Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Cardiovasc Toxicol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850470

ABSTRACT

Cognitive impairment is a commonly observed complication following myocardial infarction; however, the underlying mechanisms are still not well understood. The most recent research suggests that extracellular signal-regulated kinase (ERK) plays a critical role in the development and occurrence of cognitive dysfunction-related diseases. This study aims to explore whether the ERK inhibitor U0126 targets the ERK/Signal Transducer and Activator of Transcription 1 (STAT1) pathway to ameliorate cognitive impairment after myocardial infarction. To establish a mouse model of myocardial infarction, we utilized various techniques including Echocardiography, Hematoxylin-eosin (HE) staining, Elisa, Open field test, Elevated plus maze test, and Western blot analysis to assess mouse cardiac function, cognitive function, and signal transduction pathways. For further investigation into the mechanisms of cognitive function and signal transduction, we administered the ERK inhibitor U0126 via intraperitoneal injection. Reduced total distance and activity range were observed in mice subjected to myocardial infarction during the open field test, along with decreased exploration of the open arms in the elevated plus maze test. However, U0126 treatment exhibited a significant improvement in cognitive decline, indicating a protective effect through the inhibition of the ERK/STAT1 signaling pathway. Hence, this study highlights the involvement of the ERK/STAT1 pathway in regulating cognitive dysfunction following myocardial infarction and establishes U0126 as a promising therapeutic target.

2.
Phytother Res ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818771

ABSTRACT

Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 µM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.

3.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643607

ABSTRACT

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Subject(s)
Buffaloes , Butadienes , Fibroblast Growth Factor 10 , In Vitro Oocyte Maturation Techniques , Nitriles , Oocytes , Animals , Buffaloes/embryology , Fibroblast Growth Factor 10/pharmacology , Butadienes/pharmacology , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Nitriles/pharmacology , Female , Oogenesis/drug effects , Cumulus Cells/drug effects , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Embryonic Development/drug effects , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism
4.
Int J Oncol ; 63(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37921060

ABSTRACT

The transformation of myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) poses a significant clinical challenge. The trimethylation of H3 on lysine 27 (H3K27me3) methylase and de­methylase pathway is involved in the regulation of MDS progression. The present study investigated the functional mechanisms of the MEK/ERK and PI3K/AKT pathways in the MDS­to­AML transformation. MDS­AML mouse and SKM­1 cell models were first established and this was followed by treatment with the MEK/ERK pathway inhibitor, U0126, the PI3K/AKT pathway inhibitor, Ly294002, or their combination. H3K27me3 methylase, enhancer of zeste homolog (EZH)1, EZH2, demethylase Jumonji domain­containing protein­3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) and H3K27me3 protein levels were determined using western blot analysis. Cell viability, cycle distribution and proliferation were assessed using CCK­8, flow cytometry, EdU and colony formation assays. The ERK and AKT phosphorylation levels in clinical samples and established models were determined, and SKM­1 cell behaviors were assessed. The levels of H3K27me3 methylases and de­methylases and distal­less homeobox 5 (DLX5) were measured. The results revealed that the ERK and AKT phosphorylation levels were elevated in patients with MDS and MDS­AML, and in mouse models. Treatment with U0126, a MEK/ERK pathway inhibitor, and Ly294002, a PI3K/AKT pathway inhibitor, effectively suppressed ERK and AKT phosphorylation in mice with MDS­AML. It was observed that mice with MDS treated with U0126/Ly294002 exhibited reduced transformation to AML, delayed disease transformation and increased survival rates. Treatment of the SKM­1 cells with U0126/Ly294002 led to a decrease in cell viability and proliferation, and to an increase in cell cycle arrest by suppressing ERK/PI3K phosphorylation. Moreover, treatment with U0126/Ly294002 downregulated EZH2/EZH1 expression, and upregulated JMJD3/UTX expression. The effects of U0126/Ly294002 were nullified when EZH2/EZH1 was overexpressed or when JMJD3/UTX was inhibited in the SKM­1 cells. Treatment with U0126/Ly294002 also resulted in a decreased H3K27me3 protein level and H3K27me3 level in the DLX5 promoter region, leading to an increased DLX5 expression. Overall, the findings of the present study suggest that U0126/Ly294002 participates in MDS­AML transformation by modulating the levels of H3K27me3 methylases and de­methylases, and regulating DLX5 transcription and expression.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Histones/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Myelodysplastic Syndromes/drug therapy , Leukemia, Myeloid, Acute/drug therapy
5.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175694

