ABSTRACT
This work presents a weekly carbon isotope composition analysis (June 2017-January 2018) of carbon dioxide (CO2) and methane (CH4) in a tropical urban atmosphere (Central Valley, Costa Rica). δ13C values of CO2 and CH4 ranged from -12.2 to -5.9 , and from -51.6 to -46.3 , respectively. Mixing ratios of CO2 and CH4 varied from 384.2 to 528.5 ppmv, and from 1.860 to 2.613 ppmv, respectively. δ13C spatial variation and mixing ratios of CO2 and CH4 were influenced by the atmospheric stability and air circulation patterns in the metropolitan area. Low δ13C values and large mixing ratios were observed in the southwestern area of the valley during the rainiest period (September-November). Preliminary linear relationships between reciprocal CO2 mixing ratios and δ13C values indicate that CO2 emissions in the Central Valley are probably related to respiration processes and fossil fuel combustion, although CO2 enriched in 13C from volcanic degassing was also detected. Under stable atmospheric conditions, CH4 data seems to reflect the influence of emissions near the sampling sites. These preliminary results based on the carbon isotope technique demonstrate potential for carrying out atmospheric studies at tropical urban locations with different terrain characteristics and atmospheric mixing conditions.
Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Carbon Dioxide/analysis , Carbon Isotopes/analysis , Environmental Monitoring/methods , Methane/analysis , Costa RicaABSTRACT
In this study passive air samplers containing polyurethane foam (PUF) disks were deployed in three cities across Chile; Santiago (STG) (n=5, sampling sites), ConcepciÏn (CON) (n=6) and Temuco (TEM) (n=6) from 2008 to 2009. Polychlorinated biphenyls (PCBs) (7 indicator congeners), chlorinated pesticides hexachlorocyclohexanes (HCHs), dichlorodiphenyl trichloroethanes (DDTs) and flame retardants such as polybrominated diphenyl ethers (PBDEs) were determined by gas chromatography coupled mass spectrometry (GC/MS). A sampling rate (R) typical of urban sites (4m3/day) was used to estimate the atmospheric concentrations of individual compounds. PCB concentrations in the air (pg/m3) ranged from ~1-10 (TEM), ~1-40 (STG) and 4-30 (CON). Higher molecular weight PCBs (PCB-153, -180) were detected at industrial sites (in Concepción). The HCHs showed a prevalence of γ-HCH across all sites, indicative of inputs from the use of lindane but a limited use of technical HCHs in Chile. DDTs were detected with a prevalence of p,p'-DDE accounting for ~50% of the total DDTs. PBDE concentrations in air (pg/m3) ranged from 1 to 55 (STG), 0.5 to 20 (CON) and from 0.4 to 10 (TEM), and were generally similar to those reported for many other urban areas globally. The pattern of PBDEs was different among the three cities; however, PBDE-209 was dominant at most of the sites. These results represent one of the few assessments of air concentrations of POPs across different urban areas within the same country. These data will support Chilean commitments as a signatory to the Stockholm Convention on POPs and for reporting as a member country of the Group of Latin America and Caribbean Countries (GRULAC) region.