Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 288
Filter
1.
Anticancer Res ; 44(7): 2933-2941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925828

ABSTRACT

BACKGROUND/AIM: Regulatory T cells (Tregs) suppress various anti-tumor immune responses in the tumor microenvironment (TME) and their control is considered essential to enhancing efficacy of cancer immunotherapy. The purpose of the study was to evaluate the strategy to regulate Tregs through the vascular endothelial growth factor (VEGF) pathway. MATERIALS AND METHODS: We evaluated VEGF receptor (VEGFR) expression in subtypes of Tregs by analysis of public databases and through flow cytometry by investigating surgically resected specimens and peripheral blood mononuclear cells (PBMCs) from 26 patients with advanced colorectal cancer (CRC). RESULTS: Analysis of The Cancer Genome Atlas colorectal adenocarcinoma dataset (n=592) showed that mRNA expression of both FLT1 (VEGFR1) and KDR (VEGFR2) was positively correlated with mRNA expression of FOXP3 as well as Treg signature. Clinical specimens revealed abundant VEGFR2 expression on Tregs, but very marginal VEGFR1 expression. The frequency of effector Tregs, the most immunosuppressive fraction of Tregs, was significantly higher in the tumor than in the PBMC and normal mucosa, and the majority of effector Tregs expressed VEGFR2. Furthermore, by using in vitro generated Tregs, the proportion of Tregs expressing IL-10 or TGF-ß1 was significantly inhibited by a VEGFR2 inhibitor. CONCLUSION: A therapeutic strategy targeting the VEGFR2 axis may have a potential to control effector Tregs in the CRC-TME.


Subject(s)
Colorectal Neoplasms , T-Lymphocytes, Regulatory , Tumor Microenvironment , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-2 , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Male , Female , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Tumor Microenvironment/immunology , Aged , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
2.
J Transl Med ; 22(1): 419, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702818

ABSTRACT

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Subject(s)
Apoptosis , Cell Proliferation , Glioblastoma , Mitochondria , Organelle Biogenesis , Vascular Endothelial Growth Factor Receptor-2 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
3.
Mol Divers ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678137

ABSTRACT

Suppressing vascular endothelial growth factor (VEGF), its receptor (VEGFR2), and the VEGF/VEGFR2 signaling cascade system to inhibit angiogenesis has emerged as a possible cancer therapeutic target. The present work was designed to discover and evaluate bioactive phytochemicals from the Clerodendrum inerme (L.) Gaertn plant for their anti-angiogenic potential. Molecular docking of twenty-one phytochemicals against the VEGFR-2 (PDB ID: 3VHE) protein was performed, followed by ADMET profiling and molecular docking simulations. These investigations unveiled two hit compounds, cirsimaritin (- 12.29 kcal/mol) and salvigenin (- 12.14 kcal/mol), with the highest binding energy values when compared to the reference drug, Sorafenib (- 15.14 kcal/mol). Furthermore, only nine phytochemicals (cirsimaritin and salvigenin included) obeyed Lipinski's rule of five and passed ADMET filters. Molecular dynamics simulations run over 100 ns revealed that the protein-ligand complexes remained stable with minimal backbone fluctuations. The binding free energy values of cirsimaritin (- 52.35 kcal/mol) and salvigenin (- 55.89 kcal/mol), deciphered by MM-GBSA analyses, further corroborated the docking interactions. The HOMO-LUMO band energy gap (ΔE) was calculated using density-functional theory (DFT) and substantiated using density of state (DOS) spectra. The chemical reactivity analyses revealed that salvigenin exhibited the highest chemical softness value (6.384 eV), the lowest hardness value (0.07831 eV), and the lowest ΔE value (0.1566 eV), which implies salvigenin was less stable and chemically more reactive than cirsimaritin and sorafenib. These findings provide further evidence that cirsimaritin and salvigenin have the ability to prevent angiogenesis and the development of cancer. Nevertheless, more in vitro and in vivo confirmation is necessary.

4.
Arch Biochem Biophys ; 754: 109957, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467357

ABSTRACT

OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Rats , Mice , Animals , Glioblastoma/drug therapy , Zeaxanthins/pharmacology , Caspase 3 , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Angiogenesis Inhibitors/pharmacology , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Cell Movement
5.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504533

ABSTRACT

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Emodin , Humans , Mice , Animals , Corneal Neovascularization/drug therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Burns, Chemical/pathology , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Molecular Docking Simulation , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Signal Transduction , Human Umbilical Vein Endothelial Cells , Inflammation/drug therapy , Disease Models, Animal
6.
Biomaterials ; 306: 122504, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377848

ABSTRACT

This study addresses the demand for research models that can support patient-treatment decisions and clarify the complexities of a tumor microenvironment by developing an advanced non-animal preclinical cancer model. Based on patient-derived tumor spheroids (PDTS), the proposed model reconstructs the tumor microenvironment with emphasis on tumor spheroid-driven angiogenesis. The resulting microfluidic chip system mirrors angiogenic responses elicited by PDTS, recapitulating patient-specific tumor conditions and providing robust, easily quantifiable outcomes. Vascularized PDTS exhibited marked angiogenesis and tumor proliferation on the microfluidic chip. Furthermore, a drug that targets the vascular endothelial growth factor receptor 2 (VEGFR2, ramucirumab) was deployed, which effectively inhibited angiogenesis and impeded tumor invasion. This innovative preclinical model was used for investigating distinct responses for various drug combinations, encompassing HER2 inhibitors and angiogenesis inhibitors, within the context of PDTS. This integrated platform could potentially advance precision medicine by harmonizing diverse data points within the tumor microenvironment with a focus on the interplay between cancer and the vascular system.


Subject(s)
Neoplasms , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis , Neovascularization, Pathologic/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Cell Line, Tumor , Neoplasms/drug therapy
7.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345053

ABSTRACT

Pigment epithelium-derived factor (PEDF) could bind to vascular endothelial growth factor receptor 2 (VEGFR2) and inhibit its activation induced by VEGF. But how PEDF affects VEGFR2 pathway is still poorly understood. In this study, we elucidated the precise mechanism underlying the interaction between PEDF and VEGFR2, and subsequently corroborated our findings using a rat AMI model. PEDF prevented endocytosis of VE-cadherin induced by hypoxia, thereby protecting the endothelium integrity. A three-dimensional model of the VEGFR2-PEDF complex was constructed by protein-protein docking method. The results showed that the VEGFR2-PEDF complex was stable during the simulation. Hydrogen bonds, binding energy and binding modes were analyzed during molecular dynamics simulations, which indicated that hydrogen bonds and hydrophobic interactions were important for the recognition of VEGFR2 with PEDF. In addition, the results from exudation of fibrinogen suggested that PEDF inhibits vascular leakage in acute myocardial infarction and confirmed the critical role of key amino acids in the regulation of endothelial cell permeability. This observation is also supported by echocardiography studies showing that the 34mer peptide sustained cardiac function during acute myocardial infarction. Besides, PEDF and 34mer could inhibit the aggregation of myofiber in the heart and promoted the formation of a dense cell layer in cardiomyocytes, which suggested that PEDF and 34mer peptide protect against AMI-induced cardiac dysfunction. These results suggest that PEDF inhibits the phosphorylation of downstream proteins, thereby preventing vascular leakage, which provides a new therapeutic direction for the treatment of acute myocardial infarction.Communicated by Ramaswamy H. Sarma.

8.
Gastric Cancer ; 27(2): 375-386, 2024 03.
Article in English | MEDLINE | ID: mdl-38281295

ABSTRACT

BACKGROUND: Rivoceranib is an oral, selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2. ANGEL (NCT03042611) was a global, randomized, double-blinded, placebo-controlled, phase 3 study evaluating rivoceranib as 3rd-line or ≥4th-line therapy in patients with advanced/metastatic gastric or gastroesophageal junction (GEJ) cancer. METHODS: Patients had failed ≥2 lines of chemotherapy and were randomized 2:1 to rivoceranib 700 mg once daily or placebo with best supportive care. PRIMARY ENDPOINT: overall survival (OS) in the intention-to-treat population. Secondary endpoints: progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR) by blinded independent central review (BICR). RESULTS: In total, 460 patients (rivoceranib n = 308, placebo n = 152) were enrolled. OS was not statistically different for rivoceranib versus placebo (median 5.78 vs. 5.13 months; hazard ratio [HR] 0.93, 95% CI 0.74-1.15; p = 0.4724). PFS by BICR (median 2.83 vs. 1.77 months; HR 0.58, 95% CI 0.47-0.71; p < 0.0001), ORR (6.5% vs. 1.3%; p = 0.0119), and DCR (40.3 vs. 13.2%; p < 0.0001) were improved with rivoceranib versus placebo. In patients receiving ≥4th-line therapy, OS (median 6.34 vs. 4.73 months; p = 0.0192) and PFS by BICR (median 3.52 vs. 1.71 months; p < 0.0001) were improved with rivoceranib versus placebo. The most common grade ≥ 3 treatment-emergent adverse events with rivoceranib were hypertension (17.9%), anemia (10.4%), aspartate aminotransferase increased (9.4%), asthenia (8.5%), and proteinuria (7.5%). CONCLUSIONS: This study did not meet its primary OS endpoint. Compared to placebo, rivoceranib improved PFS, ORR, and DCR. Rivoceranib also improved OS in a prespecified patient subgroup receiving ≥4th-line therapy.


Subject(s)
Pyridines , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor A , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophagogastric Junction/pathology , Double-Blind Method
9.
J Dent Res ; 103(1): 101-110, 2024 01.
Article in English | MEDLINE | ID: mdl-38058134

ABSTRACT

Adding dental pulp stem cells (DPSCs) to vascular endothelial cell-formed vessel-like structures can increase the longevity of these vessel networks. DPSCs display pericyte-like cell functions and closely assemble endothelial cells (ECs). However, the mechanisms of DPSC-derived pericyte-like cells in stabilizing the vessel networks are not fully understood. In this study, we investigated the functions of E-DPSCs, which were DPSCs isolated from the direct coculture of human umbilical vein endothelial cells (HUVECs) and DPSCs, and T-DPSCs, which were DPSCs treated by transforming growth factor beta 1 (TGF-ß1), in stabilizing blood vessels in vitro and in vivo. A 3-dimensional coculture spheroid sprouting assay was conducted to compare the functions of E-DPSCs and T-DPSCs in vitro. Dental pulp angiogenesis in the severe combined immunodeficiency (SCID) mouse model was used to explore the roles of E-DPSCs and T-DPSCs in vascularization in vivo. The results demonstrated that both E-DPSCs and T-DPSCs possess smooth muscle cell-like cell properties, exhibiting higher expression of the mural cell-specific markers and the suppression of HUVEC sprouting. E-DPSCs and T-DPSCs inhibited HUVEC sprouting by activating TEK tyrosine kinase (Tie2) signaling, upregulating vascular endothelial (VE)-cadherin, and downregulating vascular endothelial growth factor receptor 2 (VEGFR2). In vivo study revealed more perfused and total blood vessels in the HUVEC + E-DPSC group, HUVEC + T-DPSC group, angiopoietin 1 (Ang1) pretreated group, and vascular endothelial protein tyrosine phosphatase (VE-PTP) inhibitor pretreated group, compared to HUVEC + DPSC group. In conclusion, these data indicated that E-DPSCs and T-DPSCs could stabilize the newly formed blood vessels and accelerate their perfusion. The critical regulating pathways are Ang1/Tie2/VE-cadherin and VEGF/VEGFR2 signaling.


Subject(s)
Stem Cells , Vascular Endothelial Growth Factor A , Animals , Mice , Humans , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Stem Cells/physiology , Angiopoietin-1/pharmacology , Angiopoietin-1/metabolism , Dental Pulp , Human Umbilical Vein Endothelial Cells , Cadherins/metabolism , Cells, Cultured
10.
Neuropsychopharmacol Rep ; 44(1): 246-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37960997

ABSTRACT

Vascular endothelial growth factor (VEGF) signaling is known to be involved in the antidepressant-like effects of conventional antidepressants, such as desipramine (DMI), a tricyclic antidepressant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor; however, the precise role of neuronal VEGF signaling in mediating these effects remains unclear. Using mice with excitatory neuron-specific deletion of VEGF and its receptor, fetal liver kinase 1 (Flk-1) in the forebrain, we examined the effects of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on the antidepressant-like effects of repeated DMI and chronic FLX administration in the forced swim test (FST). Repeated intraperitoneal (i.p.) injections of DMI (10, 10, and 20 mg/kg at 24, 4, and 1 h before the FST, respectively) significantly decreased immobility in control mice; however, this effect was completely blocked in mice with neuron-specific VEGF or Flk-1 deletion. Although chronic treatment with FLX (18 mg/kg/day, i.p.) did not impact immobility in control mice 1 day after the 22nd injection, immobility was significantly reduced 1 day after the preswim and the 23rd FLX injection. However, in mice with neuron-specific Flk-1 deletion, chronic FLX treatment significantly increased immobility in the preswim and failed to produce antidepressant-like effects. Collectively, these findings indicate that neuronal VEGF-Flk-1 signaling contributes to the antidepressant-like actions of conventional antidepressants.


Subject(s)
Fluoxetine , Vascular Endothelial Growth Factor A , Mice , Animals , Fluoxetine/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Desipramine/metabolism , Desipramine/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/pharmacology , Antidepressive Agents/pharmacology , Neurons/metabolism
11.
Ann Med Surg (Lond) ; 85(12): 6196-6201, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38098564

ABSTRACT

Introduction and importance: A malignant gastrointestinal neuroectodermal tumor (GNET) is an extremely rare primary malignant mesenchymal tumor of the gastrointestinal tract characterized by EWSR1 gene rearrangement. An optimal systemic treatment strategy for advanced/recurrent GNET has not yet been identified. Case presentation: A 24-year-old male patient was hospitalized with abdominal pain and underwent two operations for a tumor in his small intestine. Immunohistochemistry (IHC) showed strong expression of S-100 protein and SOX 10. Fluorescence in situ hybridization analysis and next-generation sequencing analysis indicated that there were EWSR gene rearrangements and the presence of EWSR-ATP1 gene fusions, respectively. The diagnosis of GNET in the small intestine was confirmed by pathology. The young patient received the fifth-line of apatinib mesylate and the sixth-line of apatinib combined with temozolomide. The two apatinib-containing regimens showed stable disease and progression-free survival of 4.7 months and 3.1 months with single-agent apatinib or apatinib combined with temozolomide, respectively. Clinical discussion: To our best knowledge, this is the first report of malignant GNET treated with apatinib and temozolomide. Apatinib-containing regimens might has antineoplastic activity against GNET. The authors reviewed the relevant reports of previous GNET treatment, summarized the clinicopathological characteristics of GNET, and found that there are no reports of apatinib for backline treatment of GNET. Conclusion: Containing apatinib may provide an additional treatment option for patients with chemotherapy-resistant GNET tumors.

12.
Exp Ther Med ; 26(2): 408, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37522066

ABSTRACT

Complement factor H (CFH), a major soluble inhibitor of complement, is a plasma protein that directly interacts with the endothelium of blood vessels. Mutations in the CFH gene lead to diseases associated with excessive angiogenesis; however, the underlying mechanisms are unknown. The present study aimed to determine the effects of CFH on endothelial cells and to explore the underlying mechanisms. The adenoviral plasmid expressing CFH was transduced into HepG2 cells, and the culture medium supernatant was collected and co-cultured with human umbilical vein endothelial cells (HUVECs). Cell proliferation was measured by CCK8 and MTT assays, and cell migration was measured by wound healing and Transwell assays. Reverse transcription-quantitative PCR was performed to detect gene transcription. Western blotting was used to determine protein levels. The results revealed that CFH can inhibit migration, but not viability, of HUVECs. In addition, CFH did not significantly alter MAPK or TGF-ß signaling, whereas it decreased STAT3 phosphorylation in HUVECs. Furthermore, CFH failed to reduce migration of HUVECs, with inhibition of STAT3 signaling by STATTIC or activation of STAT3 signaling by overexpression of STAT3 (Y705D) compromising CFH-inhibited HUVEC migration. CFH also decreased the expression levels of vascular endothelial growth factor receptor 2, a downstream effector of STAT3 mediating endothelial cell migration. In conclusion, the present study suggested that CFH may be a potential therapeutic target for angiogenesis-related diseases.

13.
Arterioscler Thromb Vasc Biol ; 43(8): 1455-1477, 2023 08.
Article in English | MEDLINE | ID: mdl-37345524

ABSTRACT

BACKGROUND: Collateral arteries act as natural bypasses which reroute blood flow to ischemic regions and facilitate tissue regeneration. In an injured heart, neonatal artery endothelial cells orchestrate a systematic series of cellular events, which includes their outward migration, proliferation, and coalescence into fully functional collateral arteries. This process, called artery reassembly, aids complete cardiac regeneration in neonatal hearts but is absent in adults. The reason for this age-dependent disparity in artery cell response is completely unknown. In this study, we investigated if regenerative potential of coronary arteries is dictated by their ability to dedifferentiate. METHODS: Single-cell RNA sequencing of coronary endothelial cells was performed to identify differences in molecular profiles of neonatal and adult endothelial cells in mice. Findings from this in silico analyses were confirmed with in vivo experiments using genetic lineage tracing, whole organ immunostaining, confocal imaging, and cardiac functional assays in mice. RESULTS: Upon coronary occlusion, neonates showed a significant increase in actively cycling artery cells and expressed prominent dedifferentiation markers. Data from in silico pathway analyses and in vivo experiments suggested that upon myocardial infarction, cell cycle reentry of preexisting neonatal artery cells, the subsequent collateral artery formation, and recovery of cardiac function are dependent on arterial VegfR2 (vascular endothelial growth factor receptor-2). This subpopulation of dedifferentiated and proliferating artery cells was absent in nonregenerative postnatal day 7 or adult hearts. CONCLUSIONS: These data indicate that adult artery endothelial cells fail to drive collateral artery development due to their limited ability to dedifferentiate and proliferate.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Animals , Mice , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Collateral Circulation/physiology , Coronary Vessels/metabolism , Cell Proliferation
14.
Pharmaceutics ; 15(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242749

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.

15.
Front Endocrinol (Lausanne) ; 14: 1116136, 2023.
Article in English | MEDLINE | ID: mdl-37139333

ABSTRACT

Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.


Subject(s)
Retinal Diseases , Serpins , Humans , Eye Proteins/metabolism , Prospective Studies , Retinal Diseases/drug therapy , Serpins/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Cancers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37173995

ABSTRACT

Lung cancer is the most frequently diagnosed cancer type and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents most of the diagnoses of lung cancer. Vascular endothelial growth factor receptor-2 (VEGFR2) is a member of the VEGF family of receptor tyrosine kinase proteins, which are expressed on both endothelial and tumor cells, are one of the key proteins contributing to cancer development, and are involved in drug resistance. We previously showed that Musashi-2 (MSI2) RNA-binding protein is associated with NSCLC progression by regulating several signaling pathways relevant to NSCLC. In this study, we performed Reverse Protein Phase Array (RPPA) analysis of murine lung cancer, which suggests that VEGFR2 protein is strongly positively regulated by MSI2. Next, we validated VEGFR2 protein regulation by MSI2 in several human lung adenocarcinoma cell line models. Additionally, we found that MSI2 affected AKT signaling via negative PTEN mRNA translation regulation. In silico prediction analysis suggested that both VEGFR2 and PTEN mRNAs have predicted binding sites for MSI2. We next performed RNA immunoprecipitation coupled with quantitative PCR, which confirmed that MSI2 directly binds to VEGFR2 and PTEN mRNAs, suggesting a direct regulation mechanism. Finally, MSI2 expression positively correlated with VEGFR2 and VEGF-A protein levels in human lung adenocarcinoma samples. We conclude that the MSI2/VEGFR2 axis contributes to lung adenocarcinoma progression and is worth further investigations and therapeutic targeting.

17.
Med Mol Morphol ; 56(2): 128-137, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36622466

ABSTRACT

Gemcitabine (GEM) is an anticancer drug inhibiting DNA synthesis. Glomerular thrombotic microangiopathy (TMA) has been reported as an adverse effect. However, the precise mechanism of GEM-induced endothelial injury remains unknown. Cultured human umbilical vein endothelial cells (HUVECs) in the confluent phase were exposed to GEM (5-100 µM) for 48 h and evaluated cell viability and morphology, lectin binding concerning sialic acid of endothelial glycocalyx (GCX), and immunofluorescent staining of platelet-endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor receptor 2 (VEGFR2). The mRNA expression of α2,6-sialyltransferase (ST6Gal1), sialidase (neuraminidase-1: NEU-1), and interleukin (IL)-1ß and IL-6 was also evaluated. GEM exposure at 5 µM induced cellular shrinkage and intercellular dissociation, accompanied by slight attenuation of PECAM and VEGFR2 immunostaining, although cell viability was still preserved. At this concentration, lectin binding showed a reduction of terminal sialic acids in endothelial GCX, probably associated with reduced ST6Gal1 mRNA expression. IL-1ß and IL-6 mRNA expression was significantly increased after GEM exposure. GEM reduced terminal sialic acids in endothelial GCX through mRNA suppression of ST6Gal1 and induced inflammatory cytokine production in HUVECs. This phenomenon could be associated with the mechanism of GEM-induced TMA.


Subject(s)
Gemcitabine , Glycocalyx , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cells, Cultured , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Sialic Acids/metabolism , Lectins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Asian Pac J Cancer Prev ; 24(1): 267-274, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36708576

ABSTRACT

BACKGROUND: The incidence of oral squamous cell carcinoma (OSCC) is very high in South Asia and Vascular endothelial growth factor (VEGF) is one of the key factors essential for cancer growth. The importance of VEGF-A and VEGF Receptor 2(VEGFR-2) in oral cancer pathophysiology is yet to be decided. Vascular Endothelial Growth Factor A (VEGF-A) is the main factor concerned in angiogenesis in tumors, but its role in Oral Squamous Cell Carcinoma (OSCC) is still debatable. Our study aimed to determine the role of VEGF-A and VEGFR-2 in OSCC. METHODS: Blood from 30 patients with primary OSCC and 1:1 age-sex-matched controls was subjected to qPCR and ELISA to detect VEGF-A gene expression and serum level. Tumors of the 30 patients were investigated for VEGF Receptor-2 (VEGFR-2) expression and were analyzed using Image J software version 1.52 for DAB percentage (DAB-P) area and optical density (OD). RESULTS: VEGF-A relative gene expression among patients was 2.43-fold higher compared to the healthy control group. Well-differentiated had a 1.98-fold increment, while poorly differentiated had a 3.58-fold increment. Serum VEGF-A was significantly elevated among the patients compared to controls (458.7 vs 253.2, p=0.0225). Poorly differentiated had a higher serum VEGF concentration (1262.0±354.7pg/ml) compared with other two. Mean VEGFR-2 DAB-P level in OSCC was 42.41±5.61(p=0.15). Well-differentiated had a DAB-P of 41.20±5.32 while poorly differentiated had DAB-P 46.21±3.78. The mean OD in OSCC was 0.54±0.16. VEGFR-2 OD in well and poorly differentiated OSCC were 0.48±0.12 and 0.68±0.17, respectively. CONCLUSIONS: VEGF-A gene expression, serum levels, and tissue VEGFR-2 levels correlated linearly with the stage and grade of the tumor. This study justifies the value of VEGF-A as a potential biomarker in OSCC in early detection of OSCC. More studies are needed to accept the use of VEGF-A.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/blood supply , Vascular Endothelial Growth Factor Receptor-2/genetics , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/metabolism , Sri Lanka , Biomarkers , Vascular Endothelial Growth Factors , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-3/metabolism
19.
J Biomol Struct Dyn ; 41(10): 4575-4591, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35510592

ABSTRACT

Pigment epithelium-derived factor (PEDF) is a member of the serine proteinase inhibitor (serpin) with antiangiogenic, anti-tumorigenic, antioxidant, anti-atherosclerosis, antithrombotic, anti-inflammatory, and neuroprotective properties. The PEDF can bind to low-density lipoprotein receptor-related protein 6 (LRP6), laminin (LR), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2), and ATP synthase ß-subunit receptors. In this study, we aimed to investigate the structural basis of the interaction between PEDF and its receptors using bioinformatics approaches to identify the critical amino acids for designing anticancer peptides. The human ATP synthase ß-subunit was predicted by homology modeling. The molecular docking, molecular dynamics (MD) simulation, and Molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) were used to study this protein-receptor complex. The molecular docking showed PEDF could bind to the Laminin and VEGFR2 much stronger than ATP synthase ß-subunit, VEGFR1, and LRP6. The PEDF could effectively interact with various receptors during the simulation. The N-terminal of PEDF has an important role in the interaction with the receptors. The MM/PBSA showed the electrostatic (ΔEElec) and van der Waals interactions (ΔEVdW) contributed positively to the binding process of the complexes. The critical amino acids in the binding interaction of PEDF to its receptors in the MD simulation were determined. The interaction mode of 34-mer PEDF to laminin, VEGFR2, and LRP6 were different from VEGFR1, ATP synthase ß-subunit. The 34-mer PEDF has an important role in the interaction with different receptors and these critical amino acids can be used for designing peptides for future therapeutic aims.Communicated by Ramaswamy H. Sarma.


Subject(s)
Neoplasms , Serpins , Humans , Serpins/metabolism , Serpins/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Molecular Docking Simulation , Laminin , Peptides , Amino Acids , Adenosine Triphosphate
20.
Am J Physiol Renal Physiol ; 324(1): F106-F123, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36395384

ABSTRACT

Vascular endothelial growth factor (VEGF) and its cognate receptor (VEGFR2) system are crucial for cell functions associated with angiogenesis and vasculogenesis. Klotho contributes to vascular health maintenance in the kidney and other organs in mammals, but it is unknown whether renoprotection by Klotho is dependent on VEGF/VEGFR2 signaling. We used heterozygous VEGFR2-haploinsufficient (VEGFR2+/-) mice resulting from heterozygous knockin of green fluorescent protein in the locus of fetal liver kinase 1 encoding VEGFR2 to test the interplay of Klotho, phosphate, and VEGFR2 in kidney function, the vasculature, and fibrosis. VEGFR2+/- mice displayed downregulated VEGF/VEGFR2 signaling in the kidney, lower density of peritubular capillaries, and accelerated kidney fibrosis, all of which were also found in the homozygous Klotho hypomorphic mice. High dietary phosphate induced higher plasma phosphate, greater peritubular capillary rarefaction, and more kidney fibrosis in VEGFR2+/- mice compared with wild-type mice. Genetic overexpression of Klotho significantly attenuated the elevated plasma phosphate, kidney dysfunction, peritubular capillary rarefaction, and kidney fibrosis induced by a high-phosphate diet in wild-type mice but only modestly ameliorated these changes in the VEGFR2+/- background. In cultured endothelial cells, VEGFR2 inhibition reduced free VEGFR2 but enhanced its costaining of an endothelial marker (CD31) and exacerbated phosphotoxicity. Klotho protein maintained VEGFR2 expression and attenuated high phosphate-induced cell injury, which was reduced by VEGFR2 inhibition. In conclusion, normal VEGFR2 function is required for vascular integrity and for Klotho to exert vascular protective and antifibrotic actions in the kidney partially through the regulation of VEGFR2 function.NEW & NOTEWORTHY This research paper studied the interplay of vascular endothelial growth factor receptor type 2 (VEGFR2), high dietary phosphate, and Klotho, an antiaging protein, in peritubular structure and kidney fibrosis. Klotho protein was shown to maintain VEGFR2 expression in the kidney and reduce high phosphate-induced cell injury. However, Klotho cytoprotection was attenuated by VEGFR2 inhibition. Thus, normal VEGFR2 function is required for vascular integrity and Klotho to exert vascular protective and antifibrotic actions in the kidney.


Subject(s)
Cytoprotection , Kidney Diseases , Kidney , Klotho Proteins , Microvascular Rarefaction , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Endothelial Cells/metabolism , Fibrosis , Kidney/blood supply , Kidney/pathology , Kidney Diseases/pathology , Microvascular Rarefaction/pathology , Phosphates/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/deficiency , Klotho Proteins/genetics , Klotho Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...