ABSTRACT

In recent years, thermogenic differentiation and activation in brown and white adipose tissues have been regarded as one of the major innovative and promising strategies for the treatment and amelioration of obesity. However, the pharmacological approach towards this process has had limited and insufficient commitments, which presents a greater challenge for obesity treatment. This research evaluates the effects of U0126 compound on the activation of thermogenic differentiation during adipogenesis. The results show that U0126 pretreatment primes both white and brown preadipocytes to upregulate thermogenic and mitochondrial genes as well as enhance functions during the differentiation process. We establish that U0126-mediated thermogenic differentiation induction occurs partially via AMPK activation signaling. The findings of this research suggest U0126 as a promising alternative ligand in pursuit of a pharmacological option to increase thermogenic adipocyte formation and improve energy expenditure. Thus it could pave the way for the discovery of therapeutic drugs for the treatment of obesity and its related complications.


Subject(s)
AMP-Activated Protein Kinases , Adipocytes, Brown , Humans , Adipocytes, Brown/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction , Adipose Tissue, White/metabolism , Obesity/drug therapy , Thermogenesis , Adipose Tissue, Brown/metabolism , Cell Differentiation
6.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37107345

ABSTRACT

Status epilepticus (SE) evokes leukocyte infiltration in the frontoparietal cortex (FPC) without the blood-brain barrier disruption. Monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) regulate leukocyte recruitments into the brain parenchyma. Epigallocatechin-3-gallate (EGCG) is an antioxidant and a ligand for non-integrin 67-kDa laminin receptor (67LR). However, it is unknown whether EGCG and/or 67LR affect SE-induced leukocyte infiltrations in the FPC. In the present study, SE infiltrated myeloperoxidase (MPO)-positive neutrophils, as well as cluster of differentiation 68 (CD68)-positive monocytes in the FPC are investigated. Following SE, MCP-1 was upregulated in microglia, which was abrogated by EGCG treatment. The C-C motif chemokine receptor 2 (CCR2, MCP-1 receptor) and MIP-2 expressions were increased in astrocytes, which were attenuated by MCP-1 neutralization and EGCG treatment. SE reduced 67LR expression in astrocytes, but not endothelial cells. Under physiological conditions, 67LR neutralization did not lead to MCP-1 induction in microglia. However, it induced MIP-2 expression and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in astrocytes and leukocyte infiltration in the FPC. Co-treatment of EGCG or U0126 (an ERK1/2 inhibitor) attenuated these events induced by 67LR neutralization. These findings indicate that the EGCG may ameliorate leukocyte infiltration in the FPC by inhibiting microglial MCP-1 induction independent of 67LR, as well as 67LR-ERK1/2-MIP-2 signaling pathway in astrocytes.

7.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37107343

ABSTRACT

Epigallocatechin-3-gallate (EGCG) is an antioxidant that directly scavenges reactive oxygen species (ROS) and inhibits pro-oxidant enzymes. Although EGCG protects hippocampal neurons from status epilepticus (SE, a prolonged seizure activity), the underlying mechanisms are not fully understood. As the preservation of mitochondrial dynamics is essential for cell viability, it is noteworthy to elucidate the effects of EGCG on impaired mitochondrial dynamics and the related signaling pathways in SE-induced CA1 neuronal degeneration, which are yet unclear. In the present study, we found that EGCG attenuated SE-induced CA1 neuronal death, accompanied by glutathione peroxidase-1 (GPx1) induction. EGCG also abrogated mitochondrial hyperfusion in these neurons by the preservation of extracellular signal-regulated kinase 1/2 (ERK1/2)-dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, independent of c-Jun N-terminal kinase (JNK) activity. Furthermore, EGCG abolished SE-induced nuclear factor-κB (NF-κB) serine (S) 536 phosphorylation in CA1 neurons. ERK1/2 inhibition by U0126 diminished the effect of EGCG on neuroprotection and mitochondrial hyperfusion in response to SE without affecting GPx1 induction and NF-κB S536 phosphorylation, indicating that the restoration of ERK1/2-DRP1-mediated fission may be required for the neuroprotective effects of EGCG against SE. Therefore, our findings suggest that EGCG may protect CA1 neurons from SE insults through GPx1-ERK1/2-DRP1 and GPx1-NF-κB signaling pathways, respectively.

