Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Microb Pathog ; : 106751, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880314

ABSTRACT

Short-beak and dwarfism syndrome (SBDS) is a new disease caused by a genetic variant of goose parvovirus in ducks that results in enormous economic losses for the waterfowl industry. Currently, there is no commercial vaccine for this disease, so it is urgent to develop a safer and more effective vaccine to prevent this disease. In this study, we optimized the production conditions to enhance the expression of the recombinant VP2 protein and identified the optimal conditions for subsequent large-scale expression. Furthermore, the protein underwent purification via nickel column affinity chromatography, followed by concentration using ultrafiltration tube. Subsequently, it was observed by transmission electron microscopy (TEM) that the NGPV recombinant VP2 protein assembled into virus-like particles (VLPs) resembling those of the original virus. Finally, the ISA 78-VG adjuvant was mixed with the NGPV-VP2 VLPs to be prepared as a subunit vaccine. Furthermore, both agar gel precipitation test (AGP) and serum neutralization test demonstrated that NGPV VLP subunit vaccine could induce the increase of NGPV antibody in breeding ducks. The ducklings were also challenged with the NGPV, and the results showed that the maternal antibody level could provide sufficient protection to the ducklings. These results indicated that the use of the NGPV VLP subunit vaccine based on the baculovirus expression system could facilitate the large-scale development of a reliable vaccine in the future.

2.
Front Microbiol ; 15: 1387309, 2024.
Article in English | MEDLINE | ID: mdl-38716170

ABSTRACT

Senecavirus A (SVA) is an important emerging swine pathogen that causes vesicular lesions in swine and acute death in newborn piglets. VP2 plays a significant role in the production of antibodies, which can be used in development of diagnostic tools and vaccines. Herein, the aim of the current study was to identify B-cell epitopes (BCEs) of SVA for generation of epitope-based SVA marker vaccine. Three monoclonal antibodies (mAbs), named 2E4, 1B8, and 2C7, against the SVA VP2 protein were obtained, and two novel linear BCEs, 177SLGTYYR183 and 266SPYFNGL272, were identified by peptide scanning. The epitope 177SLGTYYR183 was recognized by the mAb 1B8 and was fully exposed on the VP2 surface, and alanine scanning analysis revealed that it contained a high continuity of key amino acids. Importantly, we confirmed that 177SLGTYYR183 locates on "the puff" region within the VP2 EF loop, and contains three key amino acid residues involved in receptor binding. Moreover, a single mutation, Y182A, blocked the interaction of the mutant virus with the mAb 1B8, indicating that this mutation is the pivotal point for antibody recognition. In summary, the BCEs that identified in this study could be used to develop diagnostic tools and an epitope-based SVA marker vaccine.

3.
J Virol ; 98(5): e0035024, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591900

ABSTRACT

Feline calicivirus (FCV) is one of the few members of the Caliciviridae family that grows well in cell lines and, therefore, serves as a surrogate to study the biology of other viruses in the family. Conley et al. (14) demonstrated that upon the receptor engagement to the capsid, FCV VP2 forms a portal-like assembly, which might provide a channel for RNA release. However, the process of calicivirus RNA release is not yet fully understood. Our findings suggest that the separation of the FCV capsid from its genome RNA (gRNA) occurs rapidly in the early endosomes of infected cells. Using a liposome model decorated with the FCV cell receptor fJAM-A, we demonstrate that FCV releases its gRNA into the liposomes by penetrating membranes under low pH conditions. Furthermore, we found that VP2, which is rich in hydrophobic residues at its N-terminus, functions as the pore-forming protein. When we substituted the VP2 N-terminal hydrophobic residues, the gRNA release efficacy of the FCV mutants decreased. In conclusion, our results suggest that in the acidic environment of early endosomes, FCV VP2 functions as the pore-forming protein to mediate gRNA release into the cytoplasm of infected cells. This provides insight into the mechanism of calicivirus genome release.IMPORTANCEResearch on the biology and pathogenicity of certain caliciviruses, such as Norovirus and Sapovirus, is hindered by the lack of easy-to-use cell culture system. Feline calicivirus (FCV), which grows effectively in cell lines, is used as a substitute. At present, there is limited understanding of the genome release mechanism in caliciviruses. Our findings suggest that FCV uses VP2 to pierce the endosome membrane for genome release and provide new insights into the calicivirus gRNA release mechanism.


Subject(s)
Calicivirus, Feline , Capsid Proteins , Endosomes , RNA, Viral , Animals , Cats , Caliciviridae Infections/virology , Caliciviridae Infections/metabolism , Calicivirus, Feline/genetics , Calicivirus, Feline/metabolism , Calicivirus, Feline/physiology , Capsid/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Cell Line , Endosomes/virology , Endosomes/metabolism , Genome, Viral , Liposomes/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Release
4.
Vet Microbiol ; 290: 109978, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185071

ABSTRACT

Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-ß. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.


Subject(s)
Varicellovirus , Viral Vaccines , Animals , Cats , Female , Feline Panleukopenia Virus/genetics , Varicellovirus/genetics , Antibodies, Neutralizing , Vaccines, Combined , Antibodies, Viral
5.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38140173

ABSTRACT

Novel goose parvovirus (NGPV), a genetic variant of goose parvovirus, has been spreading throughout China since 2015 and mainly infects ducklings with the symptoms of growth retardation, beak atrophy, and protruding tongue, leading to huge economic losses every year. A safe and effective vaccine is urgently needed to control NGPV infection. In this study, virus-like particles (VLPs) of NPGV were assembled and evaluated for their immunogenicity. The VP2 protein of NGPV was expressed in Spodoptera frugiperda insect cells using baculovirus as vector. The VP2 protein was efficiently expressed in the nucleus of insect cells, and the particles with a circular or hexagonal shape and a diameter of approximately 30 nm, similar to the NGPV virion, were observed using transmission electron microscopy (TEM). The purified particles were confirmed to be composed of VP2 using western blot and TEM, indicating that the VLPs of NGPV were successfully assembled. Furthermore, the immunogenicity of the VLPs of NGPV was evaluated in Cherry Valley ducks. The level of NGPV serum antibodies increased significantly at 1-4 weeks post-immunization. No clinical symptoms or deaths of ducks occurred in all groups after being challenged with NGPV at 4 weeks post-immunization. There was no viral shedding in the immunized group. However, viral shedding was detected at 3-7 days post-challenge in the non-immunized group. Moreover, VLPs can protect ducks from histopathological lesions caused by NGPV and significantly reduce viral load in tissue at 5 days post-challenge. Based on these findings, NGPV VLPs are promising candidates for vaccines against NGPV.

6.
Vaccines (Basel) ; 11(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-38006024

ABSTRACT

Porcine parvovirus 1 (PPV1) is one of the most prevalent pathogens that can cause reproductive disorder in sows. The VP2 protein of PPV1 is the most important immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, VP2 is considered an ideal target antigen for the development of a genetically engineered PPV1 vaccine. In this study, the baculovirus transfer vector carrying the HR5-P10-VP2 expression cassette was successfully constructed with the aim of increasing the expression levels of the VP2 protein. The VP2 protein was confirmed using SDS‒PAGE and Western blot analyses. Electronic microscope analysis showed that the recombinant VP2 proteins were capable of self-assembling into VLPs with a diameter of approximately 25 nm. The immunogenicity of the VP2 subunit vaccine was evaluated in pigs. The results showed that VP2 protein emulsified with ISA 201VG adjuvant induced higher levels of HI antibodies and neutralizing antibodies than VP2 protein emulsified with IMS 1313VG adjuvant. Furthermore, the gilts immunized with the ISA 201VG 20 µg subunit vaccine acquired complete protection against PPV1 HN2019 infection. In contrast, the commercial inactivated vaccine provided incomplete protection in gilts. Therefore, the VP2 subunit vaccine is a promising genetically engineered vaccine for the prevention and control of PPV1.

7.
Microbiol Spectr ; 11(4): e0447222, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37428080

ABSTRACT

Senecavirus A (SVA) is a type of nonenveloped single-stranded, positive-sense RNA virus. The VP2 protein is a structural protein that plays an important role in inducing early and late immune responses of the host. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the B epitopes of the VP2 protein is of great importance to revealing its antigenic characterization. In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the VP2 protein from the SVA strain CH/FJ/2017 using the Pepscan approach and a bioinformatics-based computational prediction method. The following four novel IDEs of VP2 were identified: IDE1, 41TKSDPPSSSTDQPTTT56; IDE2, 145PDGKAKSLQELNEEQW160; IDE3, 161VEMSDDYRTGKNMPF175; and IDE4, 267PYFNGLRNRFTTGT280. Most of the IDEs were highly conserved among the different strains. To our knowledge, the VP2 protein is a major protective antigen of SVA that can induce neutralizing antibodies in animals. Here, we analyzed the immunogenicity and neutralization activity of four IDEs of VP2. Consequently, all four IDEs showed good immunogenicity that could elicit specific antibodies in guinea pigs. A neutralization test in vitro showed that the peptide-specific guinea pig antisera of IDE2 could neutralize SVA strain CH/FJ/2017, and IDE2 was identified as a novel potential neutralizing linear epitope. This is the first time VP2 IDEs have been identified by using the Pepscan method and a bioinformatics-based computational prediction method. These results will help elucidate the antigenic epitopes of VP2 and clarify the basis for immune responses against SVA. IMPORTANCE The clinical symptoms and lesions caused by SVA are indistinguishable from those of other vesicular diseases in pigs. SVA has been associated with recent outbreaks of vesicular disease and epidemic transient neonatal losses in several swine-producing countries. Due to the continuing spread of SVA and the lack of commercial vaccines, the development of improved control strategies is urgently needed. The VP2 protein is a crucial antigen on the capsids of SVA particles. Furthermore, the latest research showed that VP2 could be a promising candidate for the development of novel vaccines and diagnostic tools. Hence, a detailed exploration of epitopes in the VP2 protein is necessary. In this study, four novel B-cell IDEs were identified using two different antisera with two different methods. IDE2 was identified as a new neutralizing linear epitope. Our findings will help in the rational design of epitope vaccines and further understanding of the antigenic structure of VP2.


Subject(s)
Capsid Proteins , Epitopes, B-Lymphocyte , Animals , Guinea Pigs , Capsid Proteins/genetics , Epitopes, B-Lymphocyte/genetics , Antibodies, Viral , Immune Sera
8.
Comput Biol Med ; 163: 107087, 2023 09.
Article in English | MEDLINE | ID: mdl-37321098

ABSTRACT

Infectious Bursal Disease (IBD) is a common and contagious viral infection that significantly affects the poultry industry. This severely suppresses the immune system in chickens, thereby threating their health and well-being. Vaccination is the most effective strategy for preventing and controlling this infectious agent. The development of VP2-based DNA vaccines combined with biological adjuvants has recently received considerable attention due to their effectiveness in eliciting both humoral and cellular immune responses. In this study, we applied bioinformatics tools to design a fused bioadjuvant candidate vaccine from the full-length sequence of the VP2 protein of IBDV isolated in Iran using the antigenic epitope of chicken IL-2 (chiIL-2). Furthermore, to improve the antigenic epitope presentation and to maintain the three-dimensional structure of the chimeric gene construct, the P2A linker (L) was used to fuse the two fragments. Our in-silico analysis for the design of a candidate vaccine indicates that a continuous sequence of amino acid residues ranging from 105 to 129 in chiIL-2 is proposed as a B cell epitope by epitope prediction servers. The final 3D structure of the VP2-L-chiIL-2105-129 was subjected to physicochemical property determination, molecular dynamic simulation, and antigenic site determination. The results of these analyses led to the development of a stable candidate vaccine that is non-allergenic and has the potential for antigenic surface display potential and adjuvant activity. Finally, it is necessary to investigate the immune response induced by our proposed vaccine in avian hosts. Notably, increasing the immunogenicity of DNA vaccines can be achieved by combining antigenic proteins with molecular adjuvants using the principle of rational vaccine design.


Subject(s)
Infectious bursal disease virus , Vaccines, DNA , Animals , Interleukin-2/genetics , Infectious bursal disease virus/genetics , Chickens , Vaccines, DNA/genetics , Epitopes , Antibodies, Viral , Adjuvants, Immunologic/genetics
9.
Vaccines (Basel) ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37376440

ABSTRACT

Newcastle disease (ND) and infectious bursal disease (IBD) are two key infectious diseases that significantly threaten the health of the poultry industry. Although existing vaccinations can effectively prevent and treat these two diseases through multiple immunizations, frequent immunization stresses significantly impact chicken growth. In this study, three recombinant adenoviruses, rAd5-F expressing the NDV (genotype VII) F protein, rAd5-VP2 expressing the IBDV VP2 protein, and rAd5-VP2-F2A-F co-expressing F and VP2 proteins, were constructed using the AdEasy system. The F and VP2 genes of the recombinant adenoviruses could be transcribed and expressed normally in HEK293A cells as verified by RT-PCR and Western blot. The three recombinant viruses were shown to have similar growth kinetics as rAd5-EGFP. Compared with the PBS and rAd5-EGFP groups, SPF chickens immunized with recombinant adenoviruses produced higher antibody levels, more significant lymphocyte proliferation, and significantly higher CD4+/CD3+ and CD8+/CD3+ cells in peripheral blood. The survival rate of SPF chickens immunized with rAd5-F and rAd5-VP2-F2A-F after the challenge with DHN3 was 100%, and 86% of SPF chickens showed no viral shedding at 7 dpc. The survival rate of SPF chickens immunized with rAd5-VP2 and rAd5-VP2-F2A-F after the challenge with BC6/85 was 86%. rAd5-VP2 and rAd5-VP2-F2A-F significantly inhibited bursal atrophy and pathological changes compared to the rAd5-EGFP and PBS groups. This study provides evidence that these recombinant adenoviruses have the potential to be developed into safe and effective vaccine candidates for the prevention and control of ND and IBD.

10.
Front Microbiol ; 14: 1096306, 2023.
Article in English | MEDLINE | ID: mdl-36846748

ABSTRACT

Introduction: Deformed wing virus (DWV) is one of the causative agents of colony collapse disorder. The structural protein of DWV plays a vital role in the process of viral invasion and host infection; however, there is limited research on DWV. Methods and Results: In this study, we screened the host protein snapin, which can interact with the VP2 protein of DWV, using the yeast two-hybrid system. Through computer simulation and GST pull-down and CO-IP assays, an interaction between snapin and VP2 was confirmed. Furthermore, immunofluorescence and co-localization experiments revealed that VP2 and snapin primarily co-localized in the cytoplasm. Consequently, RNAi was used to interfere with the expression of snapin in worker bees to examine the replication of DWV after the interference. After silencing of snapin, the replication of DWV in worker bees was significantly downregulated. Hence, we speculated that snapin was associated with DWV infection and involved in at least one stage of the viral life cycle. Finally, we used an online server to predict the interaction domains between VP2 and snapin, and the results indicate that the interaction domain of VP2 was approximately located at 56-90, 136-145, 184-190, and 239-242 aa and the snapin interaction domain was approximately located at 31-54 and 115-136 aa. Conclusion: This research confirmed that DWV VP2 protein could interacts with the snapin of host protein, which provides a theoretical basis for further investigation of its pathogenesis and development of targeted therapeutic drugs.

11.
J Immunol Methods ; 511: 113386, 2022 12.
Article in English | MEDLINE | ID: mdl-36384199

ABSTRACT

Serotype-specific diagnosis of bluetongue virus (BTV) is necessary for sero-surveillance and taking effective control measures. The VP2 is the major serotype determining protein and BTV-1 is the most predominant serotype in India. In the present study, an indirect ELISA (i-ELISA) was optimized for the detection of serotype-specific antibody against BTV-1 serotype. The VP2 protein of BTV-1 was expressed in a prokaryotic expression system and used to optimize i-ELISA to detect VP2 antibodies of BTV-1 in serum samples of both small and large ruminants. Serum samples (n = 363) classified as positive and negative for antibodies to BTV-1 by serum neutralization test (SNT) and also positive and negative for BTV antibodies by c-ELSIA kit (VMRD, USA) were used to determine the cut-off value, diagnostic sensitivity (DSn), and diagnostic specificity (D-Sp) using receiver operating characteristic (ROC) analysis. The percent positivity (PP) value >30.10% was accepted as the cut-off for i-ELISA at which DSn of 99.52% and D-Sp of 99.35% was observed with a 95% confidence interval. Further, there was no cross-reactivity with other available BTV serotypes in the country. The study indicated serotype-specific i-ELISA is sensitive, specific and suitable alternative to tedious SNT method for determining serotype. The assay will also help in the serotype-specific epidemiological studies and implementation of future control strategies including vaccination and selection of suitable serotype as a vaccine candidate.


Subject(s)
Bluetongue virus , Bluetongue virus/genetics , India
12.
Virol J ; 19(1): 65, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410270

ABSTRACT

BACKGROUND: Seneca Valley virus (SVV) is a picornavirus that causes vesicular disease in swine. Clinical characteristics of the disease are similar to common viral diseases such as foot-and-mouth disease virus, porcine vesicular disease virus, and vesicular stomatitis virus, which can cause vesicles in the nose or hoof of pigs. Therefore, developing tools for detecting SVV infection is critical and urgent. METHODS: The neutralizing antibodies were produced to detect the neutralizing epitope. RESULTS: Five SVV neutralizing monoclonal antibodies (mAb), named 2C8, 3E4, 4C3, 6D7, and 7C11, were generated by immunizing mouses with ultra-purified SVV-LNSY01-2017. All five monoclonal antibodies exhibited high neutralizing titers to SVV. The epitopes targeted by these mAbs were further identified by peptide scanning using GST fusion peptides. The peptide 153QELNEE158 is defined as the smallest linear neutralizing epitope. The antibodies showed no reactivity to VP2 single mutants E157A. Furthermore, the antibodies showed no neutralizing activity with the recombinant virus (SVV-E157A). CONCLUSIONS: The five monoclonal antibodies and identified epitopes may contribute to further research on the structure and function of VP2 and the development of diagnostic methods for detecting different SVV strains. Additionally, the epitope recognized by monoclonal antibodies against VP2 protein may provide insights for novel SVV vaccines and oncolytic viruses development.


Subject(s)
Antibodies, Monoclonal , Vaccines , Animals , Epitopes , Mice , Peptides , Picornaviridae , Swine
13.
Cell Cycle ; 21(14): 1532-1542, 2022 07.
Article in English | MEDLINE | ID: mdl-35343377

ABSTRACT

As part of the development of an infectious bursal disease virus (IBDV) subunit vaccine, this study was designed to improve the expression of highly soluble VP2-LS3 (Haemophilus parasuis lumazine synthase 3, LS3) protein by using different tagged vectors in E. coli. IBDV VP2-LS3 gene was designed and synthesized. Fusion tags, GST, NusA, MBP, Ppi, γ-crystallin, ArsC, and Grifin were joined to the N-terminus of VP2-LS3 protein. Seven expression plasmids were constructed, and each plasmid was transformed into E. coli BL21 (DE3) competent cells. After induction by IPTG, the solubility and expression levels of the various VP2-LS3 proteins were analyzed by SDS-PAGE and Western Blot analysis. The fusion tag that significantly promoted soluble expression of the VP2-LS3 protein was selected. Recombinant proteins were purified using Ni-NTA affinity chromatography, then cleaved by using TEV protease and detected by using transmission electron microscopy. Gel electrophoresis and sequencing analysis showed that all seven recombinant vectors were successfully constructed. GST, NusA, MBP, Ppi, γ-crystallin, ArsC, and Grifin enhanced the expression and solubility of VP2 protein; however, MBP was more effective for the high-purity production of VP2-LS3. Western Blot analysis confirmed successful generation of VP2-LS3 fusion protein in E. coli. The result of transmission electron microscopy showed that VP2-LS3 formed nano-sized particles with homogeneous shape and relatively uniform size. This study established a method to generate VP2-LS3 recombinant protein, which may lay a foundation for the development and subsequent study of IBDV subunit vaccines.


Subject(s)
Escherichia coli Proteins , Infectious bursal disease virus , gamma-Crystallins , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Infectious bursal disease virus/genetics , Nanostructures , Recombinant Proteins/genetics , Transcriptional Elongation Factors/metabolism , Viral Structural Proteins/genetics , gamma-Crystallins/metabolism
14.
Virus Res ; 313: 198746, 2022 05.
Article in English | MEDLINE | ID: mdl-35292290

ABSTRACT

Canine parvovirus 2 (CPV-2), a highly contagious virus, affects dogs worldwide. Infected animals present severe and acute gastroenteritis which may culminate in death. CPV-2 VP2 protein is responsible for important biological functions related to virus-host interactions. Herein we obtained VP2 full-length gene sequences from Brazilian dogs with bloody diarrhea (n=15) and vaccine strains (n=7) produced by seven different laboratories and marketed in Brazil. All wild sequences and one vaccine strain were classified as CPV-2b and six vaccines were the classic CVP-2. Mutations in VP2 protein from vaccine and wild strains obtained in Brazil and worldwide were analyzed (n=906). Amino acid sequences from vaccine strains remarkably diverge from each other, even that classic CPV-2. Phylogenetic analysis based on VP2 gene and conducted with sequences displaying mutations in epitope regions previously described shows that vaccine strains are distantly related from the wide range of wild CPV-2. The impact of amino acid mutations over VP2 protein structure shows that vaccine and wild strains obtained in this study diverge in loop 3, an epitope region that plays a role in the CPV-2 host range. This is the first analysis of CPV-2 VP2 from commercial vaccine strains in Brazil and wild ones from Minas Gerais State, Brazil, and the first detailed attempt to vaccinal VP2 molecular and structural analyses.


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Vaccines , Animals , Brazil , Dogs , Parvoviridae Infections/veterinary , Parvovirus, Canine/genetics , Phylogeny
15.
Vaccines (Basel) ; 9(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34579264

ABSTRACT

Porcine parvovirus (PPV) is the most important infectious agent causing infertility in pigs, which can be prevented by routine vaccination. Successful vaccination depends on the association with potent adjuvants that can enhance the immunogenicity of antigen and activate the immune system. Polysaccharide adjuvant has low toxicity and high safety, and they can enhance the humoral, cellular and mucosal immune responses. In the present study, we prepared the VP2 protein subunit vaccine against PPV (PPV/VP2/N-2-HACC) using water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) as the vaccine adjuvant, and the ability of the PPV/VP2/N-2-HACC to induce immune responses and protect sows from PPV infection was evaluated. In vivo immunization showed that the sows immunized with the PPV/VP2/N-2-HACC by intramuscular injection produced higher HI antibody levels and long-term immune protection compared with the other groups, while the subunit vaccine did not stimulate the proliferation of CD4+ and CD8+ T lymphocytes to trigger the secretion of higher levels of IL-2, IL-4, IFN-α, IFN-ß, and IFN-γ, indicating that the PPV/VP2/N-2-HACC mainly induced humoral immunity rather than cellular immunity. PPV was not detected in the viscera of the sows immunized with the PPV/VP2/N-2-HACC, and the protective efficacy was 100%. Collectively, our findings suggested that the N-2-HACC was a potential candidate adjuvant, and the PPV/VP2/N-2-HACC had immense application value for the control of PPV.

16.
Int J Biol Macromol ; 183: 1393-1401, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33984384

ABSTRACT

Bluetongue (BT) is a non-contact infectious disease caused by Bluetongue virus (BTV), which can be transmitted by vector insects such as Culicoides and Aedes mosquitoes. The BTV VP2 protein encoded by the L2 gene is located at the outermost layer of the virus particle, plays a key role on mediating the adsorption and entry of virus, and it is also a main antigenic protein widely used for vaccine development. In this study, the BTV1 VP2 gene was cloned into pFastBac™Dual vector, and expressed in insect Sf21 cells. Immunized mice with purified recombinant VP2 protein can induce higher levels of antibodies. Three anti BTV1 VP2 monoclonal antibodies (mAbs) were generated (17E9C6, 17E9C8, 17E9H12), and showed high specific reactivity with recombinant VP2 protein and inactivated BTV1 virus. Finally, a novel linear B-cell epitope 296-KEPAD-300 on recombinant VP2 protein was identified by using three mAbs react with a series of continue-truncated peptides. The results of this study may provide new information on the structure and function of BTV1 VP2 protein and lay a foundation for the development of BTV1 diagnostic and prophylactic methods.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Bluetongue virus/immunology , Capsid Proteins/immunology , Animals , Epitopes/immunology , Mice
17.
Front Cell Infect Microbiol ; 11: 820144, 2021.
Article in English | MEDLINE | ID: mdl-35198456

ABSTRACT

A feline panleukopenia virus (FPV), Giant panda/CD/2018, was isolated from a captive giant panda with mild diarrhea in 2018 in Chengdu, China, and further identified via indirect immunofluorescence assay (IFA), transmission electron microscopy (TEM) observation, and genetic analysis. Phylogenetic analysis based on the complete VP2 nucleotide sequences showed that it shared high homology with Chinese FPV isolates and grouped within FPV cluster 1. One unique substitution Gly(G)299Glu(E) in the capsid protein VP2 was first identified with Giant panda/CD/2018. The presence of the G299E substitution is notable as it is located on the top region of the interconnecting surface loop 3, which may be involved in controlling the host range and antigenicity of FPV. These findings first demonstrate that FPV with natural point mutation G299E in the VP2 gene is prevalent in giant panda and suggest that etiological surveillance and vaccination among all giant pandas are urgently needed to protect this endangered species against FPV infection.


Subject(s)
Feline Panleukopenia Virus , Parvoviridae Infections , Ursidae , Animals , Animals, Zoo/virology , Capsid Proteins/genetics , China/epidemiology , Diarrhea/veterinary , Diarrhea/virology , Feline Panleukopenia Virus/genetics , Parvoviridae Infections/veterinary , Phylogeny , Ursidae/virology
18.
Virus Res ; 291: 198189, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33049307

ABSTRACT

Rotavirus species A (RVA) is the etiological agent of acute gastroenteritis in young individuals of various animal species, including humans. Vaccination has helped to reduce the impact of these viruses on humans and some species of domestic mammals, but they do not confer complete immunity, so antirotavirus agents are another important control option. In this study, millimolar concentrations of benzimidazole inhibited the replication of the Rhesus rotavirus (RRV) strain of RVA. Two mutants partially resistant to the inhibitory effect of benzimidazole were independently selected, and their genomes and those of their parental strains were fully sequenced. Most (7/11) mutations occurred in the gene that encodes the VP2 protein, and similarly most of the missense mutations (5/9), including the only one shared by the two mutants (G2,414 → R[G/A], D800 N), occurred in the VP2 gene. Our results identify the VP2 gene as the primary target affected by benzimidazole.


Subject(s)
Benzimidazoles/pharmacology , Capsid Proteins/genetics , Drug Resistance, Viral/genetics , Mutation , Rotavirus/drug effects , Rotavirus/genetics , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Genome, Viral , Genotype , Phylogeny
19.
Sheng Wu Gong Cheng Xue Bao ; 36(10): 2066-2075, 2020 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-33169571

ABSTRACT

To achieve uniform soluble expression of multiple proteins in the same Escherichia coli strain, and simplify the process steps of antigen production in genetic engineering subunit multivalent vaccine, we co-expressed three avian virus proteins including the fowl adenovirus serotype 4 (FAdV-4) Fiber-2 protein, infectious bursal disease virus (IBDV) VP2 protein and egg-drop syndrome virus (EDSV) Fiber protein in E. coli BL21(DE3) cells after optimization of gene codon, promoter, and tandem expression order. The purified proteins were analyzed by Western blotting and agar gel precipitation (AGP). The content of the three proteins were well-proportioned after co-expression and the purity of the purified proteins were more than 80%. Western blotting analysis and AGP experiment results show that all the three co-expression proteins had immunoreactivity and antigenicity. It is the first time to achieve the three different avian virus antigens co-expression and co-purification, which simplified the process of antigen production and laid a foundation for the development of genetic engineering subunit multivalent vaccine.


Subject(s)
Antigens, Viral , Infectious bursal disease virus , Vaccines, Synthetic , Viral Vaccines , Animals , Antigens, Viral/analysis , Antigens, Viral/genetics , Biological Assay , Chickens/immunology , Escherichia coli/genetics , Infectious bursal disease virus/immunology , Poultry Diseases , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
20.
Front Vet Sci ; 7: 592, 2020.
Article in English | MEDLINE | ID: mdl-33102548

ABSTRACT

Foot-and-mouth disease (FMD) is an economically devastating disease of the livestock worldwide and caused by the FMD virus (FMDV), which has seven immunologically distinct serotypes (O, A, Asia1, C, and SAT1-SAT3). Studies suggest that VP2 is relatively conserved among three surface-exposed capsid proteins (VP1-VP3) of FMDV, but the level of conservation has not yet been reported. Here we analyzed the comparative evolutionary divergence of VP2 and VP1 to determine the level of conservation in VP2 at different hierarchical levels of three FMDV serotypes (O, A, and Asia1) currently circulating in Asia through an in-depth computational analysis of 14 compiled datasets and designed a consensus VP2 protein that can be used for the development of a serotype-independent FMDV detection tool. The phylogenetic analysis clearly represented a significant level of conservation in VP2 over VP1 at each subgroup level. The protein variability analysis and mutational study showed the presence of 67.4% invariant amino acids in VP2, with the N-terminal end being highly conserved. Nine inter-serotypically conserved fragments located on VP2 have been identified, among which four sites showed promising antigenicity value and surface exposure. The designed 130 amino acid long consensus VP2 protein possessed six surface-exposed B cell epitopes, which suggests the possible potentiality of the protein for the development of a serotype-independent FMDV detection tool in Asia. Conclusively, this is the first study to report the comparative evolutionary divergence between VP2 and VP1, along with proposing the possible potentiality of a designed protein candidate in serotype-independent FMDV detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...