Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Acta Pharm Sin B ; 13(11): 4341-4372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969742

ABSTRACT

Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.

2.
Acta Pharmaceutica Sinica B ; (6): 4341-4372, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011195

ABSTRACT

Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.

3.
Dev Comp Immunol ; 91: 132-142, 2019 02.
Article in English | MEDLINE | ID: mdl-30389518

ABSTRACT

As an important post-translational protein modification, ubiquitination has been demonstrated to play a vital role in immune response of vertebrates. Ubiquitin (Ub)-conjugating enzyme E2 is the "heart" of ubiquitination, which is responsible for Ub cellular signaling and substrate modification. In the present study, an Ub-conjugating enzyme E2 (designed as CgUbe2g1) was identified from oyster Crassostrea gigas, and its regulation in the immune response against lipopolysaccharide (LPS) stimulation was investigated. CgUbe2g1 encoded a polypeptide of 168 amino acids with the predicted molecular mass of 19.20 kDa and contained conserved catalytic 'Ubc' domains. It shared a higher similarity with the known UBC2G1 type E2s and was closely clustered with the type E2s identified from invertebrates in the phylogenetic assay. The mRNA transcripts of CgUbe2g1 were mainly distributed in hemocyte, mantle, hepatopancreas and male gonad of C. gigas. CgUbe2g1 protein was found to be colocalized with Ub around the nucleus of oyster hemocyte. The recombinant CgUbe2g1 protein (rCgUbe2g1) could activate the ubiquitination in vitro by binding both activated and un-activated Ub. The expressions of inflammation-related factors TNF-α and NF-κB in CgUbe2g1 transfected cells were both significantly up-regulated after LPS stimulation, which were 12.9-fold at 3 h (p < 0.01) and 2.3-fold at 6 h (p < 0.01) of that in negative control group, respectively. The phagocytic rate of hemocyte and the ROS level in hemocyte were both significantly decreased (p < 0.01), while the apoptosis rate was significantly increased (p < 0.01) after CgUbe2g1 mRNA was interfered. These results demonstrated that Ub-conjugating enzyme CgUbe2g1 was involved in the innate immune response of oyster against invading pathogen, which might play important roles in the activation of inflammatory response and regulation of cellular immune response.


Subject(s)
Crassostrea/immunology , Hemocytes/physiology , Ubiquitin-Conjugating Enzymes/genetics , Animals , Apoptosis , Cells, Cultured , Cloning, Molecular , Humans , Immunity, Innate , NF-kappa B/metabolism , Phylogeny , Transcriptome , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...