Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 23019, 2024 10 03.
Article in English | MEDLINE | ID: mdl-39362865

ABSTRACT

This manuscript proposes an automatic reading detection system for an analogue gauge using a combination of deep learning, machine learning, and image processing. The study suggests image-processing techniques in manual analogue gauge reading that include generating readings for the image to provide supervised data to address difficulties in unsupervised data in gauges and to achieve better accuracy using DenseNet 169 compared to other approaches. The model uses artificial intelligence to automate reading detection using deep transfer learning models like DenseNet 169, InceptionNet V3, and VGG19. The models were trained using 1011 labeled pictures, 9 classes, and readings from 0 to 8. The VGG19 model exhibits a high training precision of 97.00% but a comparatively lower testing precision of 75.00%, indicating the possibility of overfitting. On the other hand, InceptionNet V3 demonstrates consistent precision across both datasets, but DenseNet 169 surpasses other models in terms of precision and generalization capabilities.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Humans , Reading , Artificial Intelligence , Neural Networks, Computer
2.
Heliyon ; 10(19): e37745, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39386823

ABSTRACT

Acute myeloid leukemia (AML) is a highly aggressive cancer form that affects myeloid cells, leading to the excessive growth of immature white blood cells (WBCs) in both bone marrow and peripheral blood. Timely AML detection is crucial for effective treatment and patient well-being. Currently, AML diagnosis relies on the manual recognition of immature WBCs through peripheral blood smear analysis, which is time-consuming, prone to errors, and subject to inter-observers' variation. This study aimed to develop a computer-aided diagnostic framework for AML, called "CAE-ResVGG FusionNet", that precisely identifies and classifies immature WBCs into their respective subtypes. The proposed framework leverages an integrated approach, by combining a convolutional autoencoder (CAE) with finely tuned adaptations of the VGG19 and ResNet50 architectures to extract features from CAE-derived embeddings. The process begins with a binary classification model distinguishing between mature and immature WBCs followed by a multiclassifier further classifying immature cells into four subtypes: myeloblasts, monoblasts, erythroblasts, and promyelocytes. The CAE-ResVGG FusionNet workflow comprises four primary stages, including data preprocessing, feature extraction, classification, and validation. The preprocessing phase involves applying data augmentation methods using geometric transformations and synthetic image generation using the CAE to address imbalance in the WBC distribution. Feature extraction involves image embedding and transfer learning, where CAE-derived image representations are used by a custom integrated model of VGG19 and ResNet50 pretrained models. The classification phase employs a weighted ensemble approach that leverages VGG19 and ResNet50, where the optimal weighting parameters are selected using a grid search. The model performance was assessed during the validation phase using the overall accuracy, precision, and sensitivity, while the area under the receiver characteristic curve (AUC) was used to evaluate the model's discriminatory capability. The proposed framework exhibited notable results, achieving an average accuracy of 99.9%, sensitivity of 91.7%, and precision of 98.8%. The model demonstrated exceptional discriminatory ability, as evidenced by an AUC of 99.6%. Significantly, the proposed system outperformed previous methods, indicating its superior diagnostic ability.

3.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275484

ABSTRACT

As a mature non-destructive testing technology, near-infrared (NIR) spectroscopy can effectively identify and distinguish the structural characteristics of wood. The Wood Defect One-Dimensional Visual Geometry Group 19-Finite Element Analysis (WD-1D-VGG19-FEA) algorithm is used in this study. 1D-VGG19 classifies the near-infrared spectroscopy data to determine the knot area, fiber deviation area, transition area, and net wood area of the solid wood board surface and generates a two-dimensional image of the board surface through inversion. Then, the nonlinear three-dimensional model of wood with defects was established by using the inverse image, and the finite element analysis was carried out to predict the elastic modulus of wood. In the experiment, 270 points were selected from each of the four regions of the wood, totaling 1080 sets of near-infrared data, and the 1D-VGG19 model was used for classification. The results showed that the identification accuracy of the knot area was 95.1%, the fiber deviation area was 92.7%, the transition area was 90.2%, the net wood area was 100%, and the average accuracy was 94.5%. The error range of the elastic modulus prediction of the three-dimensional model established by the VGG19 classification model in the finite element analysis is between 2% and 10%, the root mean square error (RMSE) is about 598. 2, and the coefficient of determination (R2) is 0. 91. This study shows that the combination of the VGG19 algorithm and finite element analysis can accurately describe the nonlinear defect morphology of wood, thus establishing a more accurate prediction model of wood mechanical properties to maximize the use of wood mechanical properties.

