Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
J Agric Food Chem ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046216

ABSTRACT

Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.

2.
Antioxidants (Basel) ; 13(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39061912

ABSTRACT

This study investigated the safety and functionality of traditional African sourdough flatbread (kisra), based on the content of biogenic amines (BAs) and antioxidant compounds and their improvement using lactic acid bacteria (LAB) species. The primary BAs detected in naturally fermented kisra were tyramine, histamine, putrescine, and cadaverine, with putrescine being the most abundant after baking. In vitro BA production of microorganisms isolated from kisra sourdough revealed that the Enterococcus genus contributed to tyramine accumulation, whereas presumptive yeasts may contribute to putrescine and cadaverine accumulation. The use of LAB species, including Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Levilactobacillus brevis, and Weissella cibaria, significantly reduced putrescine content to less than about 23% of that of naturally fermented kisra, and eliminated tyramine, histamine, and cadaverine formation. Meanwhile, DPPH scavenging activity, total polyphenolic content, and tannin content in naturally fermented kisra were 85.16%, 1386.50 µg/g, and 33.16 µg/g, respectively. The use of LAB species did not affect the DPPH scavenging activity or tannin content but significantly increased the total phenolic content by up to 20% compared to naturally fermented kisra. Therefore, fermentation with LAB starter cultures might be a promising approach to improve the safety related to BAs as well as the functionality of kisra bread.

3.
Mikrochim Acta ; 191(7): 436, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38954059

ABSTRACT

A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.


Subject(s)
Carbon , Fluorescent Dyes , Limit of Detection , Meat Products , Molecularly Imprinted Polymers , Quantum Dots , Smartphone , Tyramine , Tyramine/analysis , Tyramine/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Meat Products/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Spectrometry, Fluorescence/methods , Biomass , Fermentation
4.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063225

ABSTRACT

Tyramine (TRM) is a biogenic catecholamine neurotransmitter, which can trigger migraines and hypertension. TRM accumulated in foods is reduced and detected using additive cyclodextrins (CDs) while their association characteristics remain unclear. Here, single-crystal X-ray diffraction and density functional theory (DFT) calculation have been performed, demonstrating the elusive pseudopolymorphs in ß-CD inclusion complexes with TRM base/HCl, ß-CD·0.5TRM·7.6H2O (1) and ß-CD·TRM HCl·4H2O (2) and the rare α-CD·0.5(TRM HCl)·10H2O (3) exclusion complex. Both 1 and 2 share the common inclusion mode with similar TRM structures in the round and elliptical ß-CD cavities, belong to the monoclinic space group P21, and have similar herringbone packing structures. Furthermore, 3 differs from 2, as the smaller twofold symmetry-related, round α-CD prefers an exclusion complex with the twofold disordered TRM-H+ sites. In the orthorhombic P21212 lattice, α-CDs are packed in a channel-type structure, where the column-like cavity is occupied by disordered water sites. DFT results indicate that ß-CD remains elliptical to suitably accommodate TRM, yielding an energetically favorable inclusion complex, which is significantly contributed by the ß-CD deformation, and the inclusion complex of α-CD with the TRM aminoethyl side chain is also energetically favorable compared to the exclusion mode. This study suggests the CD implications for food safety and drug/bioactive formulation and delivery.


Subject(s)
Tyramine , Tyramine/chemistry , beta-Cyclodextrins/chemistry , Models, Molecular , Cyclodextrins/chemistry , alpha-Cyclodextrins/chemistry , Density Functional Theory , Crystallography, X-Ray , X-Ray Diffraction
5.
Food Chem ; 460(Pt 1): 140362, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39047485

ABSTRACT

Aflatoxin B1 is highly mutagenic in humans, and long-term exposure can impair immunity and increase the risk of cancer. It is imperative to develop immunoassays with convenient operation and high sensitivity to detect aflatoxin B1. This study presents a polystyrene microcolumn-mediated magnetic relaxation switching immunosensor based on a tyramine signal amplification strategy for detecting aflatoxin B1. An environmentally friendly hand-held polystyrene microcolumn was designed as an effective immunoreaction carrier, remaining 91% efficiency after 12 repeated uses. And the microcolumn provides a user-friendly procedure for rapid separation and reagent switching within 3 s by simple stirring in solution. The combination of a strong anti-interference magnetic relaxation switching biosensing and an efficient tyramine signal amplification enables the quantitative detection of aflatoxin B1 in the range of 0.01-10 ng/mL, with a limit of detection of 0.006 ng/mL. This method has potential application in the rapid detection of trace food contaminants.

