inhibitors of the T3SS, covering those of synthetic and natural origin, including their sources, structures, and mechanisms of action.


Subject(s)
Gram-Negative Bacteria , Type III Secretion Systems , Virulence , Drug Resistance, Bacterial , Virulence Factors , Bacterial Proteins/pharmacology
13.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232385

ABSTRACT

Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium-legume symbioses.


Subject(s)
Fabaceae , Rhizobium , Ammonia/metabolism , Carbon/metabolism , Fabaceae/metabolism , Nitrogen/metabolism , Nitrogen Fixation/physiology , Rhizobium/metabolism , Root Nodules, Plant/metabolism , Soil , Symbiosis/physiology , Type III Secretion Systems/metabolism , Vegetables/metabolism
14.
J Mol Biol ; 434(18): 167667, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35667470

ABSTRACT

The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.


Subject(s)
Body Temperature , Host-Pathogen Interactions , RNA, Bacterial , Type III Secretion Systems , Yersinia pseudotuberculosis Infections , Yersinia pseudotuberculosis , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , RNA, Bacterial/chemistry , Trans-Activators/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/microbiology
15.
Methods Mol Biol ; 2427: 47-54, 2022.
Article in English | MEDLINE | ID: mdl-35619024

ABSTRACT

Many of Salmonella enterica virulence-associated phenotypes, including its ability to manipulate various host pathways are mediated by translocation of specific effector proteins via type 3 secretion systems (T3SSs) into the host cell. Culturing Salmonella under a defined set of stimulating conditions in vitro can mimic the physiological signals Salmonella senses during the infection and results in the secretion of these effectors into the growth medium. Here we describe a Salmonella secretion assay to identify and quantify protein substrates secreted by T3SS-1 and demonstrate how this method can be utilized to study the secretion of T3SS-1 effectors and flagellum components in different genetic backgrounds or under varying growth conditions.


Subject(s)
Salmonella enterica , Type III Secretion Systems , Biological Assay , Biological Transport , Flagella
16.
Microb Cell ; 9(2): 24-41, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35127930

ABSTRACT

Salmonellae are bacteria that cause moderate to severe infections in humans, depending on the strain and the immune status of the infected host. These pathogens have the particularity of residing in the cells of the infected host. They are usually found in a vacuolar compartment that the bacteria shape with the help of effector proteins. Following invasion of a eukaryotic cell, the bacterial vacuole undergoes maturation characterized by changes in localization, composition and morphology. In particular, membrane tubules stretching over the microtubule cytoskeleton are formed from the bacterial vacuole. Although these tubules do not occur in all infected cells, they are functionally important and promote intracellular replication. This review focuses on the role and significance of membrane compartment remodeling observed in infected cells and the bacterial and host cell pathways involved.

17.
PeerJ ; 9: e12632, 2022.
Article in English | MEDLINE | ID: mdl-35036136

ABSTRACT

Black-rot disease caused by the phytopathogen Xanthomonas campestris pv. campestris (Xcc) continues to have considerable impacts on the productivity of cruciferous crops in Trinidad and Tobago and the wider Caribbean region. While the widespread occurrence of resistance of Xcc against bactericidal agrochemicals can contribute to the high disease burdens, the role of virulence and pathogenicity features of local strains on disease prevalence and severity has not been investigated yet. In the present study, a comparative genomic analysis was performed on 6 pathogenic Xcc and 4 co-isolated non-pathogenic Xanthomonas melonis (Xmel) strains from diseased crucifer plants grown in fields with heavy chemical use in Trinidad. Native isolates were grouped into two known and four newly assigned ribosomal sequence types (rST). Mobile genetic elements were identified which belonged to the IS3, IS5 family, Tn3 transposon, resolvases, and tra T4SS gene clusters. Additionally, exogenous plasmid derived sequences with origins from other bacterial species were characterised. Although several instances of genomic rearrangements were observed, native Xcc and Xmel isolates shared a significant level of structural homology with reference genomes, Xcc ATCC 33913 and Xmel CFBP4644, respectively. Complete T1SS hlyDB, T2SS, T4SS vir and T5SS xadA, yapH and estA gene clusters were identified in both species. Only Xmel strains contained a complete T6SS but no T3SS. Both species contained a complex repertoire of extracellular cell wall degrading enzymes. Native Xcc strains contained 37 T3SS and effector genes but a variable and unique profile of 8 avr, 4 xop and 1 hpa genes. Interestingly, Xmel strains contained several T3SS effectors with low similarity to references including avrXccA1 (~89%), hrpG (~73%), hrpX (~90%) and xopAZ (~87%). Furthermore, only Xmel genomes contained a CRISPR-Cas I-F array, but no lipopolysaccharide wxc gene cluster. Xmel strains were confirmed to be non-pathogenic by pathogenicity assays. The results of this study will be useful to guide future research into virulence mechanisms, agrochemical resistance, pathogenomics and the potential role of the co-isolated non-pathogenic Xanthomonas strains on Xcc infections.

