Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Best Pract Res Clin Anaesthesiol ; 31(4): 445-467, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29739535

ABSTRACT

The difficulty of defining the three so-called components of « an-esthesia ¼ is emphasized: hypnosis, absence of movement, and adequacy of anti-nociception (intraoperative « analgesia ¼). Data obtained from anesthetized animals or humans delineate the activation of cardiac and vasomotor sympathetic reflex (somato-sympathetic reflex) and the cardiac parasympathetic deactivation observed following somatic stimuli. Sympathetic activation and parasympathetic deactivation are used as monitors to address the adequacy of intraoperative anti-nociception. Finally, intraoperative nociception through the administration of nonopioid analgesics vs. opioid analgesics is considered to achieve minimal postoperative side effects.


Subject(s)
Analgesics/administration & dosage , Anesthesia/methods , Pain Measurement/methods , Pain Perception/physiology , Regional Blood Flow/physiology , Animals , Humans , Intraoperative Neurophysiological Monitoring/methods , Neural Pathways/drug effects , Neural Pathways/physiology , Pain Measurement/drug effects , Pain Perception/drug effects , Regional Blood Flow/drug effects
2.
J Neurophysiol ; 114(3): 1513-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26156385

ABSTRACT

Calcium influx elevates mitochondrial oxidant stress (mOS) in dorsal motor nucleus of the vagus (DMV) neurons that are prone to Lewy body pathologies in presymptomatic Parkinson's disease (PD) patients. In experimental PD models, treatment with isradipine, the dihydropyridine with the highest affinity to Cav1.3 channels, prevents subthreshold calcium influx via Cav1.3 channels into midbrain dopamine neurons and protects them from mOS. In DMV neurons, isradipine is also effective in reducing mOS despite overwhelming evidence that subthreshold calcium influx is negligible compared with spike-triggered influx. To solve this conundrum we combined slice electrophysiology, two-photon laser scanning microscopy, mRNA profiling, and computational modeling. We find that the unusually depolarized subthreshold voltage trajectory of DMV neurons is positioned between the relatively hyperpolarized activation curve of Cav1.3 channels and that of other high-voltage activated (HVA) calcium channels, thus creating a functional segregation between Cav1.3 and HVA calcium channels. The HVA channels flux the bulk of calcium during spikes but can only influence pacemaking through their coupling to calcium-activated potassium currents. In contrast, Cav1.3 currents, which we show to be more than an order-of-magnitude smaller than the HVA calcium currents, are able to introduce sufficient inward current to speed up firing. However, Kv4 channels that are constitutively open in the subthreshold range guarantee slow pacemaking, despite the depolarizing action of Cav1.3 and other pacemaking currents. We propose that the efficacy of isradipine in preventing mOS in DMV neurons arises from its mixed effect on Cav1.3 channels and on HVA Cav1.2 channels.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Motor Neurons/metabolism , Vagus Nerve/metabolism , Action Potentials , Animals , Calcium Channels, L-Type/genetics , Mice , Mice, Inbred C57BL , Motor Neurons/physiology , Potassium Channels, Calcium-Activated/metabolism , Vagus Nerve/cytology , Vagus Nerve/physiology
3.
Braz. j. med. biol. res ; 44(3): 224-228, Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-576070

ABSTRACT

Activation of 5-hydroxytryptamine (5-HT) 5-HT1A, 5-HT2C, 5-HT3, and 5-HT7 receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT2A/2B receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT2A/2B antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT2A antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT2B antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT2A receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT2B receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT2A receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.


Subject(s)
Animals , Male , Rats , Bradycardia/physiopathology , /physiology , Reflex/drug effects , Vagus Nerve/drug effects , Analgesics/pharmacology , Atenolol/pharmacology , Biguanides/pharmacology , Bradycardia/chemically induced , Rats, Wistar , Reflex/radiation effects , Serotonin Receptor Agonists/pharmacology , Vagus Nerve/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...