6.
J Chem Ecol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888642

ABSTRACT

Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.

7.
Dev Comp Immunol ; 158: 105195, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762098

ABSTRACT

This study investigated the impact of hyperthermal (34 °C) and hypothermal (14 °C) stress on the expression of the octopamine/tyramine receptor (LvOA/TA-R) and immune parameters in Litopenaeus vannamei, which is a species critical to the aquaculture industry. Given the sensitivity of aquatic organisms to climate change, understanding the physiological and immune responses of L. vannamei to temperature variations is essential for developing strategies to mitigate adverse effects. This research focuses on the immune response and expression changes of LvOA/TA-R under acute (0.5, 1, and 2 h) and chronic (24, 72, and 168 h) thermal stress conditions. Our findings reveal that thermal stress induces changes in LvOA/TA-R expression and impacts immune responses. Immune parameters such as total haemocyte count, differential haemocyte count, phenoloxidase activity, respiratory bursts, lysozyme activity, clearance efficiency, and phagocytosis exhibited a general trend of significant decline under the stress conditions. LvOA/TA-R had a higher expression in haemocyte under hyperthermal stress. The study elucidated that thermal stress modifies the expression of the LvOA/TA-R and diminishes immune functionality in L. vannamei, underscoring the potential influence of climate change on industry.


Subject(s)
Hemocytes , Penaeidae , Phagocytosis , Receptors, Biogenic Amine , Animals , Receptors, Biogenic Amine/metabolism , Receptors, Biogenic Amine/genetics , Penaeidae/immunology , Hemocytes/immunology , Hemocytes/metabolism , Heat-Shock Response/immunology , Immunity, Innate , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Stress, Physiological/immunology , Aquaculture , Climate Change
8.
Food Chem ; 454: 139759, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805926

ABSTRACT

A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 µg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 µg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.


Subject(s)
Carbon , Meat Products , Molecular Imprinting , Smartphone , Tyramine , Tyramine/analysis , Carbon/chemistry , Meat Products/analysis , Food Contamination/analysis , Quantum Dots/chemistry , Biomass , Fluorescence , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals
9.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38788722

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Subject(s)
Colitis , Mice, Knockout , Receptors, Adrenergic, alpha-2 , Stem Cells , Tyramine , Animals , Tyramine/metabolism , Tyramine/pharmacology , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Mice , Receptors, Adrenergic, alpha-2/metabolism , Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Tyrosine Decarboxylase/metabolism , Enterococcus faecalis/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Yohimbine/pharmacology , Disease Models, Animal , Enterococcus/metabolism , Intestines/microbiology , Intestines/pathology , Cell Proliferation , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate
10.
Gut Microbes ; 16(1): 2351620, 2024.
Article in English | MEDLINE | ID: mdl-38738766

ABSTRACT

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Tyramine , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Enterococcus faecium/metabolism , Mice , Child , Tyramine/metabolism , Male , Female , Mice, Inbred C57BL , Liver/metabolism , Liver/microbiology , Pediatric Obesity/microbiology , Pediatric Obesity/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
11.
Biofabrication ; 16(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38604157

ABSTRACT

Scaffolds play a pivotal role in tissue engineering and serve as vital biological substitutes, providing structural support for cell adhesion and subsequent tissue development. An ideal scaffold must possess mechanical properties suitable for tissue function and exhibit biodegradability. Although synthetic polymer scaffolds offer high rigidity and elasticity owing to their reactive side groups, which facilitate tailored mechanical and rheological properties, they may lack biological cues and cause persistent side effects during degradation. To address these challenges, natural polymers have garnered attention owing to their inherent bioactivity and biocompatibility. However, natural polymers such as silk fibroin (SF) and tyramine-modified alginate (AT) have limitations, including uncontrolled mechanical properties and weak structural integrity. In this study, we developed a blend of SF and AT as a printable biomaterial for extrusion-based 3D printing. Using photocrosslinkable SF/AT inks facilitated the fabrication of complex scaffolds with high printability, thereby enhancing their structural stability. The incorporation of silver nitrate facilitated the tunability of mechanical and rheological behaviors. SF/AT scaffolds with varying stiffness in the physiologically relevant range for soft tissues (51-246 kPa) exhibited excellent biocompatibility, indicating their promising potential for diverse applications in tissue engineering.


