Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Vet Sci ; 11: 1359421, 2024.
Article in English | MEDLINE | ID: mdl-38840631

ABSTRACT

Porcine circovirus disease (PCV) causes substantial economic losses in the pig industry, primarily from porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3). Novel vaccines are necessary to prevent and control PCV infections. PCV coat proteins are crucial for eliciting immunogenic proteins that induce the production of antibodies and immune responses. A vaccine platform utilizing Semliki Forest virus RNA replicons expressing vesicular stomatitis virus glycoprotein (VSV-G), was recently developed. This platform generates virus-like vesicles (VLVs) containing VSV-G exclusively, excluding other viral structural proteins. In our study, we developed a novel virus-like vesicle vaccine by constructing recombinant virus-like vesicles (rVLVs) that also express EGFP. These rVLVs were created using the RNA replicon of Venezuelan equine encephalomyelitis (VEEV) and New Jersey serotype VSV-G. The rVLVs underwent characterization and safety evaluation in vitro. Subsequently, rVLVs expressing PCV2d-Cap and PCV3-Cap proteins were constructed. Immunization of C57 mice with these rVLVs led to a significant increase in anti-porcine circovirus type 2 and type 3 capsid protein antibodies in mouse serum. Additionally, a cellular immune response was induced, as evidenced by high production of IFN-γ and IL-4 cytokines. Overall, this study demonstrates the feasibility of developing a novel porcine circovirus disease vaccine based on rVLVs.

2.
MAbs ; 16(1): 2297451, 2024.
Article in English | MEDLINE | ID: mdl-38170638

ABSTRACT

The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.


Subject(s)
Antibodies, Viral , Encephalitis Virus, Venezuelan Equine , Animals , Horses , Humans , Encephalitis Virus, Venezuelan Equine/genetics , Antibodies, Neutralizing/pharmacology , Receptors, Fc , Immunoglobulin G
3.
Bioorg Med Chem Lett ; 94: 129432, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591319

ABSTRACT

Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Animals , Humans , Antimetabolites , Antiviral Agents/pharmacology , Deoxyuridine , Horses , Immunosuppressive Agents
4.
Viruses ; 15(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37376607

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Humans , Horses , Mice , Animals , Tumor Necrosis Factor-alpha , Encephalitis Virus, Venezuelan Equine/physiology , Brain , Inflammation/pathology , Chemokines , Leukocytes
5.
Int J Biol Macromol ; 245: 125514, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37353130

ABSTRACT

Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, nucleic acid, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Viral Vaccines , Animals , Horses , Humans , Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/prevention & control , Vaccines, Inactivated , Vaccine Development
6.
Viruses ; 15(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36992416

ABSTRACT

INTRODUCTION: Eastern equine encephalitis virus (EEEV) and Venezuelan equine encephalitis virus (VEEV) viruses are zoonotic pathogens affecting humans, particularly equines. These neuroarboviruses compromise the central nervous system and can be fatal in different hosts. Both have significantly influenced Colombia; however, few studies analyse its behaviour, and none develop maps using geographic information systems to characterise it. OBJECTIVE: To describe the temporal-spatial distribution of those viruses in Colombia between 2008 and 2019. METHODS: Retrospective cross-sectional descriptive study, based on weekly reports by municipalities of the ICA, of the surveillance of both arboviruses in equines, in Colombia, from 2008 to 2019. The data were converted into databases in Microsoft Access 365®, and multiple epidemiological maps were generated with the Kosmo RC1®3.0 software coupled to shape files of all municipalities in the country. RESULTS: In the study period, 96 cases of EEE and 70 of VEE were reported, with 58% of EEE cases occurring in 2016 and 20% of EEV cases in 2013. The most affected municipalities for EEE corresponded to the department of Casanare: Yopal (20), Aguazul (16), and Tauramena (10). In total, 40 municipalities in the country reported ≥1 case of EEE. CONCLUSIONS: The maps allow a quick appreciation of groups of neighbouring municipalities in different departments (1° political division) and regions of the country affected by those viruses, which helps consider the expansion of the disease associated with mobility and transport of equines between other municipalities, also including international borders, such as is the case with Venezuela. In that country, especially for EEV, municipalities in the department of Cesar are bordering and at risk for that arboviral infection. there is a high risk of equine encephalitis outbreaks, especially for VEE. This poses a risk also, for municipalities in the department of Cesar, bordering with Venezuela.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Horses , Animals , Colombia/epidemiology , Cross-Sectional Studies , Encephalomyelitis, Venezuelan Equine/epidemiology , Geographic Information Systems , Horses/virology , Retrospective Studies
7.
Viruses ; 15(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36851628

ABSTRACT

Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.


Subject(s)
Alphavirus , Encephalomyelitis, Equine , Animals , Horses , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Encephalomyelitis, Equine/drug therapy , Disease Outbreaks , Venezuela
8.
Viruses ; 15(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36851630

ABSTRACT

Arthropod-borne viruses (arboviruses) are a diverse group of ribonucleic acid (RNA) viruses, with the exception of African swine fever virus, that are transmitted by hematophagous arthropods to a vertebrate host. They are the important cause of many diseases due to their ability to spread in different environments and their diversity of vectors. Currently, there is no information on the geographical distribution of the diseases because the routes of transmission and the mammals (wild or domestic) that act as potential hosts are poorly documented or unknown. We conducted a systematic review from 1967 to 2021 to identify the diversity of arboviruses, the areas, and taxonomic groups that have been monitored, the prevalence of positive records, and the associated risk factors. We identified forty-three arboviruses in nine mammalian orders distributed in eleven countries. In Brazil, the order primates harbor the highest number of arbovirus records. The three most recorded arboviruses were Venezuelan equine encephalitis, Saint Louis encephalitis and West Nile virus. Serum is the most used sample to obtain arbovirus records. Deforestation is identified as the main risk factor for arbovirus transmission between different species and environments (an odds ratio of 1.46 with a 95% confidence interval: 1.34-1.59). The results show an increase in the sampling effort over the years in the neotropical region. Despite the importance of arboviruses for public health, little is known about the interaction of arboviruses, their hosts, and vectors, as some countries and mammalian orders have not yet been monitored. Long-term and constant monitoring allows focusing research on the analysis of the interrelationships and characteristics of each component animal, human, and their environment to understand the dynamics of the diseases and guide epidemiological surveillance and vector control programs. The biodiversity of the Neotropics should be considered to support epidemiological monitoring strategies.


Subject(s)
African Swine Fever Virus , Arboviruses , Animals , Swine , Horses , Humans , Mammals , Public Health , Epidemiological Monitoring
9.
Virus Res ; 328: 199081, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36854361

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is an emerging zoonotic virus in the alphavirus genus. It can be transmitted to humans due to spillover from equid-mosquito cycles. The symptoms caused by VEEV include fever, headache, myalgia, nausea, and vomiting. It can also cause encephalitis in severe cases. The evolutionary features of VEEV are largely unknown. In this study, we comprehensively analyzed the codon usage pattern of VEEV by computing a variety of indicators, such as effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), on 130 VEEV coding sequences retrieved from GenBank. The results showed that the codon usage bias of VEEV is relatively low. ENc-GC3s plot, neutrality plot, and CAI-ENc correlation analyses supported that translational selection plays an important role in shaping the codon usage pattern of VEEV whereas the mutation pressure has a minor influence. Analysis of RSCU values showed that most of the preferred codons in VEEV are C/G-ended. Analysis of dinucleotide composition found that all CG- and UA-containing codons are not preferentially used. Phylogenetic analysis showed that VEEV isolates can be clustered into three genera and evolutionary force affects the codon usage pattern. Furthermore, a correspondence analysis (COA) showed that aromaticity and hydrophobicity as well as geographical distribution also have certain effects on the codon usage variation of VEEV, suggesting the possible involvement of translational selection. Overall, the codon usage of VEEV is comparatively slight and translational selection might be the main factor that shapes the codon usage pattern of VEEV. This study will promote our understanding about the evolution of VEEV and its host adaption, and might provide some clues for preventing the cross-species transmission of VEEV.


Subject(s)
Codon Usage , Encephalitis Virus, Venezuelan Equine , Animals , Humans , Encephalitis Virus, Venezuelan Equine/genetics , Phylogeny , Selection, Genetic , Codon , Mutation , Evolution, Molecular
10.
Vet Sci ; 9(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35737310

ABSTRACT

Venezuelan Equine Encephalitis virus (VEEV) is an arboviral pathogen in tropical America that causes lethal encephalitis in horses and humans. VEEV is classified into six subtypes (I to VI). Subtype I viruses are divided into epizootic (IAB and IC) and endemic strains (ID and IE) that can produce outbreaks or sporadic diseases, respectively. The objective of this study was to reconstruct the phylogeny and the molecular clock of sequences of VEEV subtype I complex and identify mutations within sequences belonging to epizootic or enzootic subtypes focusing on a sequence isolated from a mare in Costa Rica. Bayesian phylogeny of the VEEV subtype I complex tree with 110 VEEV complete genomes was analyzed. Evidence of positive selection was evaluated with Datamonkey server algorithms. The putative effects of mutations on the 3D protein structure in the Costa Rica sequence were evaluated. The phylogenetic analysis showed that Subtype IE-VEEV diverged earlier than other subtypes, Costa Rican VEEV-IE ancestors came from Nicaragua in 1963 and Guatemala in 1907. Among the observed non-synonymous mutations, only 17 amino acids changed lateral chain groups. Fourteen mutations located in the NSP3, E1, and E2 genes are unique in this sequence, highlighting the importance of E1-E2 genes in VEEV evolution.

11.
Virulence ; 12(1): 430-443, 2021 12.
Article in English | MEDLINE | ID: mdl-33487119

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs). Furthermore, after subarachnoid hemorrhage in mice, MMP-9 is upregulated in the brain and mediates BBB permeability in a toll-like receptor 4 (TLR4)-dependent manner. Here, we demonstrate that disease in C3H mice during VEEV TC-83 infection is dependent on TLR4 because intranasal infection of C3H/HeN (TLR4 WT ) mice with VEEV TC-83 resulted in mortality as opposed to survival of TLR4-defective C3H/HeJ (TLR4 mut ) mice. In addition, BBB permeability was induced to a lesser extent in TLR4 mut mice compared with TLR4 WT mice during VEEV TC-83 infection as determined by sodium fluorescein and fluorescently-conjugated dextran extravasation. Moreover, MMP-9, MMP-2, ICAM-1, CCL2 and IFN-γ were all induced to significantly lower levels in the brains of infected TLR4 mut mice compared with infected TLR4 WT mice despite the absence of significantly different viral titers or immune cell populations in the brains of infected TLR4 WT and TLR4 mut mice. These data demonstrate the critical role of TLR4 in mediating BBB permeability and disease in C3H mice during VEEV TC-83 infection, which suggests that TLR4 is a potential target for the development of therapeutics for VEEV.


Subject(s)
Blood-Brain Barrier/metabolism , Encephalitis Virus, Venezuelan Equine/pathogenicity , Toll-Like Receptor 4/genetics , Animals , Brain/virology , Disease Models, Animal , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/virology , Female , Mice , Mice, Inbred C3H , Permeability , Toll-Like Receptor 4/metabolism , Virus Replication
12.
Molecules ; 25(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321815

ABSTRACT

In recent years, intrinsically disordered proteins (IDPs) and disordered domains have attracted great attention. Many of them contain linear motifs that mediate interactions with other factors during formation of multicomponent protein complexes. NMR spectrometry is a valuable tool for characterizing this type of interactions on both amino acid (aa) and atomic levels. Alphaviruses encode a nonstructural protein nsP3, which drives viral replication complex assembly. nsP3 proteins contain over 200-aa-long hypervariable domains (HVDs), which exhibits no homology between different alphavirus species, are predicted to be intrinsically disordered and appear to be critical for alphavirus adaptation to different cells. Previously, we have shown that nsP3 HVD of chikungunya virus (CHIKV) is completely disordered with low tendency to form secondary structures in free form. In this new study, we used novel NMR approaches to assign the spectra for the nsP3 HVD of Venezuelan equine encephalitis virus (VEEV). The HVDs of CHIKV and VEEV have no homology but are both involved in replication complex assembly and function. We have found that VEEV nsP3 HVD is also mostly disordered but contains a short stable α-helix in its C-terminal fragment, which mediates interaction with the members of cellular Fragile X syndrome protein family. Our NMR data also suggest that VEEV HVD has several regions with tendency to form secondary structures.


Subject(s)
Encephalitis Virus, Venezuelan Equine/enzymology , Magnetic Resonance Spectroscopy , Protein Interaction Domains and Motifs , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Animals , Chemical Fractionation , Intrinsically Disordered Proteins/chemistry , Protein Binding , Solubility , Structure-Activity Relationship , Viral Nonstructural Proteins/isolation & purification
13.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081394

ABSTRACT

The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.