8.
Article in English | MEDLINE | ID: mdl-36874235

ABSTRACT

Endometriosis is an aggressive disease. It is the main cause of chronic pelvic pain, dysmenorrhea, and infertility, affecting the well-being of women. This study aimed to explore the role of U0126 and BAY11-7082 in endometriosis (EMs) treatment in rats by targeting the MEK/ERK/NF-κB pathway. The EMs model was generated and the rats were divided into model, dimethyl sulfoxide, U0126, BAY11-708, and control groups (Sham operation group). After 4 weeks of treatment, the rats were sacrificed. Compared with model group, U0126 and BAY11-7082 treatment significantly inhibited ectopic lesion growth, glandular hyperplasia, and interstitial inflammation. Compared to control group, PCNA and MMP9 levels were significantly increased in the eutopic and ectopic endometrial tissues of model group; the levels of MEK/ERK/NF-κB pathway proteins also increased significantly. Compared with model group, MEK, ERK, and NF-κB levels decreased significantly after U0126 treatment and NF-κB protein expression decreased significantly after BAY11-7082 treatment, with no significant difference in MEK and ERK levels. The proliferation and invasion activities of eutopic and ectopic endometrial cells also significantly decreased after U0126 and BAY11-7082 treatment. In summary, our results showed that U0126 and BAY11-7082 inhibited ectopic lesion growth, glandular hyperplasia, and interstitial inflammatory response in EMs rats by inhibiting the MEK/ERK/NF-κB signaling pathway.

9.
Biochem Biophys Res Commun ; 653: 153-160, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36870240

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) have been attributed to genetic and environmental factors. However, monogenic and copy number variations cannot sufficiently explain the cause of the majority of CAKUT cases. Multiple genes through various modes of inheritance may lead to CAKUT pathogenesis. We previously showed that Robo2 and Gen1 coregulated the germination of ureteral buds (UB), significantly increasing CAKUT incidence. Furthermore, MAPK/ERK pathway activation is the central mechanism of these two genes. Thus, we explored the effect of the MAPK/ERK inhibitor U0126 in the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Intraperitoneal injection of U0126 during pregnancy prevented the development of the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Additionally, a single dose of 30 mg/kg U0126 on day 10.5 embryos (E10.5) was most effective for reducing CAKUT incidence and ectopic UB outgrowth in Robo2PB/+Gen1PB/+ mice. Furthermore, embryonic kidney mesenchymal levels of p-ERK were significantly decreased on day E11.5 after U0126 treatment, along with decreased cell proliferation index PHH3 and ETV5 expression. Collectively, Gen1 and Robo2 exacerbated the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice through the MAPK/ERK pathway, increasing proliferation and ectopic UB outgrowth.


Subject(s)
Ureteral Obstruction , Urinary Tract , Mice , Animals , MAP Kinase Signaling System , DNA Copy Number Variations , Kidney/metabolism , Urinary Tract/abnormalities , Ureteral Obstruction/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Holliday Junction Resolvases/metabolism
10.
J Spinal Cord Med ; 46(5): 798-806, 2023 09.
Article in English | MEDLINE | ID: mdl-35792817

ABSTRACT

PURPOSE: Warm acupuncture (WA) therapy has been applied to treat spinal cord injury (SCI), but the underlying mechanism is unclear. The current study attempted to explore the WA therapy on neuronal apoptosis of SCI and the relationship with the extracellular signal-regulated kinase (ERK) signaling pathway. METHODS: The rat SCI models were established by the impact method. SCI rat models were subjected to WA treatment at Dazhui (GV14) and Jiaji points (T10), Yaoyangguan (GV3), Zusanli (ST36), and Ciliao (BL32). The rat SCI models were established by the impact method. WA and U0126 treatments were performed on the SCI rats. Motor function and neuronal apoptosis were detected. The relative mRNA of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), the phosphorylation level of ERK 1/2 and levels of B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and caspase-3 in spinal cord tissue were tested. RESULTS: After WA treatment, the Basso, Beattie & Bresnahan locomotor rating scale (BBB scale) of SCI rats in the WA treatment was significantly raised from 7 to 14 days after SCI. WA and U0126 treatment significantly diminished apoptotic cells and preserved the neurons in the injured spinal cord. WA and U0126 treatment alleviated the production of inflammatory cytokines in the spinal cord. The distinct increase of p-ERK 1/2 induced by SCI was reversed in WA and U0126 treatment groups. WA and U0126 treatment augmented the level of Bcl-2 and reversed the elevated cleaved caspase-3 protein level after SCI. CONCLUSION: Our study demonstrated that WA might be associated with the downregulation of the ERK signaling pathway. In summary, our findings indicated that WA promotes the recovery of SCI via the protection of nerve cells and the prevention of apoptosis. Meanwhile, the anti-apoptotic effect of WA might be associated with the downregulation of the ERK signaling pathway, which could be one of the mechanisms of WA in the treatment of SCI.


Subject(s)
Acupuncture Therapy , Spinal Cord Injuries , Animals , Rats , Apoptosis , Caspase 3/metabolism , Caspase 3/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Rats, Sprague-Dawley , Recovery of Function/physiology , Signal Transduction , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
11.
Front Pharmacol ; 13: 927083, 2022.
Article in English | MEDLINE | ID: mdl-36091807

ABSTRACT

U0126, as an inhibitor of the MAPK signaling pathway, is closely related to various biological processes, such as differentiation, cell growth, autophagy, apoptosis, and stress responses. It makes U0126 play an essential role in balancing cellular homeostasis. Although U0126 has been suggested to inhibit various cancers, its complete mechanisms have not been clarified in cancers. This review summarized the most recent and relevant research on the many applications of U0126 and described its role and mechanisms in different cancer cell types. Moreover, some acknowledged functions of U0126 researched in the laboratory were listed in our review. We discussed the probability of using U0126 to restain cancers or suppress the MAPK pathway as a novel way of cancer treatment.

12.
Pharmacol Biochem Behav ; 219: 173447, 2022 09.
Article in English | MEDLINE | ID: mdl-35970339

ABSTRACT

Propofol, an intravenous short-acting anesthetic, has the potential to induce craving and relapse. Accumulated evidence demonstrates that extracellular signal-regulated kinase (ERK) plays an essential role in drug reward and relapse. In the previous study, we demonstrated that the ERK signaling pathways in the Nucleus accumbens (NAc) were involved in propofol reward. However, the role of the ERK signaling pathways in propofol relapse is still unknown. We first trained rats to self-administer propofol for 14 days, then evaluated propofol-seeking behavior of relapse induced by a contextual cues and conditioned cues after 14-day withdrawal. Meanwhile, MEK inhibitor U0126 was used to investigate the role of the ERK signal pathways in propofol-seeking behavior induced by contextual cues and conditioned cues. Results showed that the number of active nose-poke responses in propofol-seeking behavior induced by conditioned cues was much higher compared to contextual cues. U0126 (5.0 µg/side, Lateral Ventricle (LV)) pretreatment significantly decreased the active responses induced by conditioned cues, which was associated with a large decline in the expression of p-ERK in the NAc. Moreover, microinjectionofU0126 (2.0 µg/side) in the NAc also attenuated the active responses of propofol-seeking behavior. Additionally, microinjections with U0126 in the LV (5.0 µg/side) or NAc (2.0 µg/side) both failed to alter sucrose self-administration or locomotor activity of rats. Therefore, we conclude that ERK phosphorylation in the NAc maybe involved in propofol relapse.


Subject(s)
Cues , Propofol , Animals , Conditioning, Operant , Drug-Seeking Behavior/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Nucleus Accumbens/metabolism , Propofol/metabolism , Propofol/pharmacology , Rats , Recurrence , Self Administration , Signal Transduction
13.
Peptides ; 154: 170824, 2022 08.
Article in English | MEDLINE | ID: mdl-35660638