18.
Vaccines (Basel) ; 10(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35062772

ABSTRACT

An effective vaccine against Chlamydia trachomatis is urgently needed as infection rates continue to rise and C. trachomatis causes reproductive morbidity. An obligate intracellular pathogen, C. trachomatis employs a type 3 secretion system (T3SS) for host cell entry. The tip of the injectosome is composed of the protein CT584, which represents a potential target for neutralization with vaccine-induced antibody. Here, we investigate the immunogenicity and efficacy of a vaccine made of CT584 epitopes coupled to a bacteriophage virus-like particle (VLP), a novel platform for Chlamydia vaccines modeled on the success of HPV vaccines. Female mice were immunized intramuscularly, challenged transcervically with C. trachomatis, and assessed for systemic and local antibody responses and bacterial burden in the upper genital tract. Immunization resulted in a 3-log increase in epitope-specific IgG in serum and uterine homogenates and in the detection of epitope-specific IgG in uterine lavage at low levels. By contrast, sera from women infected with C. trachomatis and virgin controls had similarly low titers to CT584 epitopes, suggesting these epitopes are not systemically immunogenic during natural infection but can be rendered immunogenic by the VLP platform. C. trachomatis burden in the upper genital tract of mice varied after active immunization, yet passive protection was achieved when immune sera were pre-incubated with C. trachomatis prior to inoculation into the genital tract. These data demonstrate the potential for antibody against the T3SS to contribute to protection against C. trachomatis and the value of VLPs as a novel platform for C. trachomatis vaccines.

19.
FEBS J ; 289(16): 4704-4717, 2022 08.
Article in English | MEDLINE | ID: mdl-34092034

ABSTRACT

Equipped with a plethora of secreted toxic effectors, protein secretion systems are essential for bacteria to interact with and manipulate their neighboring environment to survive in host microbiota and other highly competitive communities. While effectors have received spotlight attention in secretion system studies, many require accessory chaperone and adaptor proteins for proper folding/unfolding and stability throughout the secretion process. Here, we review the functions of chaperones and adaptors of three protein secretions systems, type 3 secretion system (T3SS), type 4 secretion system (T4SS), and type 6 secretion system (T6SS), which are employed by many Gram-negative bacterial pathogens to deliver toxins to bacterial, plant, and mammalian host cells through direct contact. Since chaperone and adaptor functions of the T3SS and the T4SS are relatively well studied, we discuss in detail the methods of chaperone-facilitated effector secretion by the T6SS and highlight commonalities between the effector chaperone/adaptor proteins of these diverse secretion systems. While the chaperones and adaptors are generally referred to as accessory proteins as they are not directly involved in toxicities to target cells, they are nonetheless vital for the biological functions of the secretion systems. Future research on biochemical and structural properties of these chaperones will not only elucidate the mechanisms of chaperone-effector binding and release process but also facilitate custom design of cargo effectors to be translocated by these widespread secretion systems for biotechnological applications.


Subject(s)
Bacterial Proteins , Protein Translocation Systems , Animals , Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Gram-Negative Bacteria/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
20.
Mol Microbiol ; 117(4): 770-789, 2022 04.
Article in English | MEDLINE | ID: mdl-34942035

ABSTRACT

Salmonella is a major foodborne pathogen and is responsible for a range of diseases. Not all Salmonella contributes to severe health outcomes as there is a large degree of genetic heterogeneity among the 2,600 serovars within the genus. This variability across Salmonella serovars is linked to numerous genetic elements that dictate virulence. While several genetic elements encode virulence factors with well-documented contributions to pathogenesis, many genetic elements implicated in Salmonella virulence remain uncharacterized. Many pathogens encode a family of E3 ubiquitin ligases that are delivered into the cells that they infect using a Type 3 Secretion System (T3SS). These effectors, known as NEL-domain E3s, were first characterized in Salmonella. Most Salmonella encodes the NEL-effectors sspH2 and slrP, whereas only a subset of Salmonella encodes sspH1. SspH1 has been shown to ubiquitinate the mammalian protein kinase PKN1, which has been reported to negatively regulate the pro-survival program Akt. We discovered that SspH1 mediates the degradation of PKN1 during infection of a macrophage cell line but that this degradation does not impact Akt signaling. Genomic analysis of a large collection of Salmonella genomes identified a putative new gene, sspH3, with homology to sspH1. SspH3 is a novel NEL-domain effector.


Subject(s)
Bacterial Proteins , Proto-Oncogene Proteins c-akt , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mammals/metabolism , Salmonella/genetics , Salmonella/metabolism , Type III Secretion Systems , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL