Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.158
Filter
1.
J Cell Sci ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39318281

ABSTRACT

Asymmetric cell division in Saccharomyces cerevisiae involves Class V myosin-dependent transport of organelles along the polarised actin cytoskeleton to the emerging bud. Vac17 is the vacuole/lysosome-specific myosin receptor. Its timely breakdown terminates transport and results in the proper positioning of vacuoles in the bud. Vac17 breakdown is controlled by the bud-concentrated p21-activated kinase, Cla4, and the E3-Ubiquitin ligase, Dma1. We found that the spindle position checkpoint kinase, Kin4, and to a lesser extent its paralog Frk1, contribute to successful vacuole transport by preventing the premature breakdown of Vac17 by Cla4 and Dma1. Furthermore, Kin4 and Cla4 contribute to the regulation of peroxisome transport. We conclude that Kin4 acts antagonistically to the Cla4-/Dma1-pathway to coordinate spatiotemporal regulation of organelle transport.

2.
Autophagy ; : 1-4, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39315938

ABSTRACT

Exploration of autophagy in different species has become a hotspot in cell biology in the past decades. Macroautophagy (hereafter, autophagy) is the most widely studied type. One of the hallmarks of autophagy is the fusion of the outer membrane (OM) of a closed double-membrane mature autophagosome (AP) with the lysosomal/vacuolar single membrane. Most researchers in the autophagy field agree upon this description. However, AP-lysosome/vacuole fusion models that do not follow this description frequently appear in the literature, even published in some prestigious journals until now. Some of the misrepresented models are from autophagy laboratories with brilliant publication records. These flaws should be addressed as a public announcement in the autophagy field to avoid spreading misinformation. The editors and reviewers are the guardians to ensure correct models.Abbreviations: AP: autophagosome; IM: inner membrane; OM: outer membrane.

3.
J Hazard Mater ; 480: 135827, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276736

ABSTRACT

The Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale), exhibits a significant capacity to accumulate Zn in the roots. However, the molecular mechanisms underlying the variation in Ni and Zn accumulation are poorly understood. Here, we isolated a homolog of heavy metal ATPase 3 from O. chalcidica (OcHMA3) and characterized its functions using heterologous systems. Phylogenetic analysis revealed that OcHMA3 protein shares 87.6 % identity with AtHMA3, with similar metal binding sites to other HMA3 proteins. Heterologous expression of OcHMA3 in yeast increased sensitivity to Cd, Ni and Zn, suggesting it functions as a broad-specificity transporter. Further investigation showed OcHMA3 is constitutively expressed in the roots and localized to the tonoplast. Overexpression of OcHMA3 in A. thaliana shoots increased its roots Zn concentrations by 41.9 % - 74.1 %. However, overexpression of OcHMA3 in roots enhanced its tolerance to Cd and increased roots Cd concentrations by 50.9 % - 90.6 %. Our findings indicated OcHMA3 is responsible for Zn sequestration in root vacuoles, likely leading to Zn retention in roots and subsequent Ni hyperaccumulation in shoots. This study elucidates the molecular mechanism of Ni and Zn accumulation in O. chalcidica, and identifies OcHMA3 as a potential gene for developing Zn-rich plants and for phytoextraction in Cd-contaminated soils.

4.
Plant Cell Physiol ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39219543

ABSTRACT

Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation, and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, with one of the phenotypes of the CAX1 mutant being altered tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1 and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here we used SXRF (Synchrotron X-Ray Fluorescence) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium, and manganese. Proteomic analysis on isolated Arabidopsis trichomes. showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.

5.
New Phytol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238122

ABSTRACT

Malate and fumarate constitute a significant fraction of the carbon fixed by photosynthesis, and they are at the crossroad of central metabolic pathways. In Arabidopsis thaliana, they are transiently stored in the vacuole to keep cytosolic homeostasis. The malate and fumarate transport systems of the vacuolar membrane are key players in the control of cell metabolism. Notably, the molecular identity of these transport systems remains mostly unresolved. We used a combination of imaging, electrophysiology and molecular physiology to identify an important molecular actor of dicarboxylic acid transport across the tonoplast. Here, we report the function of the A. thaliana Aluminium-Activated Malate Transporter 5 (AtALMT5). We characterised its ionic transport properties, expression pattern, localisation and function in vivo. We show that AtALMT5 is expressed in photosynthetically active tissues and localised in the tonoplast. Patch-clamp and in planta analyses demonstrated that AtALMT5 is an ion channel-mediating fumarate loading of the vacuole. We found in almt5 plants a reduced accumulation of fumarate in the leaves, in parallel with increased malate concentrations. These results identified AtALMT5 as an ion channel-mediating fumarate transport in the vacuoles of mesophyll cells and regulating the malate/fumarate balance in Arabidopsis.

6.
Results Probl Cell Differ ; 73: 521-535, 2024.
Article in English | MEDLINE | ID: mdl-39242391

ABSTRACT

Intracellular protozoan pathogens have to negotiate the internal environment of the host cell they find themselves in, as well as manipulate the host cell to ensure their own survival, replication, and dissemination. The transfer of key effector molecules from the pathogen to the host cell is crucial to this interaction and is technically more demanding to study as compared to an extracellular pathogen. While several effector molecules have been identified, the mechanisms and conditions underlying their transfer to the host cell remain partly or entirely unknown. Improvements in experimental systems have revealed tantalizing details of such intercellular transfer, which form the subject of this chapter.


Subject(s)
Apicomplexa , Host-Parasite Interactions , Humans , Host-Parasite Interactions/physiology , Apicomplexa/physiology , Apicomplexa/metabolism , Animals
7.
J Invertebr Pathol ; 206: 108180, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154989

ABSTRACT

A new microsporidian disease of the pond-reared ridgetail white prawn, Palaemon carinicauda, was found in China. Light microscopy, pathology, and scanning electron microscopy showed that the parasite infected the host's skeletal muscle tissue and formed spherical sporophorous vesicles (SPOVs). Electron microscopy revealed that its merogonic life stages developed in direct contact with the host cytoplasm. The sporogonic life stages underwent octosporoblastic sporogony with the formation of eight uninucleate spores in each SPOV. Fresh SPOVs were 5.4 ± 0.55 µm in diameter. The octospores were oval and measured 2.3 × 1.5 µm (fresh) and 1.96 × 1.17 µm (fixed). The isofilar polar filament was coiled with 9-10 turns and arranged in two rows. Phylogenetic analysis based on the SSU rRNA gene suggests that this microsporidium has close affinities with members of the genera Potaspora and Apotaspora, but represents an independent generic taxon. We therefore propose the establishment of a new genus and species (Paospora carinifang n. gen., n. sp.) within the family Spragueidae. We also propose a taxonomic revision to transfer Potaspora macrobrachium to this new genus and reclassify it as Paospora macrobrachium comb. nov.


Subject(s)
Microsporidia , Palaemonidae , Phylogeny , Animals , Palaemonidae/microbiology , Palaemonidae/parasitology , Microsporidia/genetics , Microsporidia/ultrastructure , Microsporidia/classification , Microscopy, Electron, Scanning
9.
Methods Mol Biol ; 2845: 15-25, 2024.
Article in English | MEDLINE | ID: mdl-39115654

ABSTRACT

The selective degradation of nuclear components via autophagy, termed nucleophagy, is an essential process observed from yeasts to mammals and crucial for maintaining nucleus homeostasis and regulating nucleus functions. In the budding yeast Saccharomyces cerevisiae, nucleophagy occurs in two different manners: one involves autophagosome formation for the sequestration and vacuolar transport of nucleus-derived vesicles (NDVs), and the other proceeds with the invagination of the vacuolar membrane for the uptake of NDVs into the vacuole, termed macronucleophagy and micronucleophagy, respectively. This chapter describes methods to analyze and quantify activities of these nucleophagy pathways in yeast.


Subject(s)
Autophagy , Cell Nucleus , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae/metabolism , Vacuoles/metabolism , Cell Nucleus/metabolism , Autophagy/physiology , Autophagosomes/metabolism
10.
Methods Mol Biol ; 2841: 37-47, 2024.
Article in English | MEDLINE | ID: mdl-39115763

ABSTRACT

Protein secretion and vacuole formation are vital processes in plant cells, playing crucial roles in various aspects of plant development, growth, and stress responses. Multiple regulators have been uncovered to be involved in these processes. In animal cells, the transcription factor TFEB has been extensively studied and its role in lysosomal biogenesis is well understood. However, the transcription factors governing protein secretion and vacuole formation in plants remain largely unexplored. In recent years, an increasing number of bioinformatics databases and tools have been developed, facilitating computational prediction and analysis of the function of genes or proteins in specific cellular processes. Leveraging these resources, this chapter aims to provide practical guidance on how to effectively utilize these existing databases and tools for the analysis of key transcription factors involved in regulating protein secretion and vacuole formation in plants, with a particular focus on Arabidopsis and other higher plants. The findings from this analysis can serve as a valuable resource for future experimental investigations and the development of targeted strategies to manipulate protein secretion and vacuole formation in plants.


Subject(s)
Computational Biology , Transcription Factors , Vacuoles , Vacuoles/metabolism , Computational Biology/methods , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Protein Transport , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
11.
Methods Mol Biol ; 2841: 179-188, 2024.
Article in English | MEDLINE | ID: mdl-39115777

ABSTRACT

Vacuoles in plant cells are the most prominent organelles that harbor distinctive features, including lytic function, storage of proteins and sugars, balance of cell volume, and defense responses. Despite their dominant size and functional versatility, the nature and biogenesis of vacuoles in plants per se remain elusive and several models have been proposed. Recently, we used the whole-cell 3D electron tomography (ET) technique to study vacuole formation and distribution at nanometer resolution and demonstrated that small vacuoles are derived from multivesicular body maturation and fusion. Good sample preparation is a critical step to get high-quality electron tomography images. In this chapter, we provide detailed sample preparation methods for high-resolution ET in Arabidopsis thaliana root cells, including high-pressure freezing, subsequent freeze-substitution fixation, embedding, and serial sectioning.


Subject(s)
Arabidopsis , Electron Microscope Tomography , Vacuoles , Electron Microscope Tomography/methods , Vacuoles/ultrastructure , Vacuoles/metabolism , Arabidopsis/ultrastructure , Arabidopsis/metabolism , Plant Roots/ultrastructure , Plant Roots/metabolism , Imaging, Three-Dimensional/methods , Freeze Substitution/methods , Organelle Biogenesis
12.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-39138067

ABSTRACT

Coxiella burnetii is a globally distributed obligate intracellular pathogen. Although often asymptomatic, infections can cause acute Q fever with influenza-like symptoms and/or severe chronic Q fever. Coxiella burnetii develops a unique replicative niche within host cells called the Coxiella-containing vacuole (CCV), facilitated by the Dot/Icm type IV secretion system translocating a cohort of bacterial effector proteins into the host. The role of some effectors has been elucidated; however, the actions of the majority remain enigmatic and the list of true effectors is disputable. This study examined CBU2016, a unique C. burnetii protein previously designated as an effector with a role in infection. We were unable to validate CBU2016 as a translocated effector protein. Employing targeted knock-out and complemented strains, we found that the loss of CBU2016 did not cause a replication defect within Hela, THP-1, J774, or iBMDM cells or in axenic media, nor did it affect the pathogenicity of C. burnetii in the Galleria mellonella infection model. The absence of CBU2016 did, however, result in a consistent decrease in the size of CCVs in HeLa cells. These results suggest that although CBU2016 may not be a Dot/Icm effector, it is still able to influence the host environment during infection.


Subject(s)
Bacterial Proteins , Coxiella burnetii , Q Fever , Vacuoles , Coxiella burnetii/genetics , Coxiella burnetii/metabolism , Coxiella burnetii/pathogenicity , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Vacuoles/microbiology , Vacuoles/metabolism , Animals , Q Fever/microbiology , HeLa Cells , Cell Line , Virulence Factors/metabolism , Virulence Factors/genetics , Gene Knockout Techniques , Moths/microbiology , Host-Pathogen Interactions , THP-1 Cells
13.
Plant J ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39175446

ABSTRACT

Calcium (Ca2+) is essential for plant growth and cellular homeostasis, with cation exchangers (CAXs) regulating Ca2+ transport into plant vacuoles. In Arabidopsis, multiple CAXs feature a common structural arrangement, comprising an N-terminal autoinhibitory domain followed by two pseudosymmetrical modules. Mutations in CAX1 enhance stress tolerance, notably tolerance to anoxia (a condition marked by oxygen depletion), crucial for flood resilience. Here we engineered a dominant-negative CAX1 variant, named ½N-CAX1, incorporating the autoinhibitory domain and the N-terminal pseudosymmetrical module, which, when expressed in wild-type Arabidopsis plants, phenocopied the anoxia tolerance of cax1. Physiological evaluations, yeast assays, and calcium imaging demonstrated that wild-type plants expressing ½N-CAX1 have phenotypes consistent with inhibition of CAX1, which is likely through direct interaction of ½N-CAX1 with CAX1. Eliminating segments within the N-terminal pseudosymmetrical module, as well as incorporating modules from other plant CAXs and expressing these variants into wild-type plants, failed to produce anoxia tolerance. This underscores the requirement for both the CAX1 autoinhibitory domain and the intact pseudosymmetrical module to produce the dominant-negative phenotype. Our study elucidates the interaction of this ½N-CAX1 variant with CAX1 and its impact on anoxia tolerance, offering insights into further approaches for engineering plant stress tolerance.

14.
Curr Top Membr ; 93: 27-49, 2024.
Article in English | MEDLINE | ID: mdl-39181577

ABSTRACT

Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.


Subject(s)
Endocytosis , Malaria , Plasmodium , Animals , Humans , Malaria/parasitology , Malaria/metabolism , Plasmodium/metabolism , Plasmodium/physiology , Erythrocytes/parasitology , Erythrocytes/metabolism , Cell Membrane/metabolism , Hemoglobins/metabolism
15.
Front Microbiol ; 15: 1437579, 2024.
Article in English | MEDLINE | ID: mdl-39119141

ABSTRACT

Small GTPases of the Rab family coordinate multiple membrane fusion and trafficking events in eukaryotes. In fungi, the Rab GTPase, Ypt7, plays a critical role in late endosomal trafficking, and is required for homotypic fusion events in vacuole biogenesis and inheritance. In this study, we identified a putative YPT7 homologue in Cryptococcus neoformans, a fungal pathogen causing life threatening meningoencephalitis in immunocompromised individuals. As part of an ongoing effort to understand mechanisms of iron acquisition in C. neoformans, we established a role for Ypt7 in growth on heme as the sole iron source. Deletion of YPT7 also caused abnormal vacuolar morphology, defective endocytic trafficking and autophagy, and mislocalization of Aph1, a secreted vacuolar acid phosphatase. Ypt7 localized to the vacuolar membrane and membrane contact sites between the vacuole and mitochondria (vCLAMPs), and loss of the protein impaired growth on inhibitors of the electron transport chain. Additionally, Ypt7 was required for robust growth at 39°C, a phenotype likely involving the calcineurin signaling pathway because ypt7 mutants displayed increased susceptibility to the calcineurin-specific inhibitors, FK506 and cyclosporin A; the mutants also had impaired growth in either limiting or high levels of calcium. Finally, Ypt7 was required for survival during interactions with macrophages, and ypt7 mutants were attenuated for virulence in a mouse inhalation model thus demonstrating the importance of membrane trafficking functions in cryptococcosis.

16.
Mol Cell Biol ; 44(7): 273-288, 2024.
Article in English | MEDLINE | ID: mdl-38961766

ABSTRACT

Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.


Subject(s)
Cell Nucleus , Lipid Metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Vacuoles/metabolism , Cell Nucleus/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Acetylation , Nuclear Envelope/metabolism , Phospholipids/metabolism , Mutation
17.
J Infect Dis ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078938

ABSTRACT

Our previous study showed that OmpA-deficient Salmonella Typhimurium (STM) failed to retain LAMP-1, quit Salmonella-containing vacuole (SCV) and escaped to the host cytosol. Here we show that the cytosolic population of STM ΔompA sequestered autophagic markers, syntaxin17 and LC3B in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in STM ΔsifA restored its vacuolar niche and increased interaction of LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. The OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike STM ΔompA, they retained their outer membrane stability and didn't activate the lysosomal degradation pathway aiding in their intra-macrophage survival. Finally, OmpA extracellular loop mutations protected the cytosolic STM ΔsifA from the lysosomal surveillance, revealing a unique OmpA-dependent strategy of STM for its intracellular survival.

18.
Plant Sci ; 347: 112183, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38972549

ABSTRACT

The normal progression of mitotic cycles and synchronized development within female reproductive organs are pivotal for sexual reproduction in plants. Nevertheless, our understanding of the genetic regulation governing mitotic cycles during the haploid phase of higher plants remains limited. In this study, we characterized RNA HELICASE 32 (RH32), which plays an essential role in female gametogenesis in Arabidopsis. The rh32 heterozygous mutant was semi-sterile, whereas the homozygous mutant was nonviable. The rh32 mutant allele could be transmitted through the male gametophyte, but not the female gametophyte. Phenotypic analysis revealed impaired mitotic progression, synchronization, and cell specification in rh32 female gametophytes, causing the arrest of embryo sacs. In the delayed pollination test, none of the retarded embryo sacs developed into functional female gametophytes, and the vast majority of rh32 female gametophytes were defective in the formation of the large central vacuole. RH32 is strongly expressed in the embryo sac. Knock-down of RH32 resulted in the accumulation of unprocessed 18 S pre-rRNA, implying that RH32 is involved in ribosome synthesis. Based on these findings, we propose that RH32 plays a role in ribosome synthesis, which is critical for multiple processes in female gametophyte development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ovule , Arabidopsis/genetics , Arabidopsis/growth & development , Ovule/growth & development , Ovule/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Gene Expression Regulation, Plant
19.
J Biol Chem ; 300(9): 107608, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084459

ABSTRACT

Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.

20.
Article in English | MEDLINE | ID: mdl-38924147

ABSTRACT

In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain. Although the PfGCN5 proteolytic processing is essential for its activity, the specific protease involved in this process still remains elusive. Identification of PfGCN5 interacting proteins through immunoprecipitation (IP) followed by LC-tandem mass spectrometry analysis revealed the presence of food vacuolar proteins, such as the cysteine protease Falcipain 3 (FP3), in addition to the typical members of the PfGCN5 complex. The direct interaction between FP3 and PfGCN5 was further validated by in vitro pull-down assay as well as IP assay. Subsequently, use of cysteine protease inhibitor E64d led to the inhibition of protease-specific processing of PfGCN5 with concomitant enrichment and co-localization of PfGCN5 and FP3 around the food vacuole as evidenced by confocal microscopy as well as electron microscopy. Remarkably, the proteolytic cleavage of the nuclear protein PfGCN5 by food vacuolar protease FP3 is exceptional and atypical in eukaryotic organisms. Targeting the proteolytic processing of GCN5 and the associated protease FP3 could provide a novel approach for drug development aimed at addressing the growing resistance of parasites to current antimalarial drugs.

SELECTION OF CITATIONS
SEARCH DETAIL