ABSTRACT

OBJECTIVES: Apolipoprotein A1 (ApoA1), a major component of high-density lipoprotein (HDL), is a protective factor against cardiovascular disease (CVD). A recent epidemiological study found an association between neuropeptide Y (NPY) gene polymorphism and serum HDL levels. However, the direct effect of NPY on ApoA1 expression remains unknown. This study was designed to investigate the molecular mechanisms underlying the NPY-mediated regulation of hepatic ApoA1. METHODS: Serum ApoA1, total cholesterol, and HDL-c and hepatic ApoA1 levels were measured after intraperitoneal administration of NPY or an NPY Y5 receptor (NPY5R) agonist in vivo. HepG2 and BRL-3A hepatocytes were treated in vitro with NPY in the presence or absence of NPY receptor antagonists, agonists, or signal transduction pathway inhibitors. Subsequently, the protein and mRNA expression of cellular and secreted ApoA1 were determined. RESULTS: NPY considerably upregulated hepatic ApoA1 expression and stimulated ApoA1 secretion, both in vivo and in vitro. NPY5R inhibition blocked NPY-induced upregulation of ApoA1 expression, and NPY5R activation stimulated ApoA1 expression and secretion in hepatocytes. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and protein kinase A (PKA) inhibition almost completely blocked the upregulation of ApoA1 expression and secretion induced by NPY5R. CONCLUSIONS: For the first time, we demonstrated that NPY5R activation promotes hepatic ApoA1 synthesis and secretion through the ERK1/2 and PKA signal transduction pathways. Thus, NPY5R may be a potential therapeutic target for treating CVD by promoting cholesterol reverse transport.


Subject(s)
Apolipoprotein A-I , Cardiovascular Diseases , Neuropeptide Y , Receptors, Neuropeptide Y , Apolipoprotein A-I/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/metabolism , Humans , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism
14.
J Obstet Gynaecol ; 42(6): 2399-2405, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35659173

ABSTRACT

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) was reported to be necessary for tumour growth in several cancers. However, the function of PFKFB4 in cervical cancer has not been clearly elucidated. Bioinformatics analysis was applied to detect the expression of PFKFB4 in cervical cancer and the association with survival prognosis. The effect of PFKFB4 on cervical cancer cells growth, cycle, invasion, migration and glucose metabolism was investigated by loss-of-function approaches in vitro. The association between PFKFB4 and MEK/ERK/c-Myc pathway was identified by western blot assay. We found that PFKFB4 was highly expressed in cervical cancer samples and its overexpression led to a poor prognosis of cervical cancer patients. Knock down of PFKFB4 reduced cell growth, blocked cell cycle, inhibited cell invasion and migration, and blocked glucose metabolism in cervical cancer cells. Our findings afforded a theoretical basis for further research on the treatment of cervical cancer based on the control of PFKFB4 expression. Impact StatementWhat is already known on this subject? PFKFB4 was overexpressed in several kinds of cancers and its requirement for tumour growth has been confirmed in cancers such as glioma and breast cancer. However, the function of PFKFB4 in cervical cancer cells has not been clearly elucidated. A bioinformatics study showed that PFKFB4 was a member of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer. However, the relationship between PFKFB4 and glucose metabolism in cervical cancer has not been revealed.What do the results of this study add? Our results showed that PFKFB4 was highly expressed in cervical cancer samples and its overexpression led to a poor prognosis of cervical cancer patients. Moreover, the administration of si-PFKFB4 significantly reduced cell growth ability, blocked cell cycle, restrained the mobility and suppressed the glucose metabolism in cervical cancer cells partially by inactivating MEK/ERK/c-Myc pathway.What are the implications of these findings for clinical practice and/or further research? Our findings afforded a theoretical basis for further research on the treatment of cervical cancer based on the control of PFKFB4 expression.


Subject(s)
Phosphofructokinase-2 , Uterine Cervical Neoplasms , Cell Cycle Checkpoints , Cell Line, Tumor , Female , Fructose , Glucose/metabolism , Humans , Mitogen-Activated Protein Kinase Kinases , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Uterine Cervical Neoplasms/genetics
15.
Neurol Res ; 44(6): 560-569, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35001858

ABSTRACT

OBJECTIVES: Periostin is found associated with trauma severity and mortality following head injury. In this study, the role and mechanism of periostin in the traumatic brain injury were investigated. METHODS: Male Sprague-Dawley adult rats underwent sham or TBI modeling. Vehicle or recombinant periostin was administered intracerebroventricularly at 30 minutes post-TBI, and U0126, a specific MEK1/2 inhibitor, was administered intravenously at 30 minutes pre-TBI. Garcia neuroscore, limb function and brain water content assessments, as well as TUNEL and Western blotting assays were performed to evaluate the status of the above rats at 24 hours post-TBI. Finally, the motor test and Morris water maze test were performed to measure the effects of periostin and U0126 in the late phase of TBI. RESULTS: Periostin expression significantly increased 24 hours post-TBI. Treatment with R-periostin aggravated post-TBI neurobehavioral impairment, brain edema, induced apoptosis and raised the quantity of phospho-p38, phospho-JNK, phospho-ERK and MMP-9, and lowered the expression of ZO-1. However, U0126, a kind of inhibitor of MEK, lowered the quantities of phospho-ERK and MMP-9, raised the expression of ZO-1, and suppressed apoptosis. U0126 also ameliorated the neurobehavioral impairments and brain edema induced by R-periostin. Additionally, U0126 didn't inhibit the expression of periostin in the early phase of TBI model. IU0126 was also able to ameliorate the pathological conditions in the late phase of TBI. DISCUSSION: Periostin could aggravate neurobehavioral impairments and brain edema following TBI, and was involved in the early phase of TBI via the MAPK/ERK pathway.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Cell Adhesion Molecules , Animals , Brain Edema/complications , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Cell Adhesion Molecules/metabolism , MAP Kinase Signaling System , Male , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Sprague-Dawley
16.
Stem Cell Res Ther ; 13(1): 5, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012661

ABSTRACT

BACKGROUND: Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. METHODS: Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. RESULTS: In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFß superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. CONCLUSION: Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.


Subject(s)
Gelatin , Tendons , Animals , Butadienes , Cell Differentiation , Gelatin/pharmacology , Nitriles , Polyesters , Rats , Rats, Sprague-Dawley
17.
Int J Biol Sci ; 17(12): 2984-2999, 2021.
Article in English | MEDLINE | ID: mdl-34421344

ABSTRACT

Background: Chronic diabetes accelerates vascular dysfunction often resulting in cardiomyopathy but underlying mechanisms remain unclear. Recent studies have shown that the deregulated unfolded protein response (UPR) dependent on highly conserved IRE1α-spliced X-box- binding protein (XBP1s) and the resulting endoplasmic reticulum stress (ER-Stress) plays a crucial role in the occurrence and development of diabetic cardiomyopathy (DCM). In the present study, we determined whether targeting MAPK/ERK pathway using MEK inhibitor U0126 could ameliorate DCM by regulating IRE1α-XBP1s pathway. Method: Three groups of 8-week-old C57/BL6J mice were studied: one group received saline injection as control (n=8) and two groups were made diabetic by streptozotocin (STZ) (n=10 each). 18 weeks after STZ injection and stable hyperglycemia, one group had saline treatment while the second group was treated with U0126 (1mg/kg/day), 8 weeks later, all groups were sacrificed. Cardiac function/histopathological changes were determined by echocardiogram examination, Millar catheter system, hematoxylin-eosin staining and western blot analysis. H9C2 cardiomyocytes were employed for in vitro studies. Results: Echocardiographic, hemodynamic and histological data showed overt myocardial hypertrophy and worsened cardiac function in diabetic mice. Chronic diabetic milieu enhanced SUMOylation and impaired nuclear translocation of XBP1s. Intriguingly, U0126 treatment significantly ameliorated progression of DCM, and this protective effect was achieved through enriching XBP1s' nuclear accumulation. Mechanistically, U0126 inhibited XBP1s' phosphorylation on S348 and SUMOylation on K276 promoting XBP1s' nuclear translocation. Collectively, these results identify that MEK inhibition restores XBP1s-dependent UPR and protects against diabetes-induced cardiac remodeling. Conclusion: The current study identifies previously unknown function of MEK/ERK pathway in regulation of ER-stress in DCM. U0126 could be a therapeutic target for the treatment of DCM.


Subject(s)
Butadienes/pharmacology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Nitriles/pharmacology , X-Box Binding Protein 1/metabolism , Animals , Cell Line , Diabetic Cardiomyopathies/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Enzyme Inhibitors/pharmacology , Male , Mice , Phosphorylation , Rats , Signal Transduction/drug effects , Sumoylation , Unfolded Protein Response
18.
Front Physiol ; 12: 674430, 2021.
Article in English | MEDLINE | ID: mdl-34140895

