ABSTRACT
In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568â ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.
ABSTRACT
The main human hereditary peripheral neuropathy (Charcot-Marie-Tooth, CMT), manifests in progressive sensory and motor deficits. Mutations in the compact myelin protein gene pmp22 cause more than 50% of all CMTs. CMT1E is a subtype of CMT1 myelinopathy carrying micro-mutations in pmp22. The Trembler-J mice have a spontaneous mutation in pmp22 identical to that present in CMT1E human patients. PMP22 is mainly (but not exclusively) expressed in Schwann cells. Some studies have found the presence of pmp22 together with some anomalies in the CNS of CMT patients. Recently, we identified the presence of higher hippocampal pmp22 expression and elevated levels of anxious behavior in TrJ/+ compared to those observed in wt. In the present paper, we delve deeper into the central expression of the neuropathy modeled in Trembler-J analyzing in vivo the cerebrovascular component by Ultrafast Doppler, exploring the vascular structure by scanning laser confocal microscopy, and analyzing the behavioral profile by anxiety and motor difficulty tests. We have found that TrJ/+ hippocampi have increased blood flow and a higher vessel volume compared with the wild type. Together with this, we found an anxiety-like profile in TrJ/+ and the motor difficulties described earlier. We demonstrate that there are specific cerebrovascular hemodynamics associated with a vascular structure and anxious behavior associated with the TrJ/+ clinical phenotype, a model of the human CMT1E disease.
ABSTRACT
Colloidal semiconductor nanomaterials present broadband, with large cross-section, two-photon absorption (2PA) spectra, which turn them into an important platform for applications that benefit from a high nonlinear optical response. Despite that, to date, the only means to control the magnitude of the 2PA cross-section is by changing the nanoparticle volume, as it follows a universal volume scale, independent of the material composition. As the emission spectrum is connected utterly to the nanomaterial dimensions, for a given material, the magnitude of the nonlinear optical response is also coupled to the emission spectra. Here, we demonstrate a means to decouple both effects by exploring the 2PA response of different types of heterostructures, tailoring the volume dependence of the 2PA cross-section due to the different dependence of the density of final states on the nanoparticle volume. By heterostructure engineering, one can obtain 1 order of magnitude enhancement of the 2PA cross-section with minimum emission spectra shift.
ABSTRACT
Understanding the primary steps following UV photoexcitation in sulphur-substituted DNA bases (thiobases) is fundamental for developing new phototherapeutic drugs. However, the investigation of the excited-state dynamics in sub-100 fs time scales has been elusive until now due to technical challenges. Here, we track the ultrafast decay mechanisms that lead to the electron trapping in the triplet manifold for 6-thioguanine in an aqueous solution, using broadband transient absorption spectroscopy with a sub-20 fs temporal resolution. We obtain experimental evidence of the fast internal conversion from the S2(ππ*) to the S1(nπ*) states, which takes place in about 80 fs and demonstrates that the S1(nπ*) state acts as a doorway to the triplet population in 522 fs. Our results are supported by MS-CASPT2 calculations, predicting a planar S2(ππ*) pseudo-minimum in agreement with the stimulated emission signal observed in the experiment.
Subject(s)
Thioguanine/chemistry , Spectrophotometry, UltravioletABSTRACT
Abstract Objective To evaluate the amount of methyl methacrylate (MMA) released in water from heat-cured polymethyl methacrylate (PMMA) denture base materials subjected to different cooling procedures. Methodology Disk-shaped specimens (Ø:17 mm, h:2 mm) were fabricated from Paladon 65 (PA), ProBase Hot (PB), Stellon QC-20 (QC) and Vertex Rapid Simplified (VE) denture materials using five different cooling procedures (n=3/procedure): A) Bench-cooling for 10 min and then under running water for 15 min; B) Cooling in water-bath until room temperature; C) Cooling under running water for 15 min; D) Bench-cooling, and E) Bench-cooling for 30 min and under running water for 15 min. A, B, D, E procedures were proposed by the manufacturers, while the C was selected as the fastest one. Control specimens (n=3/material) were fabricated using a long polymerization cycle and bench-cooling. After deflasking, the specimens were ground, polished and stored in individual containers with 10 ml of distilled water for seven days (37oC). The amount of water-eluted MMA was measured per container using isocratic ultra-fast liquid chromatography (UFLC). Data were analyzed using Student's and Welch's t-test (α=0.05). Results MMA values below the lower quantification limit (LoQ=5.9 ppm) were registered in B, C, E (PA); E (PB) and B, D, E (QC) procedures, whereas values below the detection limit (LoD=1.96 ppm) were registered in A, D (PA); A, B, C, D (PB); C, D, E (VE) and in all specimens of the control group. A, B (VE) and A, C (QC) procedures yielded values ranging from 6.4 to 13.2 ppm with insignificant differences in material and procedure factors (p>0.05). Conclusions The cooling procedures may affect the monomer elution from denture base materials. The Ε procedure may be considered a universal cooling procedure compared to the ones proposed by the manufacturers, with the lowest residual monomer elution in water.