Subject(s)
Alginates , Fibroins , Printing, Three-Dimensional , Silver Nitrate , Tissue Scaffolds , Fibroins/chemistry , Alginates/chemistry , Tissue Scaffolds/chemistry , Silver Nitrate/chemistry , Animals , Cross-Linking Reagents/chemistry , Tissue Engineering , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rheology , Humans , Mice , Photochemical Processes , Tyramine/chemistry
12.
Biosens Bioelectron ; 255: 116270, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38588628

ABSTRACT

Hepatocellular carcinoma (HCC), as one of the most lethal cancers, significantly impacts human health. Attempts in this area tends to develop novel technologies with sensitive and multiplexed detection properties for early diagnosis. Here, we present novel hydrogel photonic crystal (PhC) barcodes with tyramine deposition amplified enzyme-linked immunosorbent assay (ELISA) for highly sensitive and multiplexed HCC biomarker screening. Because of the abundant amino groups of acrylic acid (AA) component, the constructed hydrogel PhC barcodes with inverse opal structure could facilitate the loading of antibody probes for subsequent detection of tumor markers. By integrating tyramine deposition amplified ELISA on the barcode, the detection signal of tumor markers has been enhanced. Based on these features, it is demonstrated that the hydrogel PhC barcodes with tyramine deposition amplified ELISA could realize highly sensitive and multiplexed detection of HCC-related biomarkers. It was found that this method is flexible, sensitive and accurate, suitable for multivariate analysis of low abundance tumor markers and future cancer diagnosis. These features make the newly developed PhC barcodes an innovation platform, which possesses tremendous potential for practical application of low abundance targets.


Subject(s)
Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Hydrogels/chemistry , Carcinoma, Hepatocellular/diagnosis , Biosensing Techniques/methods , Liver Neoplasms/diagnosis , Biomarkers, Tumor , Enzyme-Linked Immunosorbent Assay , Tyramine
13.
J Vet Med Sci ; 86(5): 463-467, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38508725

ABSTRACT

Tyramine, a trace monoamine produced from tyrosine by decarboxylation and found naturally in foods, plants, and animals, is a suspected virulence factor of Melissococcus plutonius that causes European foulbrood in honey bee brood. In the present study, we developed a method for quantitative analysis of tyramine in culture medium and honey bee larvae with a limit of quantitation of 3 ng/mL and a recovery rate of >97% using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry and deuterium-labeled tyramine, demonstrating for the first time that a highly virulent M. plutonius strain actually produces tyramine in infected larvae. This method will be an indispensable tool to elucidate the role of tyramine in European foulbrood pathogenesis in combination with exposure bioassays using artificially reared bee larvae.


Subject(s)
Enterococcaceae , Larva , Tyramine , Animals , Larva/microbiology , Bees/microbiology , Tyramine/analysis , Enterococcaceae/isolation & purification , Chromatography, Liquid/veterinary , Tandem Mass Spectrometry/veterinary
14.
Anal Chim Acta ; 1298: 342415, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462342

ABSTRACT

BACKGROUND: Tyramine is an important index of food freshness degree, and tyrosinase that can specifically oxidized monophenolamine to catecholamine plays a crucial part in the occurrence and development of melanin-related skin diseases. Therefore, it is crucial to develop sensitive and efficient methods for the detection of tyramine and tyrosinase. RESULTS: In this work, encouraged by tyrosinase-triggered specific oxidation of tyramine to dopamine and the unique fluorescent reaction between dopamine and amino silane, we have developed a one-step synthetic strategy of silicon containing nanoparticles (Si CNPs) for "turn-on" detection of tyramine and tyrosinase. The Si CNPs formed with thoroughly studied mechanism exhibit uniform structure and robust yellow-green fluorescence. The low detection limits for tyramine (1.87 µM) and tyrosinase (0.0029 U/mL) demonstrate admirable sensitivity outstripping most methods. The proposed assay achieves satisfactory results in the determination of tyramine and tyrosinase activity in real samples. Furthermore, we leverage this new fluorescent assay to enable the fabrication of an "AND" Boolean logic gate. SIGNIFICANCE: The entire process can be completed at easily available temperature and pressure with rapid response, convenient operation and visual observation. This fluorescent assay featured with excellent sensitivity, selectivity and stability has considerable prospects in the application of biosensors and disease diagnosis.


Subject(s)
Monophenol Monooxygenase , Nanoparticles , Monophenol Monooxygenase/chemistry , Dopamine/chemistry , Silicon , Tyramine , Nanoparticles/chemistry
15.
J Dairy Sci ; 107(7): 4277-4287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395395

ABSTRACT

Cheese is a food in which toxic concentrations of biogenic amines (BA) may be reached, mainly as a consequence of the decarboxylation of determined amino acids by certain lactic acid bacteria (LAB). To maintain the food safety of cheese, environmentally friendly strategies are needed that specifically prevent the growth of BA-producing LAB and the accumulation of BA. The bacteriocins produced by LAB are natural compounds with great potential as food biopreservatives. This work examines the antimicrobial potential of 7 bacteriocin-containing, cell-free supernatants (CFS: coagulin A-CFS, enterocin A-CFS, enterocin P-CFS, lacticin 481-CFS, nisin A-CFS, nisin Z-CFS and plantaricin A-CFS) produced by LAB against 48 strains of the LAB species largely responsible for the accumulation of the most important BA in cheese, that is, histamine, tyramine, and putrescine. Susceptibility to the different CFS was strain-dependent. The histamine-producing species with the broadest sensitivity spectrum were Lentilactobacillus parabuchneri (the species mainly responsible for the accumulation of histamine in cheese) and Pediococcus parvulus. The tyramine-producing species with the broadest sensitivity spectrum was Enterococcus faecium, and Enterococcus faecalis and Enterococcus hirae were among the most sensitive putrescine producers. Nisin A-CFS was active against 31 of the 48 BA-producing strains (the broadest antimicrobial spectrum recorded). Moreover, commercial nisin A prevented biofilm formation by 67% of the BA-producing, biofilm-forming LAB strains. These findings underscore the potential of bacteriocins in the control of BA-producing LAB and support the use of nisin A as a food-grade biopreservative for keeping BA-producing LAB in check and reducing BA accumulation in cheese.


Subject(s)
Bacteriocins , Biofilms , Biogenic Amines , Cheese , Lactobacillales , Nisin , Cheese/microbiology , Bacteriocins/pharmacology , Bacteriocins/metabolism , Biogenic Amines/metabolism , Nisin/pharmacology , Biofilms/drug effects , Lactobacillales/metabolism , Anti-Infective Agents/pharmacology , Food Microbiology
16.
Talanta ; 272: 125777, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364565

ABSTRACT

Tyramine signal amplification (TSA) has made its mark in immunoassay due to its excellent signal amplification ability and short reaction time, but its application in nucleic acid detection is still very limited. Herein, an ultrasensitive microRNA (miRNA) biosensor by coupling hybridization-initiated exonuclease I (Exo I) protection and TSA strategy was established. Target miRNA is complementarily hybridized to the biotin-modified DNA probe to form a double strand, which protects the DNA probe from Exo I hydrolysis. Subsequently, horseradish peroxidase (HRP) is attached to the duplex via the biotin-streptavidin reaction and catalyzes the deposition of large amounts of biotin-tyramine in the presence of hydrogen peroxide (H2O2), followed by the conjugation of signal molecule streptavidin-phycoerythrin (SA-PE), which generates an intense fluorescence signal upon laser excitation. This method gave broad linearity in the range of 0.1 fM - 10 pM, yielding a detection limit as low as 74 aM. An increase in sensitivity of 4 orders of magnitude was observed compared to the miRNA detection without TSA amplification. This biosensor was successfully applied to the determination of miR-21 in breast cancer cells and human serum. By further design of specific DNA probes and coupling with the Luminex xMAP technology, it could be easily extended to multiplex miRNA assay, which possesses great application potential in clinical diagnosis.


Subject(s)
Biosensing Techniques , Exodeoxyribonucleases , MicroRNAs , Humans , MicroRNAs/genetics , Biotin , Streptavidin , Hydrogen Peroxide , Biosensing Techniques/methods , DNA Probes/genetics , Tyramine , Limit of Detection , Nucleic Acid Amplification Techniques/methods
17.
Carbohydr Polym ; 327: 121635, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171654

ABSTRACT

The migration of fibroblasts and endothelial cells is a critical determinant of wound-healing outcomes for skin injuries. Here, hyaluronic acid-tyramine (HAT) and thiolated glycol chitosan (TGC) conjugates were combined with copper-doped bioglass (ACuBG) nanoparticles to build a novel type of multi-crosslinked hydrogel for stimulating the migration of cells, and thus, expediting wound healing. The optimally devised HAT/TGC/ACuBG gels had markedly improved strength and stiffness compared to the gels built from either HAT or TGC while showing sufficient elasticity, which contributes to stimulating the migration of fibroblasts. The sustainable release of silicon and copper ions from the gels was found to jointly induce the migration of human umbilical vein endothelial cells. The results based on mouse full-thickness skin defects demonstrated that they were able to fully restore the skin defects with formation of complete appendages within two weeks, suggesting their promising potency for use in expediting wound healing.


Subject(s)
Chitosan , Nanoparticles , Mice , Animals , Humans , Hydrogels/pharmacology , Copper/pharmacology , Hyaluronic Acid , Endothelial Cells , Tyramine/pharmacology , Wound Healing
18.
J Asian Nat Prod Res ; 26(2): 237-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37812065

ABSTRACT

Three new phenylpropanoid glycosides, piperpubelide (1), 1-propionyl-3-hydroxy-phenyl-4-O-ß-D-glucopyranoside (2), and 1-propionyl-4-hydroxy-phenyl-3-O-ß-D-glucopyranoside (3), a new tyramine-type alkamide, puberulumine L (4), together with thirteen known compounds (5-17) were isolated from Piper puberulum (Benth.) Maxim. Their structures were elucidated by analysis of spectroscopic data involving NMR, IR, UV, and HRESIMS data. Calculated and experimental ECD was used to confirm the configuration of compound 1. Compounds 14, 16, and 17 exhibited relatively positive DPPH radical scavenging activities, with corresponding EC50 of 10.23, 24.12, and 21.83 µM, respectively. In addition, compound 5 inhibited LPS-induced NO production in BV-2 microglia with an IC50 value of 18.05 µM.


Subject(s)
Glucosides , Piper , Glucosides/pharmacology , Glucosides/chemistry , Piper/chemistry , Tyramine/pharmacology , Tyramine/chemistry , Molecular Structure , Glycosides/pharmacology , Glycosides/chemistry
19.
Anal Biochem ; 684: 115387, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37951456

ABSTRACT

In this study, an electrochemical biosensor based on carbon nanofibers (CNF), ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL), poly(glutamic acid) (PGA) and tyrosinase (Tyr) modified screen printed carbon electrode (SPE) was constructed for tyramine determination. Optimum experimental parameters such as CNF and IL amount, polymerization conditions of glutamic acid, enzyme loading, pH of test solution and operating potential were explored. The construction steps of the Tyr/PGA/CNF-IL/SPE were pursued by scanning electron microscopy and cyclic voltammetry. The Tyr/PGA/CNF-IL/SPE biosensor exhibited linear response to tyramine in the range of 2.0 × 10-7 - 4.8 × 10-5 M with a low detection limit of 9.1 × 10-8 M and sensitivity of 302.6 µA mM-1. The other advantages of Tyr/PGA/CNF-IL/SPE include its high reproducibility, good stability and anti-interference ability. The presented biosensor was also applied for tyramine determination in malt drink and pickle juice samples and mean analytical recoveries of spiked tyramine were calculated as 100.6% and 100.4% respectively.


Subject(s)
Biosensing Techniques , Ionic Liquids , Nanofibers , Carbon , Glutamic Acid , Tyramine , Reproducibility of Results , Electrodes , Monophenol Monooxygenase , Electrochemical Techniques
20.
Eur J Pharm Biopharm ; 193: 241-253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972906

ABSTRACT

Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.


Subject(s)
Nanofibers , Neoplasms , Humans , Pharmaceutical Preparations , Polymers , Polyesters
SELECTION OF CITATIONS
SEARCH DETAIL
...