ABSTRACT

A previous study from our team found that hyperbaric oxygen (HBO) pretreatment attenuated decompression sickness (DCS) spinal cord injury by upregulating heat shock protein 32 (HSP32) via the ROS/p38 MAPK pathway. Meanwhile, a MEK1/2-negative regulatory pathway was also activated to inhibit HSP32 overexpression. The purpose of this study was to determine if normobaric oxygen (NBO) might effectively induce HSP32 while concurrently inhibiting MEK1/2 and to observe any protective effects on spinal cord injury in DCS rats. The expression of HSP32 in spinal cord tissue was measured at 6, 12, 18, and 24 h following NBO and MEK1/2 inhibitor U0126 pretreatment. The peak time of HSP32 was observed at 12 h after simulated air diving. Subsequently, signs of DCS, hindlimb motor function, and spinal cord and serum injury biomarkers were recorded. NBO-U0126 pretreatment significantly decreased the incidence of DCS, improved motor function, and attenuated oxidative stress, inflammatory response, and apoptosis in both the spinal cord and serum. These results suggest that pretreatment with NBO and U0126 combined can effectively alleviate DCS spinal cord injury in rats by upregulating HSP32. This may lead to a more convenient approach for DCS injury control, using non-pressurized NBO instead of HBO.

19.
Toxicol Appl Pharmacol ; 415: 115447, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33577918

ABSTRACT

Deafness is the most common sensory disorder in the world. Ototoxic drugs are common inducing factors of sensorineural hearing loss, and cochlear hair cell (HC) damage is the main concern of the present studies. Cisplatin is a widely used, highly effective antitumor drug, but some patients have experienced irreversible hearing loss as a result of its application. This hearing loss is closely related to HC apoptosis and autophagy. U0126 is a specific inhibitor of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling pathway and has neuroprotective effects. For example, the neuroprotective effect of U0126 on ischemic stroke has been widely recognized. In neural cells, U0126 can prevent death due to excess glutamate, dopamine, or zinc ions. However, no studies of U0126 and ototoxic drug-induced injury have been reported to date. In the present study, we found that U0126 pretreatment significantly reduced the apoptosis and autophagy of HCs in auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and cochlear HCs. In addition, U0126 reduced the cisplatin-induced production of reactive oxygen species as well as the cisplatin-induced decrease in the mitochondrial membrane potential. These findings suggest that U0126 may be a potential therapeutic candidate for the prevention of cisplatin-induced ototoxicity.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Butadienes/pharmacology , Cisplatin/toxicity , Hair Cells, Auditory/drug effects , Neuroprotective Agents/pharmacology , Nitriles/pharmacology , Animals , Cell Line , Extracellular Signal-Regulated MAP Kinases/metabolism , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction
20.
Brain Res ; 1753: 147262, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33422538

ABSTRACT

Endoplasmic reticulum (ER) triggers the regional specific astroglial responses to status epilepticus (SE, a prolonged seizure activity). However, the epiphenomena/downstream effecters for ER stress and the mechanism of ER stress signaling in astroglial apoptosis have not been fully understood. In the present study, tunicamycin-induced ER stress resulted in reactive astrogliosis-like events showing astroglial hypertrophy with the elevated extracellular signal-activated protein kinase 1/2 (ERK1/2) and cyclin-dependent kinase 5 (CDK5) phosphorylations in the CA1 region of the rat hippocampus. However, tunicamycin increased CDK5, but not ERK1/2, phosphorylation in the molecular layer of the dentate gyrus. Roscovitine (a CDK5 inhibitor) suppressed the effect of tunicamycin in the molecular layer of the dentate gyrus and the CA1 region, while U0126 (an ERK1/2 inhibitor) reversed it in the CA1 region. Salubrinal (an ER stress inhibitor) abrogated activations of ERK1/2 and CDK5, and attenuated reactive astrogliosis in the CA1 region and astroglial apoptosis in the molecular layer of the dentate gyrus following status epilepticus (SE, a prolonged seizure activity). These findings indicate that ER stress may induce reactive astrogliosis via ERK1/2-mediated CDK5 activation in the CA1 region. In the molecular layer of the dentate gyrus, however, ER stress may participate in astroglial apoptosis through ERK1/2-independent CDK5 activation following SE.


Subject(s)
Astrocytes/metabolism , Cyclin-Dependent Kinase 5/metabolism , Endoplasmic Reticulum Stress/physiology , Hippocampus/metabolism , MAP Kinase Signaling System/physiology , Status Epilepticus/metabolism , Animals , Endoplasmic Reticulum Stress/drug effects , Hippocampus/physiopathology , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...