ABSTRACT
The combination of arginine and ibuprofen is widely used for pain relief with a faster onset of action than conventional ibuprofen. Therefore, the determination of both compounds in a single run is highly desirable for rapid quality control applications. This paper reports an ultra-fast method (100 injections/h) for simultaneous determination of arginine and ibuprofen using capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation of arginine as cation and ibuprofen as anion was achieved using a background electrolyte composed by an equimolar mixture of 10 mmol/L of 2-(cyclohexylamino) ethanesulfonic acid and boric acid with pH adjusted to 8.4 using potassium hydroxide. The limits of detections were 5.3 and 10.0 µmol/L for arginine and ibuprofen, respectively. The proposed method is simple, fast (one analysis every 35 s), environmentally friendly (minimal waste generation) and accurate (recovery values between 95 and 98%).
Subject(s)
Arginine/analysis , Electrophoresis, Capillary/methods , Ibuprofen/analysis , Electric ConductivityABSTRACT
Cocaine is one of the most frequently used illicit drug in the world. Therefore, the development of simple and fast methods for the detection of cocaine and common adulterants, diluents and impurities are extremely important in forensic investigations. The present study describes, for the first time, a method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) for the rapid (2.5 min) and simultaneous quantification of cocaine, levamisole, lidocaine, carbonate, borate, chloride, nitrate, nitrite and sulphate. In the experiment, anions were separated in co-electroosmotic mode and cations in counter-electroosmotic mode employing a buffer solution composed by 10.0 mmol L-1 TAPS, 12 mmol L-1 NaOH and 0.2 mmol L-1 CTAB as the background electrolyte (pH = 8.8). The developed CE method demonstrated some interesting analytical characteristics such as: (i) a simple sample pretreatment step (only dilution in water and filtering), (ii) high-throughput screening (24 injections h-1), (iii) proper recovery values (between 72 and 118%), and (iv) an inter-day precision of less than 7% for all analytes. The procedure was successfully applied in the analysis of seized cocaine samples collected by the Integrated Forensics Post (PPI) of the Minas Gerais Civil Police (Uberaba, Minas Gerais State, Brazil), during the year of 2018.
Subject(s)
Cocaine/analysis , High-Throughput Screening Assays , Illicit Drugs/analysis , Electric Conductivity , Electrophoresis, Capillary , Hydrogen-Ion ConcentrationABSTRACT
Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20â fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes.
ABSTRACT
Arginine (ARG), ascorbic acid (ASC) and aspartic acid (ASP) are very popular and widely consumed active ingredients used for fatigue treatment or improvement of physical performance. For this reason, these compounds are usually available in the same pharmaceutical formulation. In the current paper, we describe for the first-time methods for simultaneous determination of ARG, ASC and ASP using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) and with UV spectrophotometric detection (CE-UV). The proposed methods are simple, rapid (78 and 23 injections h-1, respectively) and have low environmental impact (minimal waste generation). The separation by CE-C4D was achieved with a background electrolyte (BGE) composed by 20â¯mmolâ¯L-1 N-tris(hydroxymethyl)- methyl]-3-aminopropanesulfonic acid (TAPS) and 10â¯mmolâ¯L-1 of NaOH (pH 8.7). The limits of detection (LOD) were 0.01, 0.02 and 0.04â¯mmolâ¯L-1 for ARG, ASC and ASP, respectively. The proposed CE-UV method was optimized with a BGE composed by 10â¯mmolâ¯L-1 sodium tetraborate (pH 9.4). The limits of detection (LOD) were 0.03, 0.02 and 0.04â¯mmolâ¯L-1 for ARG, ASC and ASP, respectively. No statistically significant differences were observed (95% confidence level) between the results obtained by the developed CE methods and reference procedures (HPLC for ARG, iodometry for ASC and, acid-base titration for ASP).
ABSTRACT
BACKGROUND: The resources of ultrafast technology can be used to add another analysis to ultrasound imaging: assessment of tissue viscoelasticity. Ultrafast image formation can be utilized to find transitory shear waves propagating in soft tissue, which permits quantification of the mechanical properties of the tissue via elastography. This technique permits simple and noninvasive diagnosis and monitoring of disease. METHODS: This article presents a method to estimate the viscoelastic properties and rigidity of structures using the ultrasound technique known as shear wave elasticity imaging (SWEI). The Verasonics Vantage 128 research platform and L11-4v transducer were used to acquire radio frequency signals from a model 049A elastography phantom (CIRS, USA), with subsequent processing and analysis in MATLAB. RESULTS: The images and indexes obtained reflect the qualitative measurements of the different regions of inclusions in the phantom and the respective alterations in the viscoelastic properties of distinct areas. Comparison of the results obtained with this proposed technique and other commonly used techniques demonstrates the characteristics of median filtering in smoothing variations in velocity to form elastographic images. The results from the technique proposed in this study are within the margins of error indicated by the phantom manufacturer for each type of inclusion; for the phantom base and for type I, II, III, and IV inclusions, respectively, in kPa and percentage errors, these are 25 (24.0%), 8 (37.5%), 14 (28.6%), 45 (17.8%), and 80 (15.0%). The values obtained using the method proposed in this study and mean percentage errors were 29.18 (- 16.7%), 10.26 (- 28.2%), 15.64 (- 11.7%), 45.81 (- 1.8%), and 85.21 (- 6.5%), respectively. CONCLUSIONS: The new technique to obtain images uses a distinct filtering function which considers the mean velocity in the region around each pixel, in turn allowing adjustments according to the characteristics of the phantom inclusions within the ultrasound and optimizing the resulting elastographic images.
