Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Infection ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824475

ABSTRACT

BACKGROUND: Antimicrobial resistance among Pseudomonas aeruginosa (P. aeruginosa), a leading cause of nosocomial infections worldwide, is escalating. This study investigated the prevalence of extended-spectrum ß-lactamases (ESBLs) and metallo-ß-lactamases (MBLs) among 104 P. aeruginosa clinical isolates from Alexandria Main University Hospital, Alexandria, Egypt. METHODS: Antimicrobial susceptibility testing was performed using agar dilution technique, or broth microdilution method in case of colistin. ESBL and MBL prevalence was assessed phenotypically and genotypically using polymerase chain reaction (PCR). The role of plasmids in mediating resistance to extended-spectrum ß-lactams was studied via transformation technique using plasmids isolated from ceftazidime-resistant isolates. RESULTS: Antimicrobial susceptibility testing revealed alarming resistance rates to carbapenems, cephalosporins, and fluoroquinolones. Using PCR as the gold standard, phenotypic methods underestimated ESBL production while overestimating MBL production. Eighty-five isolates (81.7%) possessed only ESBL encoding genes, among which 69 isolates harbored a single ESBL gene [blaOXA-10 (n = 67) and blaPER (n = 2)]. Four ESBL-genotype combinations were detected: blaPER + blaOXA-10 (n = 8), blaVEB-1 + blaOXA-10 (n = 6), blaPSE + blaOXA-10 (n = 1), and blaPER + blaVEB-1 + blaOXA-10 (n = 1). Three isolates (2.9%) possessed only the MBL encoding gene blaVIM. Three ESBL + MBL- genotype combinations: blaOXA-10 + blaAIM, blaOXA-10 + blaVIM, and blaPER + blaOXA-10 + blaAIM were detected in 2, 1 and 1 isolate(s), respectively. Five plasmid preparations harboring blaVEB-1 and blaOXA-10 were successfully transformed into chemically competent Escherichia coli DH5α with transformation efficiencies ranging between 6.8 × 10 3 and 3.7 × 10 4 CFU/µg DNA plasmid. Selected tested transformants were ceftazidime-resistant and harbored plasmids carrying blaOXA-10. CONCLUSIONS: The study highlights the importance of the expeditious characterization of ESBLs and MBLs using genotypic methods among P. aeruginosa clinical isolates to hinder the development and dissemination of multidrug resistant strains.

2.
Antimicrob Agents Chemother ; : e0157023, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727224

ABSTRACT

Xeruborbactam is a newly developed ß-lactamase inhibitor designed for metallo-ß-lactamases (MBLs). This study assessed the relative inhibitory properties of this novel inhibitor in comparison with another MBL inhibitor, namely taniborbactam (TAN), against a wide range of acquired MBL produced either in Escherichia coli or Pseudomonas aeruginosa. As observed with taniborbactam, the combination of xeruborbactam (XER) with ß-lactams, namely, ceftazidime, cefepime and meropenem, led to significantly decreased MIC values for a wide range of B1-type MBL-producing E. coli, including most recombinant strains producing NDM, VIM, IMP, GIM-1, and DIM-1 enzymes. Noteworthily, while TAN-based combinations significantly reduced MIC values of ß-lactams for MBL-producing P. aeruginosa recombinant strains, those with XER were much less effective. We showed that this latter feature was related to the MexAB-OprM efflux pump significantly impacting MIC values when testing XER-based combinations in P. aeruginosa. The relative inhibitory concentrations (IC50 values) were similar for XER and TAN against NDM and VIM enzymes. Noteworthily, XER was effective against NDM-9, NDM-30, VIM-83, and most of IMP enzymes, although those latter enzymes were considered resistant to TAN. However, no significant inhibition was observed with XER against IMP-10, SPM-1, and SIM-1 as well as the representative subclass B2 and B3 enzymes, PFM-1 and AIM-1. The determination of the constant inhibition (Ki) of XER revealed a much higher value against IMP-10 than against NDM-1, VIM-2, and IMP-1. Hence, IMP-10 that differs from IMP-1 by a single amino-acid substitution (Val67Phe) can, therefore, be considered resistant to XER.

3.
J Neural Eng ; 21(3)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701768

ABSTRACT

Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Thalamus , Humans , Essential Tremor/therapy , Essential Tremor/physiopathology , Essential Tremor/diagnostic imaging , Deep Brain Stimulation/methods , Female , Male , Aged , Middle Aged , Thalamus/diagnostic imaging , Thalamus/physiopathology , Brain Mapping/methods , Retrospective Studies , Magnetic Resonance Imaging/methods , Ventral Thalamic Nuclei/diagnostic imaging , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/diagnostic imaging , Intraoperative Neurophysiological Monitoring/methods
4.
Antibiotics (Basel) ; 13(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38786144

ABSTRACT

Co-infection with carbapenem-resistant Klebsiella pneumoniae (CRKP) and Pseudomonas aeruginosa (CRPA) is associated with poor outcomes and historically relied on combination therapy with toxic agents for management. However, several novel ß-lactam/ß-lactamase inhibitor combination agents have been developed, offering potential monotherapy options. Here, we compare the in vitro activity of ceftazidime-avibactam (CZA), imipenem-relebactam (IRL), and meropenem-vaborbactam (MVB) against both CRKP and CRPA clinical isolates. Minimum inhibitory concentrations (MICs) for each agent were determined using broth microdilution. Carbapenemase gene detection was performed for representative isolates of varying carbapenem resistance phenotypes. IRL demonstrated excellent activity against CRKP and CRPA with susceptibility rates at 95.8% and 91.7%, respectively. While CZA and MVB showed comparable susceptibility to IRL against CRKP (93.8%), susceptibility of CRPA to CZA was modest at 79.2%, whereas most CRPA strains were resistant to MVB. Of the 35 CRKP isolates tested, 91.4% (32/35) carried a blaKPC gene. Only 1 of 37 (2.7%) CRPA isolates tested carried a blaVIM gene, which conferred phenotypic resistance to all three agents. None of the CRKP strains were cross-resistant to all three agents. Source of infection and co-infection did not significantly influence antimicrobial activity for IRL and CZA; none of the CRPA isolates from co-infected patients were susceptible to MVB. Our results suggest that novel ß-lactam agents with antipseudomonal activity and stability against carbapenemases, such as IRL and CZA, offer potential monotherapy options for the treatment of co-infection involving both CRKP and CRPA, but not MVB.

5.
Antibiotics (Basel) ; 13(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786183

ABSTRACT

Carbapenemase-producing Enterobacter spp. Serratia marcescens, Citrobacter freundii, Providencia spp., and Morganella morganii (CP-ESCPM) are increasingly identified as causative agents of nosocomial infections but are still not under systematic genomic surveillance. In this study, using a combination of whole-genome sequencing and conjugation experiments, we sought to elucidate the genomic characteristics and transferability of resistance genes in clinical CP-ESCPM isolates from Bulgaria. Among the 36 sequenced isolates, NDM-1 (12/36), VIM-4 (11/36), VIM-86 (8/36), and OXA-48 (7/36) carbapenemases were identified; two isolates carried both NDM-1 and VIM-86. The majority of carbapenemase genes were found on self-conjugative plasmids. IncL plasmids were responsible for the spread of OXA-48 among E. hormaechei, C. freundii, and S. marcescens. IncM2 plasmids were generally associated with the spread of NDM-1 in C. freundii and S. marcescens, and also of VIM-4 in C. freundii. IncC plasmids were involved in the spread of the recently described VIM-86 in P. stuartii isolates. IncC plasmids carrying blaNDM-1 and blaVIM-86 were observed too. blaNDM-1 was also detected on IncX3 in S. marcescens and on IncT plasmid in M. morganii. The significant resistance transfer rates we observed highlight the role of the ESCPM group as a reservoir of resistance determinants and stress the need for strengthening infection control measures.

7.
Front Neurol ; 15: 1345873, 2024.
Article in English | MEDLINE | ID: mdl-38595847

ABSTRACT

Background: The ventral intermediate nucleus (VIM) is the premiere target in magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy for tremor; however, there is no consensus on the optimal coordinates for ablation. This study aims to ascertain the various international VIM targeting approaches (VIM-TA) and any evolution in practice. Methods: International MRgFUS centers were invited to share VIM-TAs in 2019 and 2021. Analyses of any modification in practice and of anatomical markers and/or tractography in use were carried out. Each VIM-TA was mapped in relation to the mid-commissural point onto a 3D thalamic nucleus model created from the Schaltenbrand-Wahren atlas. Results: Of the 39 centers invited, 30 participated across the study period, providing VIM-TAs from 26 centers in 2019 and 23 in 2021. The results are reported as percentages of the number of participating centers in that year. In 2019 and 2021, respectively, 96.2% (n = 25) and 95.7% (n = 22) of centers based their targeting on anatomical landmarks rather than tractography. Increased adoption of tractography in clinical practice and/or for research was noted, changing from 34.6% to 78.3%. There was a statistically significant change in VIM-TAs in the superior-inferior plane across the study period; the percentage of VIM-TAs positioned 2 mm above the intercommissural line (ICL) increased from 16.0% in 2019 to 40.9% in 2021 (WRST, p < 0.05). This position is mapped at the center of VIM on the 3D thalamic model created based on the Schaltenbrand-Wahren atlas. In contrast, the VIM-TA medial-lateral and anterior-posterior positions remained stable. In 2022, 63.3% of participating centers provided the rationale for their VIM-TAs and key demographics. The centers were more likely to target 2 mm above the ICL if they had increased experience (more than 100 treatments) and/or if they were North American. Conclusion: Across the study period, FUS centers have evolved their VIM targeting superiorly to target the center of the VIM (2 mm above the ICL) and increased the adoption of tractography to aid VIM localization. This phenomenon is observed across autonomous international centers, suggesting that it is a more optimal site for FUS thalamotomy in tremors.

8.
mBio ; 15(5): e0305423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564701

ABSTRACT

Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC ß-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.


Subject(s)
Cross Infection , Intensive Care Units , Serratia Infections , Serratia marcescens , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Serratia marcescens/classification , Serratia Infections/epidemiology , Serratia Infections/microbiology , Humans , Cross Infection/microbiology , Cross Infection/epidemiology , Disease Outbreaks , Genome, Bacterial , Hospitals , Phylogeny , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests
9.
J Neural Eng ; 21(3)2024 May 09.
Article in English | MEDLINE | ID: mdl-38648783

ABSTRACT

Objective. Our goal is to decode firing patterns of single neurons in the left ventralis intermediate nucleus (Vim) of the thalamus, related to speech production, perception, and imagery. For realistic speech brain-machine interfaces (BMIs), we aim to characterize the amount of thalamic neurons necessary for high accuracy decoding.Approach. We intraoperatively recorded single neuron activity in the left Vim of eight neurosurgical patients undergoing implantation of deep brain stimulator or RF lesioning during production, perception and imagery of the five monophthongal vowel sounds. We utilized the Spade decoder, a machine learning algorithm that dynamically learns specific features of firing patterns and is based on sparse decomposition of the high dimensional feature space.Main results. Spade outperformed all algorithms compared with, for all three aspects of speech: production, perception and imagery, and obtained accuracies of 100%, 96%, and 92%, respectively (chance level: 20%) based on pooling together neurons across all patients. The accuracy was logarithmic in the amount of neurons for all three aspects of speech. Regardless of the amount of units employed, production gained highest accuracies, whereas perception and imagery equated with each other.Significance. Our research renders single neuron activity in the left Vim a promising source of inputs to BMIs for restoration of speech faculties for locked-in patients or patients with anarthria or dysarthria to allow them to communicate again. Our characterization of how many neurons are necessary to achieve a certain decoding accuracy is of utmost importance for planning BMI implantation.


Subject(s)
Brain-Computer Interfaces , Machine Learning , Neurons , Speech , Thalamus , Humans , Neurons/physiology , Male , Female , Middle Aged , Speech/physiology , Adult , Thalamus/physiology , Deep Brain Stimulation/methods , Aged , Speech Perception/physiology
10.
Sci Rep ; 14(1): 6220, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486043

ABSTRACT

Enterobacter asburiae, member of the Enterobacter cloacae complex (ECC) group, shows an increasing clinical relevance being responsible for infections like pneumonia, urinary tract infections and septicemia. The aim of the present study was the investigation of the genomic features of two XDR E. asburiae ST229 clinical strains co-carrying blaNDM-1 and blaVIM-1 determinants, collected in October 2021 and in June 2022, respectively. Two E. asburiae strains were collected from rectal swabs of as many patients admitted to the cardiopulmonary intensive care unit of Fondazione I.R.C.C.S. "Policlinico San Matteo" in Pavia, Italy. Based on the antibiotic susceptibility profile results, both isolates showed an XDR phenotype, retaining susceptibility only to fluoroquinolones. Both isolates shared identical resistome, virulome, plasmid content, and belonged to ST229, a rarely reported sequence type. They co-harbored blaNDM-1 and blaVIM-1 genes, that resulted located on transferable plasmids by conjugation and transformation. Moreover, both strains differed in 24 SNPs and showed genetic relatedness with E. asburiae ST709 and ST27. We described the first case of ST229 E. asburiae co-harboring blaNDM-1 and blaVIM-1 in Italy. This study points out the emergence of carbapenemases in low-risk pathogens, representing a novel challenge for public health, that should include such types of strains in dedicated surveillance programs. Antimicrobial susceptibility testing was carried out using Thermo Scientific™ Sensititre™ Gram Negative MIC Plates DKMGN. Both strains underwent whole-genome sequencing (WGS) using Illumina Miseq platform. Resistome, plasmidome, virulome, MLST, plasmid MLST and a SNPs-based phylogenetic tree were in silico determined.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacter , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Phylogeny
11.
Microb Drug Resist ; 30(5): 192-195, 2024 May.
Article in English | MEDLINE | ID: mdl-38452175

ABSTRACT

In this study, we investigated the antimicrobial susceptibility and molecular characteristics of antimicrobial resistance of Acinetobacter colistiniresistens strains isolated from the bloodstream using whole-genome sequencing. Clinical isolates identified as Acinetobacter baumannii and showing colistin resistance at the time of detection were collected. Antimicrobial susceptibility was determined using the VITEK2 system (bioMérieux) and Sensititre system (Thermo Fisher Scientific). Species identification and antimicrobial resistance gene searches were performed through whole-genome sequencing. Through whole-genome sequencing, three colistin-resistant strains from the bloodstream were identified as A. colistiniresistens. All three A. colistiniresistens strains were resistant to two or more antimicrobial agents except for colistin, and two of them were resistant to carbapenems. Genes involved in aminoglycoside [AAC(3)-Ⅱb, AAC(6')-Ⅰj, aadA2, ANT(3″)-Ⅱb, APH(3')-Ⅵa], macrolide (mphD, msrE), carbapenem and cephalosporin (OXA-420, VIM-2), fluoroquinolone and tetracycline (adeF), and sulfonamide (sul1, sul2) resistance were detected. We report multidrug-resistant A. colistiniresistens strains isolated from the bloodstream through whole-genome sequencing. Two strains carried carbapenemase genes, and this is the first report of VIM-2-producing A. colistiniresistens.


Subject(s)
Acinetobacter Infections , Acinetobacter , Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , beta-Lactamases , Humans , Male , Acinetobacter/drug effects , Acinetobacter/genetics , Acinetobacter/isolation & purification , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bacteremia/microbiology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Whole Genome Sequencing
12.
Chem Biol Interact ; 394: 110954, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38518852

ABSTRACT

The literature reports that thiazole and isatin nuclei present a range of biological activities, with an emphasis on anticancer activity. Therefore, our proposal was to make a series of compounds using the molecular hybridization strategy, which has been used by our research group, producing hybrid molecules containing the thiazole and isatin nuclei. After structural planning and synthesis, the compounds were characterized and evaluated in vitro against breast cancer cell lines (T-47D, MCF-7 and MDA-MB-231) and against normal cells (PBMC). The activity profile on membrane proteins involved in chemoresistance and tumorigenic signaling proteins was also evaluated. Among the compounds tested, the compounds 4c and 4a stood out with IC50 values of 1.23 and 1.39 µM, respectively, against the MDA-MB-231 cell line. Both compounds exhibited IC50 values of 0.45 µM for the MCF-7 cell line. Compounds 4a and 4c significantly decreased P-gp mRNA expression levels in MCF-7, 4 and 2 folds respectively. Regarding the impact on tumorigenic signaling proteins, compound 4a inhibited Akt2 in MDA-MB-231 and compound 4c inhibited the mRNA expression of VIM in MCF-7.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Isatin , Proto-Oncogene Proteins c-akt , RNA, Messenger , Thiazoles , Humans , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Isatin/pharmacology , Isatin/chemistry , Isatin/chemical synthesis , Cell Line, Tumor , RNA, Messenger/metabolism , RNA, Messenger/genetics , Thiazoles/pharmacology , Thiazoles/chemistry , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Molecular Docking Simulation , MCF-7 Cells , Drug Screening Assays, Antitumor , Structure-Activity Relationship
13.
Euro Surveill ; 29(11)2024 Mar.
Article in English | MEDLINE | ID: mdl-38487887

ABSTRACT

BackgroundFrom 2019 to 2022, the French National Reference Centre for Antibiotic Resistance (NRC) received a total of 25 isolates of Enterobacter hormaechei subsp. hoffmannii sequence type (ST)1740. All produced metallo-ß-lactamase(s) and were from the Lyon area.AimTo understand these strains' spread and evolution, more extended microbiological and molecular analyses were conducted.MethodsPatients' demographics and specimen type related to isolates were retrieved. All strains underwent short-read whole genome sequencing, and for 15, long-read sequencing to understand carbapenemase-gene acquisition. Clonal relationships were inferred from core-genome single nt polymorphisms (SNPs). Plasmids and the close genetic environment of each carbapenemase-encoding gene were analysed.ResultsPatients (10 female/15 male) were on average 56.6 years old. Seven isolates were recovered from infections and 18 through screening. With ≤ 27 SNPs difference between each other's genome sequences, the 25 strains represented a clone dissemination. All possessed a chromosome-encoded bla NDM-1 gene inside a composite transposon flanked by two IS3000. While spreading, the clone independently acquired a bla VIM-4-carrying plasmid of IncHI2 type (n = 12 isolates), or a bla IMP-13-carrying plasmid of IncP-1 type (n = 1 isolate). Of the 12 isolates co-producing NDM-1 and VIM-4, seven harboured the colistin resistance gene mcr9.2; the remaining five likely lost this gene through excision.ConclusionThis long-term outbreak was caused by a chromosome-encoded NDM-1-producing ST1740 E. hormaechei subsp. hoffmannii clone, which, during its dissemination, acquired plasmids encoding VIM-4 or IMP-13 metallo-ß-lactamases. To our knowledge, IMP-13 has not prior been reported in Enterobacterales in France. Epidemiological and environmental investigations should be considered alongside microbiological and molecular ones.


Subject(s)
Enterobacter , beta-Lactamases , Male , Female , Humans , Middle Aged , Enterobacter/genetics , beta-Lactamases/genetics , Plasmids/genetics , Colistin , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
14.
J Microbiol Immunol Infect ; 57(2): 288-299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350841

ABSTRACT

BACKGROUND: This study aimed to characterize carbapenem-nonsusceptible Acinetobacter (CNSA) isolated from patients with bacteremia from 1997 to 2015. METHODS: A total of 173 CNSA (12.3%) was recovered from 1403 Acinetobacter isolates. The presence of selected ß-lactamase genes in CNSA was determined by PCR amplification. The conjugation test was used to determine the transferability of metallo-ß-lactamase (MBL)-carrying plasmids. Whole genome sequencing in combination with phenotypic assays was carried out to characterize MBL-plasmids. RESULTS: In general, a trend of increasing numbers of CNSA was observed. Among the 173 CNSA, A. baumannii (54.9%) was the most common species, followed by A. nosocomialis (23.1%) and A. soli (12.1%). A total of 49 (28.3%) CNSA were extensively drug-resistant, and all were A. baumannii. The most common class D carbapenemase gene in 173 CNSA was blaOXA-24-like (32.4%), followed by ISAba1-blaOXA-51-like (20.8%), ISAba1-blaOXA-23 (20.2%), and IS1006/IS1008-blaOXA-58 (11.6%). MBL genes, blaVIM-11,blaIMP-1, and blaIMP-19 were detected in 9 (5.2%), 20 (11.6%), and 1 (0.6%) CNSA isolates, respectively. Transfer of MBL genes to AB218 and AN254 recipient cells was successful for 7 and 6 of the 30 MBL-plasmids, respectively. The seven AB218-derived transconjugants carrying MBL-plasmids produced less biofilm but showed higher virulence to larvae than recipient AB218. CONCLUSIONS: Our 19-year longitudinal study revealed a stable increase in CNSA during 2005-2015. blaOXA-24-like, ISAba1-blaOXA-51-like, and ISAba1-blaOXA-23 were the major determinants of Acinetobacter carbapenem resistance. MBL-carrying plasmids contribute not only to the carbapenem resistance but also to A. baumannii virulence.


Subject(s)
Acinetobacter baumannii , Sepsis , Humans , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Longitudinal Studies , Virulence/genetics , Acinetobacter baumannii/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics , Sepsis/drug therapy
15.
Front Hum Neurosci ; 18: 1319520, 2024.
Article in English | MEDLINE | ID: mdl-38371461

ABSTRACT

Introduction: Essential tremor (ET) is a common neurological disease. Deep brain stimulation (DBS) to the thalamic ventral intermediate nucleus (VIM) or the adjacent structures, such as caudal zona incerta/ posterior subthalamic area (cZi/PSA), can be effective in treating medication refractory tremor. However, it is not clear whether DBS can cause cognitive changes, in which domain, and to what extent if so. Methods: We systematically searched PubMed and the Web of Science for available publications reporting on cognitive outcomes in patients with ET who underwent DBS following the PICO (population, intervention, comparators, and outcomes) concept. The PRISMA guideline for systematic reviews was applied. Results: Twenty relevant articles were finally identified and included for review, thirteen of which were prospective (one also randomized) studies and seven were retrospective. Cognitive outcomes included attention, memory, executive function, language, visuospatial function, and mood-related variables. VIM and cZi/PSA DBS were generally well tolerated, although verbal fluency and language production were affected in some patients. Additionally, left-sided VIM DBS was associated with negative effects on verbal abstraction, word recall, and verbal memory performance in some patients. Conclusion: Significant cognitive decline after VIM or cZi/PSA DBS in ET patients appears to be rare. Future prospective randomized controlled trials are needed to meticulously study the effect of the location, laterality, and stimulation parameters of the active contacts on cognitive outcomes while considering possible medication change post-DBS, timing, standard neuropsychological battery, practice effects, the timing of assessment, and effect size as potential confounders.

16.
J Infect Dev Ctries ; 18(1): 101-105, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38377096

ABSTRACT

INTRODUCTION: Acinetobacter baumannii (A. baumannii) is an opportunistic pathogenic bacterium mainly associated with hospital acquired infections and in immunocompromised individuals who stay in hospitals for a long time. In recent years, it has become increasingly resistant to many different types of antibiotics. The production of the metallo-beta-lactamase (MBL) enzyme is one of the primary causes of this resistance. This study aimed to detect the presence of MBL genes that belong to the verona integrin metallo-ß-lactamase (bla-VIM) and imipenemase (bla-IMP) groups in the isolates of Acinetobacter baumannii from burn patients. METHODOLOGY: One hundred and seventeen (117) isolates of A. baumannii were obtained from patient specimens using traditional methods followed by using the VITEK 2 (BioMérieux, Les Pennes-Mirabeau, France) identification system. Metallo ß-lactamases were detected in the imipenem-resistant strains by using imipenem disks on Muller-Hinton agar. The polymerase chain reaction (PCR) technique was utilized to examine 117 isolates for the detection of MBLs encoding genes such as bla-VIM, and bla-IMP. RESULTS: Imipenem resistance was detected in 78.6% of the patients. The PCR assays of the isolates identified bla-VIM-1, bla-VIM-2, bla-IMP-1 and bla-IMP-2 genes at the rates of 17%, 40.1%, 29.9% and 4.2%, respectively. CONCLUSIONS: The findings suggest that the majority of A. baumannii isolates harbour one or more of the detected genes, signifying that the production of MBLs plays a pivotal role in resistance mechanisms.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Burns , Humans , Iraq , Acinetobacter Infections/microbiology , Polymerase Chain Reaction/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Imipenem , beta-Lactamases/genetics , Burns/complications , Microbial Sensitivity Tests
17.
Antimicrob Agents Chemother ; 68(4): e0150723, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376188

ABSTRACT

Carbapenem resistance due to metallo-ß-lactamases (MBLs) such as the Verona integron-encoded metallo-ß-lactamase (VIM) is particularly problematic due to the limited treatment options. We describe a case series of bacterial infections in a tertiary care hospital due to multi-species acquisition of a VIM gene along with our experience using novel ß-lactam antibiotics and antibiotic combinations to treat these infections. Four patients were treated with the combination of ceftazidime-avibactam and aztreonam, with no resistance to the combination detected. However, cefiderocol-resistant Klebsiella pneumoniae isolates were detected in two out of the five patients who received cefiderocol within 3 weeks of having started the antibiotic. Strain pairs of sequential susceptible and resistant isolates from both patients were analyzed using whole-genome sequencing. This analysis revealed that the pairs of isolates independently acquired point mutations in both the cirA and fiu genes, which encode siderophore receptors. These point mutations were remade in a laboratory strain of K. pneumoniae and resulted in a significant increase in the MIC of cefiderocol, even in the absence of a beta-lactamase enzyme or a penicillin-binding protein 3 (PBP3) mutation. While newer ß-lactam antibiotics remain an exciting addition to the antibiotic armamentarium, their use must be accompanied by diligent monitoring for the rapid development of resistance.


Subject(s)
Burn Units , Cefiderocol , Humans , Ceftazidime , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae , Drug Combinations , Azabicyclo Compounds , Carbapenems/pharmacology , Disease Outbreaks , Microbial Sensitivity Tests
18.
Antimicrob Agents Chemother ; 68(2): e0151023, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38174925

ABSTRACT

Metallo-ß-lactamases (MBLs) have evolved relatively rapidly to become an international public health threat. There are no clinically available ß-lactamase inhibitors with activity against MBLs. This may change with the introduction of cefepime-taniborbactam. Herein, we review three manuscripts (S. I. Drusin, C. Le Terrier, L. Poirel, R. A. Bonomo, et al., Antimicrob Agents Chemother 68:e01168-23, 2024, https://doi.org/10.1128/aac.01168-23; C. Le Terrier, C. Viguier, P. Nordmann, A. J. Vila, and L. Poirel, Antimicrob Agents Chemother 68:e00991-23, 2024, https://doi.org/10.1128/aac.00991-23; D. Ono, M. F. Mojica, C. R. Bethel, Y. Ishii, et al., Antimicrob Agents Chemother 68:e01332-23, 2024, https://doi.org/10.1128/aac.01332-23) in which investigators describe elegant experiments to explore MBL/taniborbactam interactions and modifications to MBLs, in response, to reduce the affinity of taniborbactam. Challenges with MBL inhibition will not disappear; rather, they will evolve commensurate with advancements in medicinal chemistry.


Subject(s)
Borinic Acids , Carboxylic Acids , beta-Lactamases , Animals , Dogs , beta-Lactamase Inhibitors/pharmacology , Cefepime , Borinic Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
19.
Diagn Microbiol Infect Dis ; 108(3): 116182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215518

ABSTRACT

This case presents the clinical and genomic aspects of a rare and multidrug-resistant Pseudomonas guariconensis isolate carrying blaVIM-2 and highlights the need for heightened awareness in healthcare facilities. A 63-year-old woman underwent surgery for the diagnosis of a paraspinal abscess and infectious spondylitis. During hospitalization, the patient was diagnosed with heart failure exacerbation. The patient had no symptoms of urinary tract infection and met the criteria for asymptomatic bacteriuria. In urine culture, colonies of the organism grew >105 CFU/mL on blood agar and on MacConkey agar. The Bruker Biotyper mass spectrometry showed P. guariconensis. Based on the 16S rRNA gene sequence showed that a 99.79 % match with as P. guariconensis LMG 27394T. The average nucleotide identity with P. guariconensis LMG 27394T was 91.53 %. Antimicrobial susceptibility testing showed that the isolate was not susceptible to most of the antibiotics. Antimicrobial resistance genes identified were aph(6)-Id, aph(3″)-Ib, aac(6')-Ib3, aac(3)-If, gyrA mutation (T83I) and blaVIM-2.


Subject(s)
Bacteriuria , Pseudomonas , beta-Lactamases , Humans , Female , Middle Aged , beta-Lactamases/genetics , Bacteriuria/diagnosis , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , RNA, Ribosomal, 16S/genetics , Agar , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
20.
Neurotherapeutics ; 21(3): e00313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195310

ABSTRACT

The advent of next-generation technology has significantly advanced the implementation and delivery of Deep Brain Stimulation (DBS) for Essential Tremor (ET), yet controversies persist regarding optimal targets and networks responsible for tremor genesis and suppression. This review consolidates key insights from anatomy, neurology, electrophysiology, and radiology to summarize the current state-of-the-art in DBS for ET. We explore the role of the thalamus in motor function and describe how differences in parcellations and nomenclature have shaped our understanding of the neuroanatomical substrates associated with optimal outcomes. Subsequently, we discuss how seminal studies have propagated the ventral intermediate nucleus (Vim)-centric view of DBS effects and shaped the ongoing debate over thalamic DBS versus stimulation in the posterior subthalamic area (PSA) in ET. We then describe probabilistic- and network-mapping studies instrumental in identifying the local and network substrates subserving tremor control, which suggest that the PSA is the optimal DBS target for tremor suppression in ET. Taken together, DBS offers promising outcomes for ET, with the PSA emerging as a better target for suppression of tremor symptoms. While advanced imaging techniques have substantially improved the identification of anatomical targets within this region, uncertainties persist regarding the distinct anatomical substrates involved in optimal tremor control. Inconsistent subdivisions and nomenclature of motor areas and other subdivisions in the thalamus further obfuscate the interpretation of stimulation results. While loss of benefit and habituation to DBS remain challenging in some patients, refined DBS techniques and closed-loop paradigms may eventually overcome these limitations.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Thalamus , Essential Tremor/therapy , Essential Tremor/physiopathology , Humans , Deep Brain Stimulation/methods , Thalamus/physiology , Thalamus/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...