Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.348
Filter
1.
Article in English | MEDLINE | ID: mdl-38969912

ABSTRACT

Higher blood pressure (BP) variability (BPV) was shown to be strong predictors of poor cardiovascular outcomes in heart failure (HF). It is currently unknown if low-level tragus stimulation (LLTS) would lead to improvement in BPV in acute HF (AHF). The 22 patients with AHF (median 80 yrs, males 60%) were randomly assigned to active or sham group using an ear clip attached to the tragus (active group) or the earlobe (sham group) for 1 h daily over 5 days. In the active group, standard deviation (SD), coefficient of variation (CV) and δ in SBP were significantly decreased after LLTS (all p < 0.05). All the changes in SD, CV and δ in SBP before and after stimulation were also significantly different between active and sham groups (all p < 0.05). This proof-of-concept study demonstrates the beneficial effects of LLTS on BPV in AHF.

2.
Neurotherapeutics ; : e00422, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964949

ABSTRACT

The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored whether in vivo microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE) patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 â€‹± â€‹10.13 years, 10 females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI) and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstructure Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts. These characteristics were compared between responders/partial responders and non-responders. Subsequently, a Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical covariates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to VNS (pFDR < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological factors associated with the response to VNS therapy.

3.
Exp Brain Res ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963558

ABSTRACT

Bilateral transcutaneous auricular vagus nerve stimulation (taVNS) - a non-invasive neuromodulation technique - has been investigated as a safe and feasible technique to treat many neuropsychiatric conditions. such as epilepsy, depression, anxiety, and chronic pain. Our aim is to investigate the effect of taVNS on neurophysiological processes during emotional and Go/No-Go tasks, and changes in frontal alpha asymmetry. We performed a randomized, double-blind, sham-controlled trial with 44 healthy individuals who were allocated into two groups (the active taVNS group and the sham taVNS group). Subjects received one session of taVNS (active or sham) for 60 min. QEEG was recorded before and after the interventions, and the subjects were assessed while exposed to emotional conditions with sad and happy facial expressions, followed by a Go/No-Go trial. The results demonstrated a significant increase in N2 amplitude in the No-Go condition for the active taVNS post-intervention compared to the sham taVNS after adjusting by handedness, mood, and fatigue levels (p = 0.046), significantly reduced ERD during sad conditions after treatment (p = 0.037), and increased frontal alpha asymmetry towards the right frontal hemisphere during the emotional task condition (p = 0.046). Finally, we observed an interesting neural signature in this study that suggests a bottom-up modulation from brainstem/subcortical to cortical areas as characterized by improved lateralization of alpha oscillations towards the frontal right hemisphere, and changes in ERP during emotional and Go/No-Go tasks that suggests a better subcortical response to the tasks. Such bottom-up effects may mediate some of the clinical effects of taVNS.

4.
Neurosurg Focus Video ; 11(1): V2, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957417

ABSTRACT

Vagus nerve stimulation (VNS) is a neuromodulatory treatment involving chronic intermittent electrical stimulation of the left vagus nerve, administered through a programmable pulse generator implanted subcutaneously in the chest. This generator connects to a bipolar lead, with electrodes wrapped around the vagus nerve in the neck. Primarily used as an adjunct therapy for patients with refractory epilepsy who cannot undergo or have not benefitted from resective surgery, VNS is generally well tolerated with few severe side effects. Herein is presented an educational surgical video providing a detailed, step-by-step technical description of VNS implantation. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID244.

5.
Biomed Eng Lett ; 14(4): 677-687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946812

ABSTRACT

Purpose: The purpose of this study was to investigate the neuromodulatory effects of transauricular vagus nerve stimulation (taVNS) and determine optimal taVNS duration to induce the meaningful neuromodulatroty effects using resting-state electroencephalography (EEG). Method: Fifteen participants participated in this study and taVNS was applied to the cymba conchae for a duration of 40 min. Resting-state EEG was measured before and during taVNS application. EEG power spectral density (PSD) and brain network indices (clustering coefficient and path length) were calculated across five frequency bands (delta, theta, alpha, beta and gamma), respectively, to assess the neuromodulatory effect of taVNS. Moreover, we divided the whole brain region into the five regions of interest (frontal, central, left temporal, right temporal, and occipital) to confirm the neuromodulation effect on each specific brain region. Result: Our results demonstrated a significant increase in EEG frequency powers across all five frequency bands during taVNS. Furthermore, significant changes in network indices were observed in the theta and gamma bands compared to the pre-taVNS measurements. These effects were particularly pronounced after approximately 10 min of stimulation, with a more dominant impact observed after approximately 20-30 min of taVNS application. Conclusion: The findings of this study indicate that taVNS can effectively modulate the brain activity, thereby exerting significant effects on brain characteristics. Moreover, taVNS duration of approximately 20-30 min was considered appropriate for inducing a stable and efficient neuromodulatory effects. Consequently, these findings have the potential to contribute to research aimed at enhancing cognitive and motor functions through the modulation of EEG using taVNS. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00361-8.

6.
J Affect Disord ; 361: 556-563, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925314

ABSTRACT

OBJECTIVE: To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS: In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS: PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION: Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.

7.
BMC Musculoskelet Disord ; 25(1): 498, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926726

ABSTRACT

BACKGROUND: Chronic low back pain (CLBP) is a frequent disease. It is a critical health concern that can influence functional capacity by restricting living activities. OBJECTIVES: The current study is to investigate the effects of transcutaneous vagus nerve stimulation (TVNs) in the management of CLBP. METHODS: We searched the databases on Google Scholar, PubMed, Web of Science, Cochrane, and Pedro for randomized clinical trial (RCT) studies published in any language that looked at the effectiveness of TVNs in people with chronic LBP. The inclusion criteria were PICO. Participants in the research were people (≥ 18 years) diagnosed with persistent low back pain for more than 3 months. Study quality was assessed using Cochrane ROB 2. RESULTS: Our database search found 1084 RCT. A number of studies that were not necessary for the issue were removed, and the overall outcome was six trials. Risk of bias (ROB) evaluations at the study level (derived from outcomes) are reported. In the six studies, two (33.3%) had an overall uncertain ROB (i.e., some concerns), whereas one (16.7%) had a high overall ROB. Three trials (50%) had a low overall RoB. CONCLUSION: There is still no evidence to support the use of transcutaneous vagus nerve stimulation as a viable therapeutic rehabilitation strategy. Therefore, we recommend high-quality trials and long-term follow-up to evaluate disability, quality of life, and pain outcomes in these patients.


Subject(s)
Chronic Pain , Low Back Pain , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Low Back Pain/therapy , Low Back Pain/diagnosis , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Chronic Pain/therapy , Chronic Pain/diagnosis , Treatment Outcome , Randomized Controlled Trials as Topic , Pain Measurement
8.
Circ Heart Fail ; : e011269, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887946

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a common subtype of heart failure marked by impaired left ventricular diastolic function and decreased myocardial compliance. Given the limited availability of evidence-based pharmacological treatments for HFpEF, there is a growing interest in nonpharmacological interventions as viable therapeutic alternatives. This review aims to explore the pathophysiology of HFpEF and present recent advancements in nonpharmacological management approaches, encompassing noninvasive therapies, invasive procedures and targeted treatments for comorbidities. An extensive literature review was undertaken to identify and synthesize emerging nonpharmacological treatment options for HFpEF, assessing their potential to enhance patient outcomes. Nonpharmacological strategies, such as vagus nerve stimulation, percutaneous pulmonary artery denervation, renal denervation, transcatheter insertion of atrial shunts and pericardial resection, demonstrate promising potential for alleviating HFpEF symptoms and improving patient prognosis. Moreover, addressing comorbidities, such as hypertension and diabetes, may offer additional therapeutic benefits. These cutting-edge techniques, in conjunction with well-established exercise therapies, pave the way for future research and clinical applications in the field. Nonpharmacological interventions hold promise for advancing HFpEF patient care and fostering a deeper understanding of these treatment approaches, which will facilitate new clinical applications and contribute to the development of more targeted therapies.

9.
Bioelectron Med ; 10(1): 15, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880906

ABSTRACT

BACKGROUND: Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS: We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS: Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION: Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.

10.
Front Bioeng Biotechnol ; 12: 1431976, 2024.
Article in English | MEDLINE | ID: mdl-38887614

ABSTRACT

[This corrects the article DOI: 10.3389/fbioe.2021.796042.].

11.
Front Physiol ; 15: 1379936, 2024.
Article in English | MEDLINE | ID: mdl-38835728

ABSTRACT

Introduction: The influence of vagus nerve stimulation (VNS) parameters on provoked cardiac effects in different levels of cardiac innervation is not well understood yet. This study examines the effects of VNS on heart rate (HR) modulation across a spectrum of cardiac innervation states, providing data for the potential optimization of VNS in cardiac therapies. Materials and Methods: Utilizing previously published data from VNS experiments on six sheep with intact innervation, and data of additional experiments in five rabbits post bilateral rostral vagotomy, and four isolated rabbit hearts with additionally removed sympathetic influences, the study explored the impact of diverse VNS parameters on HR. Results: Significant differences in physiological threshold charges were identified across groups: 0.09 ± 0.06 µC for intact, 0.20 ± 0.04 µC for vagotomized, and 9.00 ± 0.75 µC for isolated hearts. Charge was a key determinant of HR reduction across all innervation states, with diminishing correlations from intact (r = 0.7) to isolated hearts (r = 0.44). An inverse relationship was observed for the number of pulses, with its influence growing in conditions of reduced innervation (intact r = 0.11, isolated r = 0.37). Frequency and stimulation delay showed minimal correlations (r < 0.17) in all conditions. Conclusion: Our study highlights for the first time that VNS parameters, including stimulation intensity, pulse width, and pulse number, crucially modulate heart rate across different cardiac innervation states. Intensity and pulse width significantly influence heart rate in innervated states, while pulse number is key in denervated states. Frequency and delay have less impact impact across all innervation states. These findings suggest the importance of customizing VNS therapy based on innervation status, offering insights for optimizing cardiac neuromodulation.

12.
Front Neurol ; 15: 1418937, 2024.
Article in English | MEDLINE | ID: mdl-38882693

ABSTRACT

Background: Treatment of disorders of consciousness (DOC) poses a huge challenge for clinical medicine. Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation method, which shows potential in improving recovery of DOC. However, the evidence came from single-center, small-sample randomized controlled trial, which is insufficient to form a conclusion. Thereby, we propose a prospective, multicenter, double-blind, stratified, two-arm randomized controlled trial protocol to investigate the efficacy and safety of bilateral synchronous taVNS for treatment of DOC. Methods: We aim to recruit 382 patients with prolonged DOC, and divide them into an active stimulation group and a sham stimulation group. The patients in the active stimulation group will receive bilateral synchronous taVNS with a 200 µs pulse width, 20 Hz frequency, and personal adjusted intensity. The sham stimulation group will wear the same stimulator but without current output. Both groups will receive treatment for 30 min per session, twice per day, 6 days per week lasting for 4 weeks. The clinical assessment including Coma Recovery Scale-Revised (CRS-R), Full Outline of Unresponsiveness (FOUR), Glasgow Coma Scale (GCS), and Extended Glasgow Outcome Scale (GOS-E) will be conducted to evaluate its efficacy. Heart rate variability (HRV), blood pressure, and adverse events will be recorded to evaluate its safety. Discussion: These results will enable us to investigate the efficacy and safety of taVNS for DOC. This protocol will provide multicenter, large-sample, high-quality Class II evidence to support bilateral synchronous taVNS for DOC, and will advance the field of treatment options for DOC.Clinical trial registration:https://www.chictr.org.cn/showproj.html?proj=221851, ChiCTR2400081978.

13.
Neurorehabil Neural Repair ; : 15459683241258769, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836606

ABSTRACT

BACKGROUND: Vagus nerve stimulation (VNS) combined with rehabilitation is a Food and Drug Administration approved intervention for moderate to severe upper extremity deficits in chronic ischemic stroke patients. Previous studies demonstrated that VNS improves upper extremity motor impairments, using the Fugl Meyer Assessment of Upper Extremity (FMA-UE); however, delineating where these improvements occur, and the role of VNS dosage parameters were not reported. OBJECTIVE: This study explored the relationship between dosing (time over which task repetitions were executed and number of VNS stimulations) and changes within proximal and distal components of the FMA-UE. METHODS: Participants underwent VNS implantation, with 1 group receiving VNS paired with rehabilitation (Active VNS) and the other group receiving rehabilitation with sham stimulation (Controls). Both groups received 6 weeks of in-clinic therapy followed by a 90-day at-home, self-rehabilitation program. Participants who completed at least 12 of 18 in-clinic sessions were included in the analyses (n = l06). Pearson correlations and analysis of covariance were used to investigate the relationship between dosing and FMA-UE outcome change along with the effect of covariates including baseline severity, time since stroke, age, and paretic side. RESULTS: Compared to Controls, active VNS favorably influenced distal function with sustained improvement after the home program. Significant improvements were observed in only distal components (FMdist) at both post day-1 (1.80 points, 95% Cl [0.85, 2.73], P < .001) and post-day 90 (1.62 points, 95% CI [0.45, 2.80], P < .007). CONCLUSIONS: VNS paired with rehabilitation resulted in significant improvements in wrist and hand impairment compared to Controls, despite similar in-clinic dosing across both groups.NCT03131960.

14.
Asian J Psychiatr ; 98: 104079, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38838458

ABSTRACT

BACKGROUND: In order to improve taVNS efficacy, the usage of fMRI to explore the predictive neuroimaging markers would be beneficial for screening the appropriate MDD population before treatment. METHODS: A total of 86 MDD patients were recruited in this study, and all subjects were conducted with the clinical scales and resting-state functional magnetic resonance imaging (fMRI) scan before and after 8 weeks' taVNS treatment. A two-stage feature selection strategy combining Machine Learning and Statistical was used to screen out the critical brain functional connections (FC) that were significantly associated with efficacy prediction, then the efficacy prediction model was constructed for taVNS treating MDD. Finally, the model was validated by separated the responding and non-responding patients. RESULTS: This study showed that taVNS produced promising clinical efficacy in the treatment of mild and moderate MDD. Eleven FCs were selected out and were found to be associated with the cortico-striatal-pallidum-thalamic loop, the hippocampus and cerebellum and the HAMD-17 scores. The prediction model was created based on these FCs for the efficacy prediction of taVNS treatment. The R-square of the conducted regression model for predicting HAMD-17 reduction rate is 0.44, and the AUC for classifying the responding and non-responding patients is 0.856. CONCLUSION: The study demonstrates the validity and feasibility of combining neuroimaging and machine learning techniques to predict the efficacy of taVNS on MDD, and provides an effective solution for personalized and precise treatment for MDD.

15.
J Neurosurg Pediatr ; : 1-8, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905712

ABSTRACT

OBJECTIVE: Epilepsy affects approximately 470,000 children in the United States. The estimated median incidence is 50.4 cases per 100,000 persons per year. There are approximately 3.1 million seizure-related emergency department (ED) visits per year among children. Vagus nerve stimulation (VNS) is a treatment option for drug-resistant epilepsy (DRE). While its primary goal is to decrease seizure burden, VNS may decrease seizure intensity and improve quality of life. The authors assessed whether VNS decreased the number of seizure-related ED visits in a cohort of children with DRE. METHODS: The authors performed a retrospective chart review of pediatric patients (aged 0-21 years) who underwent implantation of a vagus nerve stimulator between January 2009 and January 2020 at the University of Pittsburgh Medical Center Children's Hospital of Pittsburgh. They used paired t-tests to assess differences in the number of ED visits 2 years before versus 2 years after VNS device implantation. Univariable linear regression analyses were used to test associations of preoperative characteristics with change in the number of ED visits following vagus nerve stimulator insertion. RESULTS: This study included 240 patients. Compared with patients without seizure-related ED visits before VNS, patients with ≥ 1 ED visits were younger in age at first VNS surgery (9.5 vs 10.8 years), had a shorter epilepsy duration before VNS surgery (5.8 vs 7.4 years), had a later year of device implantation (2014 vs 2012), and on average took more antiseizure medications (ASMs; 2.4 vs 2.1). There was no significant difference between the total number of seizure-related ED visits pre- versus post-VNS surgery (1.72 vs 1.59, p = 0.50), and no difference in status epilepticus-related visits (0.59 vs 0.46, p = 0.17). Univariable linear regression analyses revealed a mean change in ED visits of +0.3 for each year prior to 2022 and -0.5 for each additional ASM that patients took before vagus nerve stimulator insertion. CONCLUSIONS: This single-institution analysis demonstrated no significant change in the number of seizure-related ED visits within 2 years following VNS device implantation. Earlier VNS surgery was associated with more seizure-related ED visits after device insertion, suggesting that medical management and center experience may play a role in decreasing seizure-related ED visits. A greater number of ASMs was associated with fewer seizure-related ED visits after VNS device insertion, suggesting the role of medical management, patient baseline seizure threshold, and caregiver comfort with at-home seizure management.

16.
Trials ; 25(1): 397, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898522

ABSTRACT

BACKGROUND: Borderline personality disorder (BPD) is considered a disorder of emotion regulation resulting from the expression of a biologically determined emotional vulnerability (that is, heightened sensitivity to emotion, increased emotional intensity/reactivity, and a slow return to emotional baseline) combined with exposure to invalidating environments. Vagal tone has been associated with activity in cortical regions involved in emotion regulation and a lower resting state of vagal tone has been observed in BPD patients relative to healthy controls. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has been shown to reduce temper outbursts in adults with Prader-Willi Syndrome, to enhance recognition of emotions in healthy students, and to improve depressive and anxiety symptoms. Furthermore, a single session of taVNS has been shown to acutely alter the recognition of facial expressions of negative valence in adolescents with MDD and increase emotion recognition in controls. However, the effect of taVNS on emotional vulnerability and regulation in individuals diagnosed with BPD has not been investigated. Our aims are to determine if taVNS is effective in acutely reducing emotional vulnerability and improve emotional regulation in BPD patients. METHODS: Forty-two patients will be randomized to a single session of taVNS or sham-taVNS while going through an affect induction procedure. It will consist of the presentation of one neutral and three negative affect-evoking 4-min-long videos in sequence, each of which is followed by a 4-min post-induction period during which participants will rate the quality and intensity of their current self-reported emotions (post-induction ratings) and the perceived effectiveness in managing their emotions during the video presentation. The rating of the current self-reported emotions will be repeated after every post-induction period (recovery ratings). Mixed models with individuals as random effect will be used to investigate the ratings at each stage of the study, taking into account the repeated measures of the same individuals at baseline, pre-induction, post-induction, and recovery. DISCUSSION: The study has potential to yield new insights into the role of vagal tone in emotion dysregulation in BPD and offer preliminary data on the effectiveness of taVNS as a possible non-invasive brain stimulation to treat a core symptom of BPD. TRIAL REGISTRATION: ClinicalTrials.gov NCT05892900. Retrospectively registered on Jun 07, 2023.


Subject(s)
Borderline Personality Disorder , Emotional Regulation , Emotions , Randomized Controlled Trials as Topic , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Borderline Personality Disorder/therapy , Borderline Personality Disorder/psychology , Borderline Personality Disorder/physiopathology , Vagus Nerve Stimulation/methods , Single-Blind Method , Adult , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , Female , Treatment Outcome , Male , Adolescent , Time Factors , Vagus Nerve/physiopathology , Middle Aged
17.
Neuromodulation ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878053

ABSTRACT

OBJECTIVE: Vagus nerve stimulation (VNS) has recently been reported to exert additional benefits for functional recovery in patients with brain injury. However, the mechanisms underlying these effects have not yet been elucidated. This study examined the effects of transcutaneous auricular VNS (taVNS) on cortical excitability in healthy adults. MATERIALS AND METHODS: We recorded subthreshold and suprathreshold single- and paired-pulse motor-evoked potentials (MEPs) in the right-hand muscles of 16 healthy adults by stimulating the left primary motor cortex. Interstimulus intervals were set at 2 milliseconds and 3 milliseconds for intracortical inhibition (ICI), and 10 milliseconds and 15 milliseconds for intracortical facilitation (ICF). taVNS was applied to the cymba conchae of both ears for 30 minutes. The intensity of taVNS was set to a maximum tolerable level of 1.95 mA. MEPs were measured before stimulation, 20 minutes after the beginning of the stimulation, and 10 minutes after the cessation of stimulation. RESULTS: The participants' age was 33.25 ± 7.08 years, and nine of 16 were male. No statistically significant changes were observed in the mean values of the single-pulse MEPs before, during, or after stimulation. Although the ICF showed an increasing trend after stimulation, the changes in ICI and ICF were not significant, primarily because of the substantial interindividual variability. CONCLUSIONS: The effect of taVNS on cortical excitability varied in healthy adults. An increase in ICF was observed after taVNS, although the difference was not statistically significant. Our findings contribute to the understanding of the mechanisms by which taVNS is effective in patients with brain disorders.

18.
Front Neurol ; 15: 1390217, 2024.
Article in English | MEDLINE | ID: mdl-38872818

ABSTRACT

Objective: To systematically review vagus nerve stimulation (VNS) studies to present data on the safety and efficacy on motor recovery following stroke, traumatic brain injury (TBI), and spinal cord injury (SCI). Methods: Data sources: PubMed, EMBASE, SCOPUS, and Cochrane. Study selection: Clinical trials of VNS in animal models and humans with TBI and SCI were included to evaluate the effects of pairing VNS with rehabilitation therapy on motor recovery. Data extraction: Two reviewers independently assessed articles according to the evaluation criteria and extracted relevant data electronically. Data synthesis: Twenty-nine studies were included; 11 were animal models of stroke, TBI, and SCI, and eight involved humans with stroke. While there was heterogeneity in methods of delivering VNS with respect to rehabilitation therapy in animal studies and human non-invasive studies, a similar methodology was used in all human-invasive VNS studies. In animal studies, pairing VNS with rehabilitation therapy consistently improved motor outcomes compared to controls. Except for one study, all human invasive and non-invasive studies with controls demonstrated a trend toward improvement in motor outcomes compared to sham controls post-intervention. However, compared to non-invasive, invasive VNS, studies reported severe adverse events such as vocal cord palsy, dysphagia, surgical site infection, and hoarseness of voice, which were found to be related to surgery. Conclusion: Our review suggests that VNS (non-invasive or invasive) paired with rehabilitation can improve motor outcomes after stroke in humans. Hence, VNS human studies are needed in these populations (referring to SCI and TBI?) or just SCI. There are risks related to device implantation to deliver invasive VNS compared to non-invasive VNS. Future human comparison studies are required to study and quantify the efficacy vs. risks of paired VNS delivered via different methods with rehabilitation, which would allow patients to make an informed decision. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=330653.

19.
Front Neurosci ; 18: 1367266, 2024.
Article in English | MEDLINE | ID: mdl-38846714

ABSTRACT

Background: Vagus nerve stimulation (VNS) improves diseases such as refractory epilepsy and treatment-resistant depression, likely by rebalancing the autonomic nervous system (ANS). Intradermal auricular electro-acupuncture stimulation (iaES) produces similar effects. The aim of this study was to determine the effects of different iaES frequencies on the parasympathetic and sympathetic divisions in different states of ANS imbalance. Methods: We measured heart rate variability (HRV) and heart rate (HR) of non-modeled (normal) rats with the treatment of various frequencies to determine the optimal iaES frequency. The optimized iaES frequency was then applied to ANS imbalance model rats to elucidate its effects. Results: 30 Hz and 100 Hz iaES clearly affected HRV and HR in normal rats. 30 Hz iaES increased HRV, and decreased HR. 100 Hz iaES decreased HRV, and increased HR. In sympathetic excited state rats, 30 Hz iaES increased HRV. 100 Hz iaES increased HRV, and decreased HR. In parasympathetic excited state rats, 30 Hz and 100 Hz iaES decreased HRV. In sympathetic inhibited state rats, 30 Hz iaES decreased HRV, while 100 Hz iaES decreased HR. In parasympathetic inhibited rats, 30 Hz iaES decreased HR and 100 Hz iaES increased HRV. Conclusion: 30 Hz and 100 Hz iaES contribute to ANS rebalance by increasing vagal and sympathetic activity with different amplifications. The 30 Hz iaES exhibited positive effects in all the imbalanced states. 100 Hz iaES suppressed the sympathetic arm in sympathetic excitation and sympathetic/parasympathetic inhibition and suppressed the vagal arm and promoted the sympathetic arm in parasympathetic excitation and normal states.

20.
J Neurosurg ; : 1-15, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875724

ABSTRACT

OBJECTIVE: This study summarizes medical device reports (MDRs) associated with adverse events for vagus nerve stimulation (VNS) devices indicated for epilepsy as reported by the Manufacturer and User Facility Device Experience (MAUDE) database of the US Food and Drug Administration. METHODS: The MAUDE database was surveyed for MDRs from November 2013 to September 2022 regarding VNS devices for epilepsy. Event descriptions, device problems, correlated patient consequences, and device models were grouped and analyzed in Python. Based on event description, revision surgeries and other unique events were identified. Revenue from VNS device sales was used to approximate growth in their use over time. RESULTS: A total of 21,448 MDRs met the inclusion criteria. High VNS impedance, the most prevalent device malfunction overall (17.0% of MDRs), was the most common factor for 18 of the 102 encountered patient problems and led to 1001 revision surgeries (3371 total revisions). Included in those 18 device malfunctions were 3 of the top 6 occurring patient problems: seizure recurrence (9.9% associated with high impedance; encompassed focal, absence, and grand mal subtypes), death (1.3%), and generalized pain (7.9%). The next 4 top cited device malfunctions-lead fracture (13.7% of MDRs), operational issue (6.6%), battery problem holding charge (4.2%), and premature end-of-life indicator (2.9%)-differed widely in their percentage of cases that did not impact patients (77.4%, 57.3%, 48.9%, and 92.2%, respectively), highlighting differing malfunction severities. Seizure recurrence, the most prevalent patient impact, was the outcome most associated with 32 of the 68 encountered device problems, including high impedance (12.8%), lead fracture (12.2%), operational issue (18.4%), battery problem holding charge (31.2%), and premature end-of-life indicator (8.9%), which comprised the top 5 occurring device problems. In general, MDRs spanned a diverse range including device age, hardware, software, and surgeon or manufacturer error. Trends were seen over time with declining annual MDRs coupled with a rise in the use of VNS devices as gauged by revenue growth. Shifting device and patient problem profiles were also seen in successive models, reflecting engineering updates. CONCLUSIONS: This study characterizes the most common and consequential side effects of VNS devices for epilepsy while clarifying likely causes. In addition, the outcomes of 68 distinct device malfunctions were identified, including many not ubiquitously present in literature, lending critical perspective to clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...