4.
J Imaging Inform Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138748

ABSTRACT

Pneumonia is a severe health concern, particularly for vulnerable groups, needing early and correct classification for optimal treatment. This study addresses the use of deep learning combined with machine learning classifiers (DLxMLCs) for pneumonia classification from chest X-ray (CXR) images. We deployed modified VGG19, ResNet50V2, and DenseNet121 models for feature extraction, followed by five machine learning classifiers (logistic regression, support vector machine, decision tree, random forest, artificial neural network). The approach we suggested displayed remarkable accuracy, with VGG19 and DenseNet121 models obtaining 99.98% accuracy when combined with random forest or decision tree classifiers. ResNet50V2 achieved 99.25% accuracy with random forest. These results illustrate the advantages of merging deep learning models with machine learning classifiers in boosting the speedy and accurate identification of pneumonia. The study underlines the potential of DLxMLC systems in enhancing diagnostic accuracy and efficiency. By integrating these models into clinical practice, healthcare practitioners could greatly boost patient care and results. Future research should focus on refining these models and exploring their application to other medical imaging tasks, as well as including explainability methodologies to better understand their decision-making processes and build trust in their clinical use. This technique promises promising breakthroughs in medical imaging and patient management.

5.
Front Med (Lausanne) ; 11: 1436646, 2024.
Article in English | MEDLINE | ID: mdl-39099594

ABSTRACT

Timely and unbiased evaluation of Autism Spectrum Disorder (ASD) is essential for providing lasting benefits to affected individuals. However, conventional ASD assessment heavily relies on subjective criteria, lacking objectivity. Recent advancements propose the integration of modern processes, including artificial intelligence-based eye-tracking technology, for early ASD assessment. Nonetheless, the current diagnostic procedures for ASD often involve specialized investigations that are both time-consuming and costly, heavily reliant on the proficiency of specialists and employed techniques. To address the pressing need for prompt, efficient, and precise ASD diagnosis, an exploration of sophisticated intelligent techniques capable of automating disease categorization was presented. This study has utilized a freely accessible dataset comprising 547 eye-tracking systems that can be used to scan pathways obtained from 328 characteristically emerging children and 219 children with autism. To counter overfitting, state-of-the-art image resampling approaches to expand the training dataset were employed. Leveraging deep learning algorithms, specifically MobileNet, VGG19, DenseNet169, and a hybrid of MobileNet-VGG19, automated classifiers, that hold promise for enhancing diagnostic precision and effectiveness, was developed. The MobileNet model demonstrated superior performance compared to existing systems, achieving an impressive accuracy of 100%, while the VGG19 model achieved 92% accuracy. These findings demonstrate the potential of eye-tracking data to aid physicians in efficiently and accurately screening for autism. Moreover, the reported results suggest that deep learning approaches outperform existing event detection algorithms, achieving a similar level of accuracy as manual coding. Users and healthcare professionals can utilize these classifiers to enhance the accuracy rate of ASD diagnosis. The development of these automated classifiers based on deep learning algorithms holds promise for enhancing the diagnostic precision and effectiveness of ASD assessment, addressing the pressing need for prompt, efficient, and precise ASD diagnosis.

6.
Int. j. morphol ; 42(3): 826-832, jun. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1564601

ABSTRACT

SUMMARY: The study aims to demonstrate the success of deep learning methods in sex prediction using hyoid bone. The images of people aged 15-94 years who underwent neck Computed Tomography (CT) were retrospectively scanned in the study. The neck CT images of the individuals were cleaned using the RadiAnt DICOM Viewer (version 2023.1) program, leaving only the hyoid bone. A total of 7 images in the anterior, posterior, superior, inferior, right, left, and right-anterior-upward directions were obtained from a patient's cut hyoid bone image. 2170 images were obtained from 310 hyoid bones of males, and 1820 images from 260 hyoid bones of females. 3990 images were completed to 5000 images by data enrichment. The dataset was divided into 80 % for training, 10 % for testing, and another 10 % for validation. It was compared with deep learning models DenseNet121, ResNet152, and VGG19. An accuracy rate of 87 % was achieved in the ResNet152 model and 80.2 % in the VGG19 model. The highest rate among the classified models was 89 % in the DenseNet121 model. This model had a specificity of 0.87, a sensitivity of 0.90, an F1 score of 0.89 in women, a specificity of 0.90, a sensitivity of 0.87, and an F1 score of 0.88 in men. It was observed that sex could be predicted from the hyoid bone using deep learning methods DenseNet121, ResNet152, and VGG19. Thus, a method that had not been tried on this bone before was used. This study also brings us one step closer to strengthening and perfecting the use of technologies, which will reduce the subjectivity of the methods and support the expert in the decision-making process of sex prediction.


El estudio tuvo como objetivo demostrar el éxito de los métodos de aprendizaje profundo en la predicción del sexo utilizando el hueso hioides. En el estudio se escanearon retrospectivamente las imágenes de personas de entre 15 y 94 años que se sometieron a una tomografía computarizada (TC) de cuello. Las imágenes de TC del cuello de los individuos se limpiaron utilizando el programa RadiAnt DICOM Viewer (versión 2023.1), dejando solo el hueso hioides. Se obtuvieron un total de 7 imágenes en las direcciones anterior, posterior, superior, inferior, derecha, izquierda y derecha-anterior-superior a partir de una imagen seccionada del hueso hioides de un paciente. Se obtuvieron 2170 imágenes de 310 huesos hioides de hombres y 1820 imágenes de 260 huesos hioides de mujeres. Se completaron 3990 imágenes a 5000 imágenes mediante enriquecimiento de datos. El conjunto de datos se dividió en un 80 % para entrenamiento, un 10 % para pruebas y otro 10 % para validación. Se comparó con los modelos de aprendizaje profundo DenseNet121, ResNet152 y VGG19. Se logró una tasa de precisión del 87 % en el modelo ResNet152 y del 80,2 % en el modelo VGG19. La tasa más alta entre los modelos clasificados fue del 89 % en el modelo DenseNet121. Este modelo tenía una especificidad de 0,87, una sensibilidad de 0,90, una puntuación F1 de 0,89 en mujeres, una especificidad de 0,90, una sensibilidad de 0,87 y una puntuación F1 de 0,88 en hombres. Se observó que se podía predecir el sexo a partir del hueso hioides utilizando los métodos de aprendizaje profundo DenseNet121, ResNet152 y VGG19. De esta manera, se utilizó un método que no se había probado antes en este hueso. Este estudio también nos acerca un paso más al fortalecimiento y perfeccionamiento del uso de tecnologías, que reducirán la subjetividad de los métodos y apoyarán al experto en el proceso de toma de decisiones de predicción del sexo.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Tomography, X-Ray Computed , Sex Determination by Skeleton , Deep Learning , Hyoid Bone/diagnostic imaging , Predictive Value of Tests , Sensitivity and Specificity , Hyoid Bone/anatomy & histology
7.
Eur J Pediatr ; 183(9): 3797-3808, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871980

ABSTRACT

Williams-Beuren syndrome (WBS) is a rare genetic disorder characterized by special facial gestalt, delayed development, and supravalvular aortic stenosis or/and stenosis of the branches of the pulmonary artery. We aim to develop and optimize accurate models of facial recognition to assist in the diagnosis of WBS, and to evaluate their effectiveness by using both five-fold cross-validation and an external test set. We used a total of 954 images from 135 patients with WBS, 124 patients suffering from other genetic disorders, and 183 healthy children. The training set comprised 852 images of 104 WBS cases, 91 cases of other genetic disorders, and 145 healthy children from September 2017 to December 2021 at the Guangdong Provincial People's Hospital. We constructed six binary classification models of facial recognition for WBS by using EfficientNet-b3, ResNet-50, VGG-16, VGG-16BN, VGG-19, and VGG-19BN. Transfer learning was used to pre-train the models, and each model was modified with a variable cosine learning rate. Each model was first evaluated by using five-fold cross-validation and then assessed on the external test set. The latter contained 102 images of 31 children suffering from WBS, 33 children with other genetic disorders, and 38 healthy children. To compare the capabilities of these models of recognition with those of human experts in terms of identifying cases of WBS, we recruited two pediatricians, a pediatric cardiologist, and a pediatric geneticist to identify the WBS patients based solely on their facial images. We constructed six models of facial recognition for diagnosing WBS using EfficientNet-b3, ResNet-50, VGG-16, VGG-16BN, VGG-19, and VGG-19BN. The model based on VGG-19BN achieved the best performance in terms of five-fold cross-validation, with an accuracy of 93.74% ± 3.18%, precision of 94.93% ± 4.53%, specificity of 96.10% ± 4.30%, and F1 score of 91.65% ± 4.28%, while the VGG-16BN model achieved the highest recall value of 91.63% ± 5.96%. The VGG-19BN model also achieved the best performance on the external test set, with an accuracy of 95.10%, precision of 100%, recall of 83.87%, specificity of 93.42%, and F1 score of 91.23%. The best performance by human experts on the external test set yielded values of accuracy, precision, recall, specificity, and F1 scores of 77.45%, 60.53%, 77.42%, 83.10%, and 66.67%, respectively. The F1 score of each human expert was lower than those of the EfficientNet-b3 (84.21%), ResNet-50 (74.51%), VGG-16 (85.71%), VGG-16BN (85.71%), VGG-19 (83.02%), and VGG-19BN (91.23%) models. CONCLUSION: The results showed that facial recognition technology can be used to accurately diagnose patients with WBS. Facial recognition models based on VGG-19BN can play a crucial role in its clinical diagnosis. Their performance can be improved by expanding the size of the training dataset, optimizing the CNN architectures applied, and modifying them with a variable cosine learning rate. WHAT IS KNOWN: • The facial gestalt of WBS, often described as "elfin," includes a broad forehead, periorbital puffiness, a flat nasal bridge, full cheeks, and a small chin. • Recent studies have demonstrated the potential of deep convolutional neural networks for facial recognition as a diagnostic tool for WBS. WHAT IS NEW: • This study develops six models of facial recognition, EfficientNet-b3, ResNet-50, VGG-16, VGG-16BN, VGG-19, and VGG-19BN, to improve WBS diagnosis. • The VGG-19BN model achieved the best performance, with an accuracy of 95.10% and specificity of 93.42%. The facial recognition model based on VGG-19BN can play a crucial role in the clinical diagnosis of WBS.


Subject(s)
Williams Syndrome , Humans , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Child , Female , Male , Child, Preschool , Infant , Case-Control Studies , Adolescent , Facial Recognition , Automated Facial Recognition/methods
8.
Diagnostics (Basel) ; 14(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928647

ABSTRACT

This study evaluates the efficacy of several Convolutional Neural Network (CNN) models for the classification of hearing loss in patients using preprocessed auditory brainstem response (ABR) image data. Specifically, we employed six CNN architectures-VGG16, VGG19, DenseNet121, DenseNet-201, AlexNet, and InceptionV3-to differentiate between patients with hearing loss and those with normal hearing. A dataset comprising 7990 preprocessed ABR images was utilized to assess the performance and accuracy of these models. Each model was systematically tested to determine its capability to accurately classify hearing loss. A comparative analysis of the models focused on metrics of accuracy and computational efficiency. The results indicated that the AlexNet model exhibited superior performance, achieving an accuracy of 95.93%. The findings from this research suggest that deep learning models, particularly AlexNet in this instance, hold significant potential for automating the diagnosis of hearing loss using ABR graph data. Future work will aim to refine these models to enhance their diagnostic accuracy and efficiency, fostering their practical application in clinical settings.

9.
Heliyon ; 10(10): e31228, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803883

ABSTRACT

Diabetic foot ulcer (DFU) poses a significant threat to individuals affected by diabetes, often leading to limb amputation. Early detection of DFU can greatly improve the chances of survival for diabetic patients. This work introduces FusionNet, a novel multi-scale feature fusion network designed to accurately differentiate DFU skin from healthy skin using multiple pre-trained convolutional neural network (CNN) algorithms. A dataset comprising 6963 skin images (3574 healthy and 3389 ulcer) from various patients was divided into training (6080 images), validation (672 images), and testing (211 images) sets. Initially, three image preprocessing techniques - Gaussian filter, median filter, and motion blur estimation - were applied to eliminate irrelevant, noisy, and blurry data. Subsequently, three pre-trained CNN algorithms -DenseNet201, VGG19, and NASNetMobile - were utilized to extract high-frequency features from the input images. These features were then inputted into a meta-tuner module to predict DFU by selecting the most discriminative features. Statistical tests, including Friedman and analysis of variance (ANOVA), were employed to identify significant differences between FusionNet and other sub-networks. Finally, three eXplainable Artificial Intelligence (XAI) algorithms - SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Model-agnostic Explanations), and Grad-CAM (Gradient-weighted Class Activation Mapping) - were integrated into FusionNet to enhance transparency and explainability. The FusionNet classifier achieved exceptional classification results with 99.05 % accuracy, 98.18 % recall, 100.00 % precision, 99.09 % AUC, and 99.08 % F1 score. We believe that our proposed FusionNet will be a valuable tool in the medical field to distinguish DFU from healthy skin.

10.
BMC Med Imaging ; 24(1): 120, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789925

ABSTRACT

BACKGROUND: Lung cancer is the second most common cancer worldwide, with over two million new cases per year. Early identification would allow healthcare practitioners to handle it more effectively. The advancement of computer-aided detection systems significantly impacted clinical analysis and decision-making on human disease. Towards this, machine learning and deep learning techniques are successfully being applied. Due to several advantages, transfer learning has become popular for disease detection based on image data. METHODS: In this work, we build a novel transfer learning model (VER-Net) by stacking three different transfer learning models to detect lung cancer using lung CT scan images. The model is trained to map the CT scan images with four lung cancer classes. Various measures, such as image preprocessing, data augmentation, and hyperparameter tuning, are taken to improve the efficacy of VER-Net. All the models are trained and evaluated using multiclass classifications chest CT images. RESULTS: The experimental results confirm that VER-Net outperformed the other eight transfer learning models compared with. VER-Net scored 91%, 92%, 91%, and 91.3% when tested for accuracy, precision, recall, and F1-score, respectively. Compared to the state-of-the-art, VER-Net has better accuracy. CONCLUSION: VER-Net is not only effectively used for lung cancer detection but may also be useful for other diseases for which CT scan images are available.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Machine Learning , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods
11.
PeerJ Comput Sci ; 10: e1769, 2024.
Article in English | MEDLINE | ID: mdl-38686011

ABSTRACT

Object detection methods based on deep learning have been used in a variety of sectors including banking, healthcare, e-governance, and academia. In recent years, there has been a lot of attention paid to research endeavors made towards text detection and recognition from different scenesor images of unstructured document processing. The article's novelty lies in the detailed discussion and implementation of the various transfer learning-based different backbone architectures for printed text recognition. In this research article, the authors compared the ResNet50, ResNet50V2, ResNet152V2, Inception, Xception, and VGG19 backbone architectures with preprocessing techniques as data resizing, normalization, and noise removal on a standard OCR Kaggle dataset. Further, the top three backbone architectures selected based on the accuracy achieved and then hyper parameter tunning has been performed to achieve more accurate results. Xception performed well compared with the ResNet, Inception, VGG19, MobileNet architectures by achieving high evaluation scores with accuracy (98.90%) and min loss (0.19). As per existing research in this domain, until now, transfer learning-based backbone architectures that have been used on printed or handwritten data recognition are not well represented in literature. We split the total dataset into 80 percent for training and 20 percent for testing purpose and then into different backbone architecture models with the same number of epochs, and found that the Xception architecture achieved higher accuracy than the others. In addition, the ResNet50V2 model gave us higher accuracy (96.92%) than the ResNet152V2 model (96.34%).

12.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475050

ABSTRACT

Latent Low-Rank Representation (LatLRR) has emerged as a prominent approach for fusing visible and infrared images. In this approach, images are decomposed into three fundamental components: the base part, salient part, and sparse part. The aim is to blend the base and salient features to reconstruct images accurately. However, existing methods often focus more on combining the base and salient parts, neglecting the importance of the sparse component, whereas we advocate for the comprehensive inclusion of all three parts generated from LatLRR image decomposition into the image fusion process, a novel proposition introduced in this study. Moreover, the effective integration of Convolutional Neural Network (CNN) technology with LatLRR remains challenging, particularly after the inclusion of sparse parts. This study utilizes fusion strategies involving weighted average, summation, VGG19, and ResNet50 in various combinations to analyze the fusion performance following the introduction of sparse parts. The research findings show a significant enhancement in fusion performance achieved through the inclusion of sparse parts in the fusion process. The suggested fusion strategy involves employing deep learning techniques for fusing both base parts and sparse parts while utilizing a summation strategy for the fusion of salient parts. The findings improve the performance of LatLRR-based methods and offer valuable insights for enhancement, leading to advancements in the field of image fusion.

13.
Heliyon ; 10(5): e26938, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468922

ABSTRACT

Coronavirus disease (COVID-2019) is emerging in Wuhan, China in 2019. It has spread throughout the world since the year 2020. Millions of people were affected and caused death to them till now. To avoid the spreading of COVID-2019, various precautions and restrictions have been taken by all nations. At the same time, infected persons are needed to identify and isolate, and medical treatment should be provided to them. Due to a deficient number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, a Chest X-ray image is becoming an effective technique for diagnosing COVID-19. In this work, the Hybrid Deep Learning CNN model is proposed for the diagnosis COVID-19 using chest X-rays. The proposed model consists of a heading model and a base model. The base model utilizes two pre-trained deep learning structures such as VGG16 and VGG19. The feature dimensions from these pre-trained models are reduced by incorporating different pooling layers, such as max and average. In the heading part, dense layers of size three with different activation functions are also added. A dropout layer is supplemented to avoid overfitting. The experimental analyses are conducted to identify the efficacy of the proposed hybrid deep learning with existing transfer learning architectures such as VGG16, VGG19, EfficientNetB0 and ResNet50 using a COVID-19 radiology database. Various classification techniques, such as K-Nearest Neighbor (KNN), Naive Bayes, Random Forest, Support Vector Machine (SVM), and Neural Network, were also used for the performance comparison of the proposed model. The hybrid deep learning model with average pooling layers, along with SVM-linear and neural networks, both achieved an accuracy of 92%.These proposed models can be employed to assist radiologists and physicians in avoiding misdiagnosis rates and to validate the positive COVID-19 infected cases.

14.
Postgrad Med J ; 100(1186): 592-602, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38507237

ABSTRACT

PURPOSE: To construct a clinical noncontrastive computed tomography (NCCT) deep learning joint model for predicting early hematoma expansion (HE) after cerebral hemorrhage (sICH) and evaluate its predictive performance. METHODS: All 254 patients with primary cerebral hemorrhage from January 2017 to December 2022 in the General Hospital of the Western Theater Command were included. According to the criteria of hematoma enlargement exceeding 33% or the volume exceeding 6 ml, the patients were divided into the HE group and the hematoma non-enlargement (NHE) group. Multiple models and the 10-fold cross-validation method were used to screen the most valuable features and model the probability of predicting HE. The area under the curve (AUC) was used to analyze the prediction efficiency of each model for HE. RESULTS: They were randomly divided into a training set of 204 cases in an 8:2 ratio and 50 cases of the test set. The clinical imaging deep feature joint model (22 features) predicted the area under the curve of HE as follows: clinical Navie Bayes model AUC 0.779, traditional radiology logistic regression (LR) model AUC 0.818, deep learning LR model AUC 0.873, and clinical NCCT deep learning multilayer perceptron model AUC 0.921. CONCLUSION: The combined clinical imaging deep learning model has a high predictive effect for early HE in sICH patients, which is helpful for clinical individualized assessment of the risk of early HE in sICH patients.


Subject(s)
Cerebral Hemorrhage , Deep Learning , Hematoma , Tomography, X-Ray Computed , Humans , Cerebral Hemorrhage/diagnostic imaging , Male , Hematoma/diagnostic imaging , Female , Middle Aged , Aged , Predictive Value of Tests , Logistic Models , Disease Progression , Bayes Theorem
15.
Heliyon ; 9(11): e22406, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38074874

ABSTRACT

Deep learning and image processing are used to classify and segment breast tumor images, specifically in ultrasound (US) modalities, to support clinical decisions and improve healthcare quality. However, directly using US images can be challenging due to noise and diverse imaging modalities. In this study, we developed a three-step image processing scheme involving speckle noise filtering using a block-matching three-dimensional filtering technique, region of interest highlighting, and RGB fusion. This method enhances the generalization of deep-learning models and achieves better performance. We used a deep learning model (VGG19) to perform transfer learning on three datasets: BUSI (780 images), Dataset B (162 images), and KAIMRC (5693 images). When tested on the BUSI and KAIMRC datasets using a fivefold cross-validation mechanism, the model with the proposed preprocessing step performed better than without preprocessing for each dataset. The proposed image processing approach improves the performance of the breast cancer deep learning classification model. Multiple diverse datasets (private and public) were used to generalize the model for clinical application.

16.
Heliyon ; 9(11): e22536, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034799

ABSTRACT

Background: Statistics show that each year more than 100,000 patients pass away from brain tumors. Due to the diverse morphology, hazy boundaries, or unbalanced categories of medical data lesions, segmentation prediction of brain tumors has significant challenges. Purpose: In this thesis, we highlight EAV-UNet, a system designed to accurately detect lesion regions. Optimizing feature extraction, utilizing automatic segmentation techniques to detect anomalous regions, and strengthening the structure. We prioritize the segmentation problem of lesion regions, especially in cases where the margins of the tumor are more hazy. Methods: The VGG-19 network structure is incorporated into the coding stage of the U-Net, resulting in a deeper network structure, and an attention mechanism module is introduced to augment the feature information. Additionally, an edge detection module is added to the encoder to extract edge information in the image, which is then passed to the decoder to aid in reconstructing the original image. Our method uses the VGG-19 in place of the U-Net encoder. To strengthen feature details, we integrate a CBAM (Channel and Spatial Attention Mechanism) module into the decoder to enhance it. To extract vital edge details from the data, we incorporate an edge recognition section into the encoder. Results: All evaluation metrics show major improvements with our recommended EAV-UNet technique, which is based on a thorough analysis of experimental data. Specifically, for low contrast and blurry lesion edge images, the EAV-Unet method consistently produces forecasts that are very similar to the initial images. This technique reduced the Hausdorff distance to 1.82, achieved an F1 score of 96.1%, and attained a precision of 93.2% on Dataset 1. It obtained an F1 score of 76.8%, a Precision of 85.3%, and a Hausdorff distance reduction to 1.31 on Dataset 2. Dataset 3 displayed a Hausdorff distance cut in 2.30, an F1 score of 86.9%, and Precision of 95.3%. Conclusions: We conducted extensive segmentation experiments using various datasets related to brain tumors. We refined the network architecture by employing smaller convolutional kernels in our strategy. To further improve segmentation accuracy, we integrated attention modules and an edge enhancement module to reinforce edge information and boost attention scores.

17.
Diagnostics (Basel) ; 13(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958257

ABSTRACT

Oral lesions are a prevalent manifestation of oral disease, and the timely identification of oral lesions is imperative for effective intervention. Fortunately, deep learning algorithms have shown great potential for automated lesion detection. The primary aim of this study was to employ deep learning-based image classification algorithms to identify oral lesions. We used three deep learning models, namely VGG19, DeIT, and MobileNet, to assess the efficacy of various categorization methods. To evaluate the accuracy and reliability of the models, we employed a dataset consisting of oral pictures encompassing two distinct categories: benign and malignant lesions. The experimental findings indicate that VGG19 and MobileNet attained an almost perfect accuracy rate of 100%, while DeIT achieved a slightly lower accuracy rate of 98.73%. The results of this study indicate that deep learning algorithms for picture classification demonstrate a high level of effectiveness in detecting oral lesions by achieving 100% for VGG19 and MobileNet and 98.73% for DeIT. Specifically, the VGG19 and MobileNet models exhibit notable suitability for this particular task.

18.
Sensors (Basel) ; 23(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005478

ABSTRACT

In the field of computer vision, hand pose estimation (HPE) has attracted significant attention from researchers, especially in the fields of human-computer interaction (HCI) and virtual reality (VR). Despite advancements in 2D HPE, challenges persist due to hand dynamics and occlusions. Accurate extraction of hand features, such as edges, textures, and unique patterns, is crucial for enhancing HPE. To address these challenges, we propose SDFPoseGraphNet, a novel framework that combines the strengths of the VGG-19 architecture with spatial attention (SA), enabling a more refined extraction of deep feature maps from hand images. By incorporating the Pose Graph Model (PGM), the network adaptively processes these feature maps to provide tailored pose estimations. First Inference Module (FIM) potentials, alongside adaptively learned parameters, contribute to the PGM's final pose estimation. The SDFPoseGraphNet, with its end-to-end trainable design, optimizes across all components, ensuring enhanced precision in hand pose estimation. Our proposed model outperforms existing state-of-the-art methods, achieving an average precision of 7.49% against the Convolution Pose Machine (CPM) and 3.84% in comparison to the Adaptive Graphical Model Network (AGMN).

19.
Med Eng Phys ; 120: 104048, 2023 10.
Article in English | MEDLINE | ID: mdl-37838406

ABSTRACT

Nowadays, automated disease diagnosis has become a vital role in the medical field due to the significant population expansion. An automated disease diagnostic approach assists clinicians in the diagnosis of disease by giving exact, consistent, and prompt results, along with minimizing the mortality rate. Retinal detachment has recently emerged as one of the most severe and acute ocular illnesses, spreading worldwide. Therefore, an automated and quickest diagnostic model should be implemented to diagnose retinal detachment at an early stage. This paper introduces a new hybrid approach of best basis stationary wavelet packet transform and modified VGG19-Bidirectional long short-term memory to detect retinal detachment using retinal fundus images automatically. In this paper, the best basis stationary wavelet packet transform is utilized for image analysis, modified VGG19-Bidirectional long short-term memory is employed as the deep feature extractors, and then obtained features are classified through the Adaptive boosting technique. The experimental outcomes demonstrate that our proposed method obtained 99.67% sensitivity, 95.95% specificity, 98.21% accuracy, 97.43% precision, 98.54% F1-score, and 0.9985 AUC. The model obtained the intended results on the presently accessible database, which may be enhanced further when additional RD images become accessible. The proposed approach aids ophthalmologists in identifying and easily treating RD patients.


Subject(s)
Retinal Detachment , Humans , Retinal Detachment/diagnostic imaging , Fundus Oculi , Wavelet Analysis , Image Processing, Computer-Assisted
20.
BMC Bioinformatics ; 24(1): 382, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817066

ABSTRACT

An abnormal growth or fatty mass of cells in the brain is called a tumor. They can be either healthy (normal) or become cancerous, depending on the structure of their cells. This can result in increased pressure within the cranium, potentially causing damage to the brain or even death. As a result, diagnostic procedures such as computed tomography, magnetic resonance imaging, and positron emission tomography, as well as blood and urine tests, are used to identify brain tumors. However, these methods can be labor-intensive and sometimes yield inaccurate results. Instead of these time-consuming methods, deep learning models are employed because they are less time-consuming, require less expensive equipment, produce more accurate results, and are easy to set up. In this study, we propose a method based on transfer learning, utilizing the pre-trained VGG-19 model. This approach has been enhanced by applying a customized convolutional neural network framework and combining it with pre-processing methods, including normalization and data augmentation. For training and testing, our proposed model used 80% and 20% of the images from the dataset, respectively. Our proposed method achieved remarkable success, with an accuracy rate of 99.43%, a sensitivity of 98.73%, and a specificity of 97.21%. The dataset, sourced from Kaggle for training purposes, consists of 407 images, including 257 depicting brain tumors and 150 without tumors. These models could be utilized to develop clinically useful solutions for identifying brain tumors in CT images based on these outcomes.


Subject(s)
Brain Neoplasms , Neural Networks, Computer , Humans , Brain Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Magnetic Resonance Imaging , Brain
SELECTION OF CITATIONS
SEARCH DETAIL