Subject(s)
Encephalitis Virus, Venezuelan Equine/enzymology , Viral Proteases/chemistry , Catalytic Domain , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Substrate Specificity , Viral Proteases/genetics , Viral Proteases/metabolism
14.
J Equine Vet Sci ; 92: 103140, 2020 09.
Article in English | MEDLINE | ID: mdl-32797803

ABSTRACT

Eastern equine encephalitis and Venezuelan equine encephalitis are endemic neglected tropical diseases in the Americas, causing encephalitis in both horses and humans. In 2013, a cross-sectional study was performed in 243 horses located in the highlands and lowlands throughout Costa Rica. Serum samples were analyzed with an IgG ELISA and confirmed by the plaque-reduction neutralization test (PRNT80). Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) overall seroprevalences by the PRNT80 were 36% (95% confidence interval [CI]: 29.9-42.5; 78/217 horses) and 3% (95% CI: 1.3-5.9; 6/217 horses), respectively. Both the viruses occurred in the lowlands and highlands. Rainfall and altitude were associated with VEEV seropositivity in the univariate analysis, but only altitude <100 meters above sea level was considered a risk factor in the multivariate analysis. No risk factors could be identified for the EEEV in the multivariate analysis. This is the first study that estimates the seroprevalence of the EEEV and VEEV in Costa Rican horses. The VEEV is widely distributed, whereas the EEEV occurs at a much lower frequency and only in specific areas. Clinical cases and occasional outbreaks of both viruses are to be expected.


Subject(s)
Encephalomyelitis, Eastern Equine , Encephalomyelitis, Venezuelan Equine , Horse Diseases , Animals , Costa Rica/epidemiology , Cross-Sectional Studies , Encephalomyelitis, Eastern Equine/veterinary , Encephalomyelitis, Venezuelan Equine/veterinary , Horse Diseases/epidemiology , Horses , Risk Factors , Seroepidemiologic Studies
15.
Vaccines (Basel) ; 8(2)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503232

ABSTRACT

Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.

16.
Vaccine ; 38(17): 3378-3386, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32085953

ABSTRACT

Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations. The population of V4020 vaccine virus derived from pMG4020-transfected Vero cells was characterized by next generation sequencing (NGS) and indicated no detectable genetic reversions. Cynomolgus macaques were vaccinated with V4020 vaccine virus. After one or two vaccinations including by intramuscular route, high levels of virus-neutralizing antibodies were confirmed with no viremia or apparent adverse reactions to vaccinations. The protective effect of vaccination was evaluated using an aerosol challenge with VEEV. After challenge, macaques had no detectable viremia, demonstrating a protective effect of vaccination with live V4020 VEEV vaccine.


Subject(s)
Encephalomyelitis, Venezuelan Equine , Viral Vaccines/immunology , Aerosols , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chlorocebus aethiops , Encephalitis Virus, Venezuelan Equine/genetics , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/prevention & control , Macaca , Vero Cells , Viral Vaccines/genetics , Viremia/prevention & control
17.
J Virol Methods ; 277: 113792, 2020 03.
Article in English | MEDLINE | ID: mdl-31786314

ABSTRACT

The challenges associated with operating electron microscopes (EM) in biosafety level 3 and 4 containment facilities have slowed progress of cryo-EM studies of high consequence viruses. We address this gap in a case study of Venezuelan Equine Encephalitis Virus (VEEV) strain TC-83. Chemical inactivation of viruses may physically distort structure, and hence to verify retention of native structure, we selected VEEV strain TC-83 to develop this methodology as this virus has a 4.8 Šresolution cryo-EM structure. In our method, amplified VEEV TC-83 was concentrated directly from supernatant through a 30 % sucrose cushion, resuspended, and chemically inactivated with 1 % glutaraldehyde. A second 30 % sucrose cushion removed any excess glutaraldehyde that might interfere with single particle analyses. A cryo-EM map of fixed, inactivated VEEV was determined to a resolution of 7.9 Å. The map retained structural features of the native virus such as the icosahedral symmetry, and the organization of the capsid core and the trimeric spikes. Our results suggest that our strategy can easily be adapted for inactivation of other enveloped, RNA viruses requiring BSL-3 or BSL-4 for cryo-EM. However, the validation of inactivation requires the oversight of Biosafety Committee for each Institution.


Subject(s)
Cryoelectron Microscopy/methods , Encephalitis Virus, Venezuelan Equine/physiology , RNA Viruses/physiology , Virus Inactivation , Animals , Capsid/chemistry , Capsid Proteins , Cell Line , Chlorocebus aethiops , Containment of Biohazards/methods , Encephalitis Virus, Venezuelan Equine/genetics , Glutaral/chemistry , Glutaral/metabolism , Horses , Vero Cells , Virology/methods , Virus Replication
18.
Antiviral Res ; 174: 104674, 2020 02.
Article in English | MEDLINE | ID: mdl-31816348

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is endemic to the Americas. VEEV outbreaks occur periodically and cause encephalitis in both humans and equids. There are currently no therapeutics or vaccines for treatment of VEEV in humans. Our group has previously reported on the development of a benzamidine VEEV inhibitor, ML336, which shows potent antiviral activity in both in vitro and in vivo models of infection. In cell culture experiments, ML336 inhibits viral RNA synthesis when added 2-4 h post-infection, and mutations conferring resistance occur within the viral nonstructural proteins (nsP2 and nsP4). We hypothesized that ML336 targets an activity of the viral replicase complex and inhibits viral RNA synthesis. To test this hypothesis, we employed various biochemical and cellular assays. Using structural analogues of ML336, we demonstrate that the cellular antiviral activity of these compounds correlates with their inhibition of viral RNA synthesis. For instance, the IC50 of ML336 for VEEV RNA synthesis inhibition was determined as 1.1 nM, indicating potent anti-RNA synthesis activity in the low nanomolar range. While ML336 efficiently inhibited VEEV RNA synthesis, a much weaker effect was observed against the Old World alphavirus Chikungunya virus (IC50 > 4 µM), agreeing with previous data from a cell based assay. Using a tritium incorporation assay, we demonstrated that there was no significant inhibition of cellular transcription. With a combination of fluorography, strand-specific qRT-PCR, and tritium incorporation, we demonstrated that ML336 inhibits the synthesis of the positive sense genomic, negative sense template, and subgenomic RNAs of VEEV. Based on these results, we propose that the mechanism of action for this class of antiviral compounds is inhibition of viral RNA synthesis through interaction with the viral replicase complex.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Encephalitis Virus, Venezuelan Equine/drug effects , Nucleic Acid Synthesis Inhibitors/pharmacology , Piperazines/pharmacology , RNA, Viral/antagonists & inhibitors , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Encephalomyelitis, Venezuelan Equine/drug therapy , Encephalomyelitis, Venezuelan Equine/virology , Horses , Host Microbial Interactions/drug effects , Inhibitory Concentration 50 , Kidney/cytology , RNA, Viral/biosynthesis , Vero Cells
19.
Virology ; 539: 121-128, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31733451

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a neurotropic virus that causes significant disease in both humans and equines. Here we characterized the impact of VEEV on signaling pathways regulating cell death in human primary astrocytes. VEEV productively infected primary astrocytes and caused an upregulation of early growth response 1 (EGR1) gene expression at 9 and 18 h post infection. EGR1 induction was dependent on extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), but not on p38 mitogen activated protein kinase (MAPK) or phosphoinositide 3-kinase (PI3K) signaling. Knockdown of EGR1 significantly reduced VEEV-induced apoptosis and impacted viral replication. Knockdown of ERK1/2 or PERK significantly reduced EGR1 gene expression, dramatically reduced viral replication, and increased cell survival as well as rescued cells from VEEV-induced apoptosis. These data indicate that EGR1 activation and subsequent cell death are regulated through ERK and PERK pathways in VEEV infected primary astrocytes.


Subject(s)
Cell Death , Early Growth Response Protein 1/genetics , Encephalitis Virus, Venezuelan Equine/physiology , Encephalomyelitis, Venezuelan Equine/virology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , eIF-2 Kinase/metabolism , Apoptosis , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/virology , Cell Survival , Cells, Cultured , Early Growth Response Protein 1/metabolism , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalomyelitis, Venezuelan Equine/metabolism , Encephalomyelitis, Venezuelan Equine/pathology , Gene Expression , Gene Knockdown Techniques , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Signal Transduction , Virus Replication , eIF-2 Kinase/genetics
20.
Front Chem ; 8: 573121, 2020.
Article in English | MEDLINE | ID: mdl-33505952

ABSTRACT

The development of new drugs is costly and time-consuming, with estimates of over $US1 billion and 15 years for a product to reach the market. As understanding of the molecular basis of disease improves, various approaches have been used to target specific molecular interactions in the search for effective drugs. These include high-throughput screening (HTS) for novel drug identification and computer-aided drug design (CADD) to assess the properties of putative drugs before experimental work begins. We have applied conventional HTS and CADD approaches to the problem of identifying antiviral compounds to limit infection by Venezuelan equine encephalitis virus (VEEV). Nuclear targeting of the VEEV capsid (CP) protein through interaction with the host nuclear import machinery has been shown to be essential for viral pathogenicity, with viruses incapable of this interaction being greatly attenuated. Our previous conventional HTS and in silico structure-based drug design (SBDD) screens were successful in identifying novel inhibitors of CP interaction with the host nuclear import machinery, thus providing a unique opportunity to assess the relative value of the two screening approaches directly. This focused review compares and contrasts the two screening approaches, together with the properties of the inhibitors identified, as a case study for parallel use of the two approaches to identify antivirals. The utility of SBDD screens, especially when used in parallel with traditional HTS, in identifying agents of interest to target the host-pathogen interface is highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL