Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 715
Filter
1.
Ticks Tick Borne Dis ; 15(6): 102381, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981408

ABSTRACT

Ticks are a globally distributed group of hematophagous ectoparasites that parasitize terrestrial vertebrates such as amphibians, reptiles, birds, and mammals. Ticks are vectors and reservoirs of pathogens that play an important role in wildlife and human health. Rickettsia is one of the bacteria transmitted by ticks, which some pathogenic species can cause rickettsiosis, a zoonotic disease that can cause serious harm to humans and animals. More information is necessary on the interactions between ticks and wildlife despite the fifty-seven ticks species already identified in Colombia. The objective of the present study was to determine the associations between ticks parasitizing wildlife and bacteria of the genus Rickettsia in six departments of Colombia. One hundred eighty-five ticks (80 larvae, 78 nymphs, and 27 adults) were collected from 55 wildlife species (amphibians, birds, mammals, and reptiles). Nine tick species were identified, and Rickettsia bellii, Rickettsia felis, 'Candidatus Rickettsia colombianensi' and Rickettsia parkeri were detected. Our results contribute to the current knowledge of tick-associated rickettsiae and the role of wildlife in their transmission dynamics.

2.
Travel Med Infect Dis ; 60: 102737, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996856

ABSTRACT

BACKGROUND: The spread of vector-borne infectious diseases is determined, among other things, by temperature. Thus, climate change will have an influence on their global distribution. In the future, Europe will approach the temperature optimum for the transmission of ZIKV and CHIKV. Climate scenarios and climate models can be used to depict future climatic changes and to draw conclusions about future risk areas for vector-borne infectious diseases. METHODS: Based on the RCP 4.5 and RCP 8.5 climate scenarios, a geospatial analysis was carried out for the future temperature suitability of ZIKV and CHIKV in Europe. The results were presented in maps and the percentage of the affected areas calculated. RESULTS: Due to rising temperatures, the risk areas for transmission of ZIKV and CHIKV spread in both RCP scenarios. For CHIKV transmission, Spain, Portugal, the Mediterranean coast and areas near the Black Sea are mainly affected. Due to high temperatures, large areas throughout Europe are at risk for ZIKV and CHIKV transmission. CONCLUSION: Temperature is only one of many factors influencing the spread of vector-borne infectious diseases. Nevertheless, the representation of risk areas on the basis of climate scenarios allows an assessment of future risk development. Monitoring and adaptation strategies are indispensable for coping with and containing possible future autochthonous transmissions and epidemics in Europe.

3.
Animals (Basel) ; 14(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38997972

ABSTRACT

In Europe, Leishmania infantum is the most prevalent Leishmania species, and this protozoan is transmitted by phlebotomine sandflies. A recent publication has shown that sheep harbor L. infantum antibodies. This raises questions about the epidemiological role of small ruminants. Therefore, sera from small ruminants located in two southern German federal states, Baden-Wuerttemberg (BW) and Bavaria (BAV), were analyzed with an ELISA to determine the presence of L. infantum antibodies. The species, sex and age (gimmer vs. ewe) were recorded, and a univariate analysis was conducted to determine possible associations. In total, seven sheep flocks (274 sheep/10 goats) from BW and seven sheep flocks (277 sheep/78 goats) from BAV were examined. In BW, four sheep from three flocks tested positive for L. infantum antibodies. In BAV, the same number of positive sheep were detected but in four flocks. The total seropositivity rate in sheep was 1.45%. All goats tested negative. No significant association (p > 0.05) was detected between Leishmania seropositivity and the variables evaluated. Our study reveals the exposure of sheep to L. infantum in a non-endemic area. Further investigation is needed to determine whether sheep can be used as sentinels to identify new phlebotomine habitats and Leishmania risk areas.

4.
J Arthropod Borne Dis ; 18(1): 12-27, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39005545

ABSTRACT

Background: The viability and persistence of engineered bacterium candidates in field conditions is one of the considerable challenges in the paratransgenesis approach to fighting vector-borne diseases. Methods: In this study two engineered bacterium candidates to produce paratransgenic sand flies, Serratia AS1 and Enterobacter cloacae expressing m-Cherry fluorescent were applied on the leaves of the white saxaul plant (Haloxylon persicum), sugar bait, and rodent burrow soil and their persistent time was tested in desert condition, Matin Abad County, Isfahan, August 2022. A PBS suspension of 109 cells/ml was used for sugar bait, spraying on plant leaves (∼10 cm2) and 10 cm2 of rodent burrow soil. Sand fly samples were taken daily and were plated on LB Agar and the fluorescent cells were counted after 24 hours. Results: Time course in general caused a decrease in the number of bacteria for both strains. The two strains were persistent in sugar bait and on plant leaves for four days and on soil for two days. Although there were slight differences between the number of the bacteria in sugar baits, which was not significant (P< 0.05). The number of E. cloacae surviving on plant and in soil were significantly (P< 0.0001 and P= 0.046) higher than Serratia AS1. Conclusion: This study shows that plants or sugar bait are useful routes for delivery of the transformed bacteria for the paratransgenesis approach, although, the bacteria ought to be sprayed on plants or sugar baits should be replaced with new ones in four days intervals.

5.
One Health ; 18: 100684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39010969

ABSTRACT

Zoonoses have rapidly spread globally, necessitating the implementation of vaccination strategies as a control measure. Emerging and re-emerging vector-borne diseases are among the major global public health concerns. Dengue, a zoonotic viral infection transmitted to humans by a vector, the Aedes mosquito, is a severe global health problem. Dengue is a serious tropical infectious disease, second only to malaria, causing around 25,000 deaths each year. The resurgence of Dengue is mainly due to climate change, demographic transitions and evolving social dynamics. The development of an effective vaccine against Dengue has proven to be a complex undertaking due to four different viral serotypes with distinct antigenic profiles. This review highlights the urgent need to address the dengue threat by exploring the application of biotechnological and -OMICS sciences.

6.
BMC Public Health ; 24(1): 1781, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965485

ABSTRACT

BACKGROUND: Recently, Europe has seen an emergence of mosquito-borne viruses (MBVs). Understanding citizens' perceptions of and behaviours towards mosquitoes and MBVs is crucial to reduce disease risk. We investigated and compared perceptions, knowledge, and determinants of citizens' behavioural intentions related to mosquitoes and MBVs in the Netherlands and Spain, to help improve public health interventions. METHODS: Using the validated MosquitoWise survey, data was collected through participant panels in Spain (N = 475) and the Netherlands (N = 438). Health Belief Model scores measuring behavioural intent, knowledge, and information scores were calculated. Confidence Interval-Based Estimation of Relevance was used, together with potential for change indexes, to identify promising determinants for improving prevention measure use. RESULTS: Spanish participants' responses showed slightly higher intent to use prevention measures compared to those of Dutch participants (29.1 and 28.2, respectively, p 0.03). Most participants in Spain (92.2%) and the Netherlands (91.8%) indicated they used at least one prevention measure, but differences were observed in which types they used. More Spanish participants indicated to have received information on mosquitoes and MBVs compared to Dutch participants. Spanish participants preferred health professional information sources, while Dutch participants favoured government websites. Determinants for intent to use prevention measures included "Knowledge", "Reminders to Use Prevention Measures", and "Information" in the Netherlands and Spain. Determinants for repellent use included "Perceived Benefits" and "Cues to Action", with "Perceived Benefits" having a high potential for behavioural change in both countries. "Self-Efficacy" and "Knowledge" were determinants in both countries for breeding site removal. CONCLUSION: This study found differences in knowledge between the Netherlands and Spain but similarities in determinants for intent to use prevention measures, intent to use repellents and intent to remove mosquito breeding sites. Identified determinants can be the focus for future public health interventions to reduce MBV risks.


Subject(s)
Health Knowledge, Attitudes, Practice , Netherlands , Humans , Spain , Cross-Sectional Studies , Adult , Female , Male , Middle Aged , Animals , Young Adult , Culicidae , Mosquito Vectors , Mosquito Control/methods , Adolescent , Intention , Surveys and Questionnaires , Aged
7.
Cureus ; 16(6): e61947, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38978949

ABSTRACT

Background Vector-borne diseases continue to significantly contribute to mortality and morbidity, especially in developing nations. Vector management is a key pillar in combating these diseases, and long-lasting insecticidal nets (LLINs) are cost-effective tools. The Government of India, under the National Vector Borne Disease Control Programme (NVBDCP), has distributed LLINs for free to increase coverage and utilization. This study aims to estimate the coverage and utilization of LLINs in Burla town. Method This cross-sectional study was conducted from October to December 2022 in Burla town of Sambalpur in Odisha, India. The estimated sample size was 510 households, assuming 50% coverage. Multi-stage cluster sampling was adopted to select the Anganwadi centers and households. A pretested questionnaire was utilized for data collection by trained personnel through Epicollect5 (Centre for Genomic Pathogen Surveillance, Oxford, UK). Logistic regression was used to identify predictors for LLIN usage. Results The survey covered 516 households with 2,541 individuals and 1,165 nets. Household-level coverage was 94.2%, and regular utilization was 45.74%. Skin reactions (35.7%) were the most common reason for non-usage, followed by low mosquito density (12%). Logistic regression showed that the number of rooms (adjusted odds ratio (AOR) = 0.663, p = 0.012), number of bed nets (AOR = 2.757, p < 0.001), knowledge of malaria (AOR = 2.92, p = 0.04), adopting other measures for mosquito control (AOR = 0.295, p < 0.001), and washing the net (AOR = 1.92, p = 0.028) significantly predicted sleeping under mosquito net. Conclusion Our study has depicted high coverage of LLINs in Burla town, but utilization needs further improvement. Counseling regarding proper use can decrease the skin reactions responsible for non-usage. Regular health education programs are required to emphasize the benefits of LLIN use, along with regular monitoring and supervision.

8.
J Vet Res ; 68(2): 215-222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947161

ABSTRACT

Introduction: The aim of the study was to monitor the occurrence of selected vector-borne diseases in anaemic dogs arriving in or returning to Poland from areas endemic for these diseases. Material and Methods: The study involved 497 dogs, of which 184 came to Poland from Ukraine with their owners fleeing the war. Other animals returned to the country from holidays spent in Croatia (n = 96), Turkey (n = 79), Italy (n = 48), Bulgaria (n = 42), Albania (n = 36) and Romania (n = 12). Molecular biology methods were used for detection of pathogens transmitted by the vectors. Results: Molecular tests revealed the presence of vector-borne pathogens in 79 dogs. The most commonly diagnosed infection was caused by Babesia canis (27 dogs), followed by infections with Anaplasma phagocytophilum (in 20 dogs), Mycoplasma haemocanis (15 dogs), Bartonella henselae (7 dogs), Ehrlichia canis (4 dogs), Hepatozoon canis (3 dogs), Babesia gibsoni (2 dogs) and Leishmania infantum (1 dog). Most of the sick dogs (n = 39) came from Ukraine. In dogs spending holidays with their owners outside Poland, vector-borne diseases were most often detected after their return from Turkey (n = 16), and next in descending order from Croatia (n = 7), Italy (n = 6), Albania (n = 4), Bulgaria (n = 4) and Romania (n = 3). Conclusion: The wider migration crisis and increasingly frequent trips of owners with their dogs to areas of endemic infectious and parasitic diseases observed in recent years are the main risk factors for the occurrence of these diseases in Poland. Therefore, constant monitoring of vector-borne diseases, especially in dogs returning from holidays and arriving in Poland from abroad, seems to be crucial for their early detection and introduction of appropriate therapy.

9.
Acta Parasitol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955908

ABSTRACT

Heartworm infection is a chronic disease with clinical signs and effects ranging from an asymptomatic condition to severe disease and death. The prevalence of heartworm disease in the state of Rio de Janeiro has been reported to be high (21.3%). The present study was conducted to evaluate the seroprevalence and risk factors of heartworm infection for the canine population with access to veterinary services in different areas of the state of Rio de Janeiro, Brazil. A total of 1787 canine blood samples were obtained from 135 practices across 8 different areas of Rio de Janeiro state (Rio de Janeiro municipality, São Gonçalo municipality, Niterói municipality, Baixada Fluminense, and the northern, southern, eastern, and mountainous areas) and tested for the presence of Dirofilaria immitis antigens and antibodies against several tick-borne disease pathogens using a commercial immunochromatography technique (Vetscan® Flex 4 Rapid Test; Zoetis; NJ USA). Pet owners reported living conditions, physical characteristics, demographics, and clinical signs for evaluation of risk factors for heartworm infection. Only two evaluated risk factors were shown to enhance the risk for D. immitis infection, including having a short hair coat vs. having a medium or long hair coat (OR 2.62) or positive for antibodies to tick-borne disease parasites (OR 3.83). Clinical signs reported for dogs with heartworm disease were typical for that condition. The overall prevalence of heartworm disease in the state was 8.2%, ranging from 2.4% in the mountainous region to 29.4% in the eastern area. It could not be determined if veterinarians were not diligent about dispensing heartworm preventatives or if poor levels of compliance by dog owners were responsible for higher infection rates in some areas of the state.

10.
Pathog Glob Health ; : 1-11, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972071

ABSTRACT

Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.

11.
Front Vet Sci ; 11: 1383320, 2024.
Article in English | MEDLINE | ID: mdl-39027906

ABSTRACT

Culex pipiens, an important vector of many vector borne diseases, is a species capable to feeding on a wide variety of hosts and adapting to different environments. To predict the potential distribution of Cx. pipiens in central Italy, this study integrated presence/absence data from a four-year entomological survey (2019-2022) carried out in the Abruzzo and Molise regions, with a datacube of spectral bands acquired by Sentinel-2 satellites, as patches of 224 × 224 pixels of 20 meters spatial resolution around each site and for each satellite revisit time. We investigated three scenarios: the baseline model, which considers the environmental conditions at the time of collection; the multitemporal model, focusing on conditions in the 2 months preceding the collection; and the MultiAdjacency Graph Attention Network (MAGAT) model, which accounts for similarities in temperature and nearby sites using a graph architecture. For the baseline scenario, a deep convolutional neural network (DCNN) analyzed a single multi-band Sentinel-2 image. The DCNN in the multitemporal model extracted temporal patterns from a sequence of 10 multispectral images; the MAGAT model incorporated spatial and climatic relationships among sites through a graph neural network aggregation method. For all models, we also evaluated temporal lags between the multi-band Earth Observation datacube date of acquisition and the mosquito collection, from 0 to 50 days. The study encompassed a total of 2,555 entomological collections, and 108,064 images (patches) at 20 meters spatial resolution. The baseline model achieved an F1 score higher than 75.8% for any temporal lag, which increased up to 81.4% with the multitemporal model. The MAGAT model recorded the highest F1 score of 80.9%. The study confirms the widespread presence of Cx. pipiens throughout the majority of the surveyed area. Utilizing only Sentinel-2 spectral bands, the models effectively capture early in advance the temporal patterns of the mosquito population, offering valuable insights for directing surveillance activities during the vector season. The methodology developed in this study can be scaled up to the national territory and extended to other vectors, in order to support the Ministry of Health in the surveillance and control strategies for the vectors and the diseases they transmit.

12.
Sci Rep ; 14(1): 16734, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030306

ABSTRACT

The interactions of environmental, geographic, socio-demographic, and epidemiological factors in shaping mosquito-borne disease transmission dynamics are complex and changeable, influencing the abundance and distribution of vectors and the pathogens they transmit. In this study, 27 years of cross-sectional malaria survey data (1990-2017) were used to examine the effects of these factors on Plasmodium falciparum and Plasmodium vivax malaria presence at the community level in Africa and Asia. Monthly long-term, open-source data for each factor were compiled and analyzed using generalized linear models and classification and regression trees. Both temperature and precipitation exhibited unimodal relationships with malaria, with a positive effect up to a point after which a negative effect was observed as temperature and precipitation increased. Overall decline in malaria from 2000 to 2012 was well captured by the models, as was the resurgence after that. The models also indicated higher malaria in regions with lower economic and development indicators. Malaria is driven by a combination of environmental, geographic, socioeconomic, and epidemiological factors, and in this study, we demonstrated two approaches to capturing this complexity of drivers within models. Identifying these key drivers, and describing their associations with malaria, provides key information to inform planning and prevention strategies and interventions to reduce malaria burden.


Subject(s)
Malaria, Falciparum , Humans , Cross-Sectional Studies , Africa/epidemiology , Asia/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Socioeconomic Factors , Geography , Plasmodium falciparum , Malaria/epidemiology , Malaria/transmission , Temperature , Mosquito Vectors/parasitology , Animals , Plasmodium vivax , Environment
13.
R Soc Open Sci ; 11(7): 231602, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021778

ABSTRACT

The Sahel region is projected to be highly impacted by the more frequent hazards associated with climate change, including increased temperature, drought and flooding. This systematic review examined the evidence for climate change-related health consequences in the Sahel. The databases used were Medline (PubMed), Embase (Ovid), Web of Science (Clarivate) and CABI Global Health. Hand searches were also conducted, which included directly engaging Sahelian researchers and hand-searching in the African Journals Online database. Of the 4153 studies found, 893 were identified as duplicates and the remaining 3260 studies were screened (title and abstract only) and then assessed for eligibility. A total of 81 studies were included in the systematic review. Most studies focused on vector-borne diseases, food security, nutrition and heat-related stress. Findings suggest that mosquito distribution will shift under different climate scenarios, but this relationship will not be linear with temperature, as there are other variables to consider. Food insecurity, stunting (chronic malnutrition) and heat-related mortality are likely to increase if no action is taken owing to the projected impact of climate change on environmental factors and agriculture. Seventy-one per cent of manuscripts (n = 58) had first authors from institutions in North America or Europe, of which 39.7% (n = 23) included co-authors from African institutions.

14.
Front Public Health ; 12: 1410713, 2024.
Article in English | MEDLINE | ID: mdl-38939559

ABSTRACT

Introduction: Ticks and pathogens they carry seriously impact human and animal health, with some diseases like Lyme and Alpha-gal syndrome posing risks. Searching for health information online can change people's health and preventive behaviors, allowing them to face the tick risks. This study aimed to predict the potential risks of tickborne diseases by examining individuals' online search behavior. Methods: By scrutinizing the search trends across various geographical areas and timeframes within the United States, we determined outdoor activities associated with potential risks of tick-related diseases. Google Trends was used as the data collection and analysis tool due to its accessibility to big data on people's online searching behaviors. We interact with vast amounts of population search data and provide inferences between population behavior and health-related phenomena. Data were collected in the United States from April 2022 to March 2023, with some terms about outdoor activities and tick risks. Results and Discussion: Results highlighted the public's risk susceptibility and severity when participating in activities. Our results found that searches for terms related to tick risk were associated with the five-year average Lyme Disease incidence rates by state, reflecting the predictability of online health searching for tickborne disease risks. Geographically, the results revealed that the states with the highest relative search volumes for tick-related terms were predominantly located in the Eastern region. Periodically, terms can be found to have higher search records during summer. In addition, the results showed that terms related to outdoor activities, such as "corn maze," "hunting," "u-pick," and "park," have moderate associations with tick-related terms. This study provided recommendations for effective communication strategies to encourage the public's adoption of health-promoting behaviors. Displaying warnings in the online search results of individuals who are at high risk for tick exposure or collaborating with outdoor activity locations to disseminate physical preventive messages may help mitigate the risks associated with tickborne diseases.


Subject(s)
Search Engine , Tick-Borne Diseases , Humans , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/epidemiology , United States , Animals , Search Engine/statistics & numerical data , Internet , Lyme Disease/prevention & control , Lyme Disease/epidemiology , Ticks , Information Seeking Behavior
15.
Trends Parasitol ; 40(7): 619-632, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824066

ABSTRACT

Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.


Subject(s)
Promoter Regions, Genetic , Vector Borne Diseases , Animals , Vector Borne Diseases/prevention & control , Vector Borne Diseases/transmission , Humans , Arthropod Vectors/genetics
16.
Parasit Vectors ; 17(1): 254, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863023

ABSTRACT

BACKGROUND: Aedes aegypti is the primary mosquito vector for several arboviruses, such as dengue, chikungunya and Zika viruses, which cause frequent outbreaks of human disease in tropical and subtropical regions. Control of these outbreaks relies on vector control, commonly in the form of insecticide sprays that target adult female mosquitoes. However, the spatial coverage and frequency of sprays needed to optimize effectiveness are unclear. In this study, we characterize the effect of ultra-low-volume (ULV) indoor spraying of pyrethroid insecticides on Ae. aegypti abundance within households. We also evaluate the effects of spray events during recent time periods or in neighboring households. Improved understanding of the duration and distance of the impact of a spray intervention on Ae. aegypti populations can inform vector control interventions, in addition to modeling efforts that contrast vector control strategies. METHODS: This project analyzes data from two large-scale experiments that involved six cycles of indoor pyrethroid spray applications in 2 years in the Amazonian city of Iquitos, Peru. We developed spatial multi-level models to disentangle the reduction in Ae. aegypti abundance that resulted from (i) recent ULV treatment within households and (ii) ULV treatment of adjacent or nearby households. We compared fits of models across a range of candidate weighting schemes for the spray effect, based on different temporal and spatial decay functions to understand lagged ULV effects. RESULTS: Our results suggested that the reduction of Ae. aegypti in a household was mainly due to spray events occurring within the same household, with no additional effect of sprays that occurred in neighboring households. Effectiveness of a spray intervention should be measured based on time since the most recent spray event, as we found no cumulative effect of sequential sprays. Based on our model, we estimated the spray effect is reduced by 50% approximately 28 days after the spray event. CONCLUSIONS: The reduction of Ae. aegypti in a household was mainly determined by the number of days since the last spray intervention in that same household, highlighting the importance of spray coverage in high-risk areas with a spray frequency determined by local viral transmission dynamics.


Subject(s)
Aedes , Family Characteristics , Insecticides , Mosquito Control , Mosquito Vectors , Pyrethrins , Spatio-Temporal Analysis , Animals , Aedes/drug effects , Insecticides/pharmacology , Insecticides/administration & dosage , Mosquito Control/methods , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Female , Peru , Humans , Population Density , Dengue/prevention & control , Dengue/transmission
17.
Clin Case Rep ; 12(6): e9079, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868112

ABSTRACT

Key Clinical Message: In countries like Sudan, where several infectious diseases are prevalent, health care providers should not be satisfied with initial detection of a single pathogen and whenever it is feasible, they should investigate coinfections. Infections with high mortality or severe morbidity should be prioritized during the differential diagnosis particularly for diseases with similar clinical manifestations to reduce the death and disability rates. However, this requires substantial improvement in the diagnostic capacity. Abstract: Here we report a case of dengue and malaria coinfection from the southeast region of Sudan, bordering Ethiopia and Eritrea. A 25-year-old male from Sudan presented with symptoms of fever, chills, vomiting, and muscle and joint pain. Laboratory investigations confirmed a coinfection of dengue and malaria, which is assumingly not uncommon in areas heavily syndemic with several diseases but it is severely under-detected, underreported, and underestimated. The case has fully recovered after the supportive care for dengue and chemotherapy treatment for malaria. In such a case, it was important to monitor the patient's recovery and the treatment outcome through clinical indicators and laboratory parameters to update the treatment course whenever needed, according to response. The increasing burden and outbreaks of vector-borne diseases including dengue and malaria in Sudan, indicates the need for improving the implementation of the global vector control response that established by the World Health Organization. Additionally, the increasing prevalent of coinfections is urging substantial improvement in the diagnostic capacity in endemic countries.

18.
Malar J ; 23(1): 189, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880891

ABSTRACT

BACKGROUND: Malaria, a prominent vector borne disease causing over a million annual cases worldwide, predominantly affects vulnerable populations in the least developed regions. Despite their preventable and treatable nature, malaria remains a global public health concern. In the last decade, India has faced a significant decline in malaria morbidity and mortality. As India pledged to eliminate malaria by 2030, this study examined a decade of surveillance data to uncover space-time clustering and seasonal trends of Plasmodium vivax and Plasmodium falciparum malaria cases in West Bengal. METHODS: Seasonal and trend decomposition using Loess (STL) was applied to detect seasonal trend and anomaly of the time series. Univariate and multivariate space-time cluster analysis of both malaria cases were performed at block level using Kulldorff's space-time scan statistics from April 2011 to March 2021 to detect statistically significant space-time clusters. RESULTS: From the time series decomposition, a clear seasonal pattern is visible for both malaria cases. Statistical analysis indicated considerable high-risk P. vivax clusters, particularly in the northern, central, and lower Gangetic areas. Whereas, P. falciparum was concentrated in the western region with a significant recent transmission towards the lower Gangetic plain. From the multivariate space-time scan statistics, the co-occurrence of both cases were detected with four significant clusters, which signifies the regions experiencing a greater burden of malaria cases. CONCLUSIONS: Seasonal trends from the time series decomposition analysis show a gradual decline for both P. vivax and P. falciparum cases in West Bengal. The space-time scan statistics identified high-risk blocks for P. vivax and P. falciparum malaria and its co-occurrence. Both malaria types exhibit significant spatiotemporal variations over the study area. Identifying emerging high-risk areas of P. falciparum malaria over the Gangetic belt indicates the need for more research for its spatial shifting. Addressing the drivers of malaria transmission in these diverse clusters demands regional cooperation and strategic strategies, crucial steps towards overcoming the final obstacles in malaria eradication.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Plasmodium vivax , Seasons , India/epidemiology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Humans , Plasmodium vivax/physiology , Space-Time Clustering , Plasmodium falciparum/physiology
19.
Environ Sci Pollut Res Int ; 31(28): 41107-41117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842780

ABSTRACT

Aedes aegypti mosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small containers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial imaging to map and classify potential Ae. aegypti breeding sites with a specific focus on trash, including discarded tires. Aerial images of coastal and inland sites in Kenya were obtained using an unmanned aerial vehicle. Aerial images were reviewed for identification of trash and suspected trash mimics, followed by extensive community walk-throughs to identify trash types and mimics by description and ground photography. An expert panel reviewed aerial images and ground photos to develop a classification scheme and evaluate the advantages and disadvantages of aerial imaging versus walk-through trash mapping. A trash classification scheme was created based on trash density, surface area, potential for frequent disturbance, and overall likelihood of being a productive Ae. aegypti breeding site. Aerial imaging offers a novel strategy to characterize, map, and quantify trash at risk of promoting Ae. aegypti proliferation, generating opportunities for further research on trash associations with disease and trash interventions.


Subject(s)
Aedes , Animals , Kenya , Unmanned Aerial Devices , Breeding , Mosquito Vectors
20.
Med Trop Sante Int ; 4(1)2024 03 31.
Article in French | MEDLINE | ID: mdl-38846112

ABSTRACT

Background and justification: The Republic of Djibouti is located in the Horn of Africa, on the Gulf of Aden and the Bab-el-Mandeb detroit, at the southern entrance to the Red Sea. Prior to its independence in 1977, the Republic of Djibouti was known by two names: "Côte française des Somalis" until 1967, then "Territoire Français de Afars et Issas". As part of our doctoral research on the ecology of mosquitoes in Djibouti, we noted a lack of information on the species encountered, and felt it essential to draw up a list of species before embarking on ecological monitoring. The aim of this work is to survey publications on mosquitoes in Djibouti and to synthesize data from this scientific literature in order to update the national inventory of Culicidae. Materials and methods: An exhaustive search of electronic bibliographic databases (PubMed, Scopus, HAL Open Archive, Science Direct and Google Scholar) was carried out. Reference lists were filtered to access additional articles in order to obtain more data. Two keywords were used: "Djibouti" and "French Territory of Afars and Issas". A selection of scientific publications on Djibouti mosquitoes and/or diseases transmitted by mosquito vectors was made. Researches were conducted in articles selected. The names of the species listed were checked and validated by referring to the site Mosquito Taxonomic Inventory. Results: A total of 13 studies, published between 1970 and 2023, were found. Over the years, the composition of the Culicidae fauna has become well known. In part, the movement of people traveling to and from neighboring countries has been linked to the detection of new species and the reappearance of mosquito species in Djibouti. Numerous studies have been carried out over the years, including purely taxonomic studies and others focusing on the incrimination of mosquito vectors and the characterization of the pathogens they transmit. A total of 37 species, belonging to two subfamilies (Anophelinae and Culicinae), of mosquitoes divided between 7 genera (Aedes, Anopheles, Culex, Culiseta, Lutzia, Mimomyia and Uranotaenia) have been mentioned across the country. The number of species per genus is distributed as follows: 5 species of Aedes including 1 subspecies, 14 species of Anopheles including two subspecies, 12 species of Culex including 1 subspecies, 1 species for each of the genera Culiseta and Lutzia and finally 2 species respectively for the genera Mimomiya and Uranotaenia. Five species have been incriminated as vectors of diseases such as malaria, dengue fever, yellow fever, West Nile virus and chikungunya. Others are known for their potential role in pathogen transmission, including Zika and Rift Valley virus. Discussion - Conclusion: The bibliographical research enabled us to summarize the research carried out over more than half a century in the history of Djibouti, and to update the inventory of the country's mosquitoes, which now includes 37 species. Species names were reviewed and updated, and the case of Anopheles gambiae was also addressed. Two species mentioned as part of the Culicidae fauna of Djibouti appeared to be doubtful and are up for discussion. These results provide a useful information base for defining vector control priorities in Djibouti. They will also inform, guide and facilitate future consultations of our database. In addition, this study will help to identify research ways on mosquitoes in Djibouti.


Subject(s)
Culicidae , Animals , Culicidae/classification , Culicidae/physiology , Djibouti , Mosquito Vectors/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...