Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Curr Pharm Des ; 23(33): 4990-5000, 2017.
Article in English | MEDLINE | ID: mdl-28699522

ABSTRACT

Understanding the pathophysiology of Alzheimer's disease (AD) in the principal human neural cells is necessary for finding therapeutics for this illness. To help do this, we have been using freshly cultured functionally normal cerebral cortical adult human astrocytes (NAHAs) and postnatal neurons. The findings show that amyloid-ß oligomers (Aß-os) binding to calcium-sensing receptors (CaSRs) on NAHAs and neuron surfaces trigger signals capable of driving AD pathogenesis. This Aß•CaSR signalling shifts the amyloid precursor protein (APP) from its α-secretase shedding producing neurotrophic/neuroprotective soluble (s)APPα to its ß-secretase cleaving engendering AD-driving Aß42/Aß42-os peptides. Aß•CaSR signalling in NAHAs also drives the release of toxic hyper-phosphorylated Tau proteins in exosomes, and of nitric oxide, and VEGF-A. These several harmful agents comprise the neuron-killing machinery, driving the very slowly spreading AD neurocontagion. VEGF-A over-secretion from Aß-exposed blood vessel-attached astrocytes induces a functional magnetic resonance imaging- detectable hippocampal neoangiogenesis which indicates approaching AD in amnestic minor cognitive impairment (aMCI) patients. Most important in AD's regard, selective allosteric CaSR antagonists (calcylitics) added to Aß42/Aß42-os-exposed NAHAs (or to human neuron cultures) rescue the extracellular shedding of neurotrophic/ neuroprotective sAPPα and suppress all the neurotoxic effects of Aß•CaSR signalling even when multiple microglial cytokines are also present. Therefore, since the multipotent calcilytics would be reasonably safe and inexpensive drugs for humans, it is worthwhile testing them as AD therapeutics in clinical trials especially in persons in the earliest detectable stages of AD neuropathology progression such as aMCI.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Astrocytes/metabolism , Drug Delivery Systems/trends , Receptors, Calcium-Sensing/antagonists & inhibitors , Receptors, Calcium-Sensing/metabolism , Animals , Astrocytes/drug effects , Calcium Channel Blockers/administration & dosage , Drug Delivery Systems/methods , Humans , Treatment Outcome
2.
Cancer Sci ; 105(12): 1616-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25283373

ABSTRACT

RNAi enables potent and specific gene silencing, potentially offering useful means for treatment of cancers. However, safe and efficient drug delivery systems (DDS) that are appropriate for intra-tumor delivery of siRNA or shRNA have rarely been established, hindering clinical application of RNAi technology to cancer therapy. We have devised hydrogel polymer nanoparticles, or nanogel, and shown its validity as a novel DDS for various molecules. Here we examined the potential of self-assembled nanogel of cholesterol-bearing cycloamylose with spermine group (CH-CA-Spe) to deliver vascular endothelial growth factor (VEGF)-specific short interfering RNA (siVEGF) into tumor cells. The siVEGF/nanogel complex was engulfed by renal cell carcinoma (RCC) cells through the endocytotic pathway, resulting in efficient knockdown of VEGF. Intra-tumor injections of the complex significantly suppressed neovascularization and growth of RCC in mice. The treatment also inhibited induction of myeloid-derived suppressor cells, while it decreased interleukin-17A production. Therefore, the CH-CA-Spe nanogel may be a feasible DDS for intra-tumor delivery of therapeutic siRNA. The results also suggest that local suppression of VEGF may have a positive impact on systemic immune responses against malignancies.


Subject(s)
Carcinoma, Renal Cell/therapy , Cyclodextrins/administration & dosage , Kidney Neoplasms/therapy , Neovascularization, Pathologic/therapy , RNA, Small Interfering/administration & dosage , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Drug Delivery Systems , Gene Expression Regulation, Neoplastic , Genetic Therapy , Humans , Kidney Neoplasms/blood supply , Kidney Neoplasms/pathology , Mice , Nanogels , Neoplasms, Experimental , Neovascularization, Pathologic/pathology , Organ Specificity , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Tumor Microenvironment
3.
Korean J Pediatr ; 56(4): 151-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23646053

ABSTRACT

PURPOSE: We investigated the mRNA levels of peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, adipokines, and cytokines in the lung tissue of lean and obese mice with and without ovalbumin (OVA) challenge, and the effect of rosiglitazone, a PPAR-γ agonist. METHODS: We developed 6 mice models: OVA-challenged lean mice with and without rosiglitazone; obese mice with and without rosiglitazone; and OVA-challenged obese mice with and without rosiglitazone. We performed real-time polymerase chain reaction for leptin, leptin receptor, adiponectin, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-ß, PPAR-α and PPAR-γ from the lung tissue and determined the cell counts and cytokine levels in the bronchoalveolar lavage fluid. RESULTS: Mice with OVA challenge showed airway hyperresponsiveness. The lung mRNA levels of PPARα and PPAR-γ increased significantly in obese mice with OVA challenge compared to that in other types of mice and decreased after rosiglitazone administeration. Leptin and leptin receptor expression increased in obese mice with and without OVA challenge and decreased following rosiglitazone treatment. Adiponectin mRNA level increased in lean mice with OVA challenge. Lung VEGF, TNF-α, and TGF-ß mRNA levels increased in obese mice with and without OVA challenge compared to that in the control mice. However, rosiglitazone reduced only TGF-ß expression in obese mice, and even augmented VEGF expression in all types of mice. Rosiglitazone treatment did not reduce airway responsiveness, but increased neutrophils and macrophages in the bronchoalveolar lavage fluid. CONCLUSION: PPAR-α and PPAR-γ expressions were upregulated in the lung tissue of OVA-challenged obese mice however, rosiglitazone treatment did not downregulate airway inflammation in these mice.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-56561

ABSTRACT

PURPOSE: We investigated the mRNA levels of peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-gamma, adipokines, and cytokines in the lung tissue of lean and obese mice with and without ovalbumin (OVA) challenge, and the effect of rosiglitazone, a PPAR-gamma agonist. METHODS: We developed 6 mice models: OVA-challenged lean mice with and without rosiglitazone; obese mice with and without rosiglitazone; and OVA-challenged obese mice with and without rosiglitazone. We performed real-time polymerase chain reaction for leptin, leptin receptor, adiponectin, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta, PPAR-alpha and PPAR-gamma from the lung tissue and determined the cell counts and cytokine levels in the bronchoalveolar lavage fluid. RESULTS: Mice with OVA challenge showed airway hyperresponsiveness. The lung mRNA levels of PPARalpha and PPAR-gamma increased significantly in obese mice with OVA challenge compared to that in other types of mice and decreased after rosiglitazone administeration. Leptin and leptin receptor expression increased in obese mice with and without OVA challenge and decreased following rosiglitazone treatment. Adiponectin mRNA level increased in lean mice with OVA challenge. Lung VEGF, TNF-alpha, and TGF-beta mRNA levels increased in obese mice with and without OVA challenge compared to that in the control mice. However, rosiglitazone reduced only TGF-beta expression in obese mice, and even augmented VEGF expression in all types of mice. Rosiglitazone treatment did not reduce airway responsiveness, but increased neutrophils and macrophages in the bronchoalveolar lavage fluid. CONCLUSION: PPAR-alpha and PPAR-gamma expressions were upregulated in the lung tissue of OVA-challenged obese mice however, rosiglitazone treatment did not downregulate airway inflammation in these mice.


Subject(s)
Animals , Mice , Adipokines , Adiponectin , Bronchoalveolar Lavage , Cell Count , Cytokines , Inflammation , Leptin , Lung , Macrophages , Mice, Obese , Neutrophils , Obesity , Ovalbumin , Ovum , Peroxisome Proliferator-Activated Receptors , Peroxisomes , PPAR alpha , Real-Time Polymerase Chain Reaction , Receptors, Leptin , RNA, Messenger , Thiazolidinediones , Transforming Growth Factor beta , Transforming Growth Factors , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...