Subject(s)
Elasticity Imaging Techniques , Image Processing, Computer-Assisted/methods , Algorithms , Phantoms, Imaging , Time FactorsABSTRACT
A vitrificação é uma alternativa viável ao método de criopreservação clássica e consiste na utilização de altas concentrações de agente crioprotetores e rápida congelação, tendo como principal vantagem à não formação de cristais de gelo. Esta técnica é acessível por apresentar facilidade, rapidez e baixo custo para sua produção, não necessitando de grandes equipamentos, apresentando-se com grande potencial a ser explorado. Portanto, objetivouse com esta revisão descrever as principais características da vitrificação, bem como os resultados obtidos com sêmen de em caprinos e ovinos e as perspectivas para a utilização desta técnica.
Vitrification is a viable alternative to the classical cryopreservation method and consists in the use of high concentrations of cryoprotectants and fast freezing, having as the main advantage the absence of ice crystals formation. The feasibility of this technique is related to be easy, fast and with low cost of execution, since no expensive equipment is needed, presenting a high potential for investigation. Therefore, the objective of this review was to describe the characteristics of vitrification, as well as the results obtained with sheep and goat semen, and the perspectives for the adoption of this technique.
Subject(s)
Male , Animals , Cryopreservation/veterinary , Ruminants/embryology , Ruminants/genetics , Vitrification , SpermatozoaABSTRACT
A vitrificação é uma alternativa viável ao método de criopreservação clássica e consiste na utilização de altas concentrações de agente crioprotetores e rápida congelação, tendo como principal vantagem à não formação de cristais de gelo. Esta técnica é acessível por apresentar facilidade, rapidez e baixo custo para sua produção, não necessitando de grandes equipamentos, apresentando-se com grande potencial a ser explorado. Portanto, objetivouse com esta revisão descrever as principais características da vitrificação, bem como os resultados obtidos com sêmen de em caprinos e ovinos e as perspectivas para a utilização desta técnica.(AU)
Vitrification is a viable alternative to the classical cryopreservation method and consists in the use of high concentrations of cryoprotectants and fast freezing, having as the main advantage the absence of ice crystals formation. The feasibility of this technique is related to be easy, fast and with low cost of execution, since no expensive equipment is needed, presenting a high potential for investigation. Therefore, the objective of this review was to describe the characteristics of vitrification, as well as the results obtained with sheep and goat semen, and the perspectives for the adoption of this technique.(AU)
Subject(s)
Animals , Male , Ruminants/embryology , Ruminants/genetics , Vitrification , Cryopreservation/veterinary , SpermatozoaABSTRACT
Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were non-invasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.
ABSTRACT
Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium (X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa, which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa, which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.
Subject(s)
Diketopiperazines/pharmacology , Peptones/chemistry , Xylella/drug effects , Carbon/chemistry , Caseins/chemistry , Chromatography, Liquid , Diketopiperazines/chemical synthesis , Diketopiperazines/chemistry , Peptones/chemical synthesis , Peptones/pharmacology , Protein Hydrolysates/chemistry , Spectrometry, Mass, Electrospray Ionization , Xylella/growth & developmentABSTRACT
Cesium lead halide perovskite quantum dots (PQDs) have emerged as a promising new platform for lighting applications. However, to date, light emitting diodes (LED) based on these materials exhibit limited efficiencies. One hypothesized limiting factor is fast nonradiative multiexciton Auger recombination. Using ultrafast spectroscopic techniques, we investigate multicarrier interaction and recombination mechanisms in cesium lead halide PQDs. By mapping the dependence of the biexciton Auger lifetime and the biexciton binding energy on nanomaterial size and composition, we find unusually strong Coulomb interactions among multiexcitons in PQDs. This results in weakly emissive biexcitons and trions, and accounts for low light emission efficiencies. We observe that, for strong confinement, the biexciton lifetime depends linearly on the PQD volume. This dependence becomes sublinear in the weak confinement regime as the PQD size increases beyond the Bohr radius. We demonstrate that Auger recombination is faster in PQDs compared to CdSe nanoparticles having the same volume, suggesting a stronger Coulombic interaction in the PQDs. We confirm this by demonstrating an increased biexciton binding energy, which reaches a maximum of about 100 meV, fully three times larger than in CdSe quantum dots. The biexciton shift can lead to low-threshold optical gain in these materials. These findings also suggest that materials engineering to reduce Coulombic interaction in cesium lead halide PQDs could improve prospects for high efficiency optoelectronic devices. Core-shell structures, in particular type-II nanostructures, which are known to reduce the bandedge Coulomb interaction in CdSe/CdS, could beneficially be applied to PQDs with the goal of increasing their potential in lighting applications.
ABSTRACT
Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer.