Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Pediatr Pulmonol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958257

ABSTRACT

INTRODUCTION: Preterm infants close to viability commonly require mechanical ventilation (MV) for respiratory distress syndrome. Despite commonly used lung-sparing ventilation techniques, rapid lung expansion during MV induces lung injury, a risk factor for bronchopulmonary dysplasia. This study investigates whether ventilation with optimized lung expansion is feasible and whether it can further minimize lung injury. Therefore, optimized lung expansion ventilation (OLEV) was compared to conventional volume targeted ventilation. METHODS: Twenty preterm lambs were surgically delivered after 132 days of gestation. Nine animals were randomized to receive OLEV for 24 h, and seven received standard MV. Four unventilated animals served as controls (NV). Lungs were sampled for histological analysis at the end of the experimental period. RESULTS: Ventilation with OLEV was feasible, resulting in a significantly higher mean ventilation pressure (0.7-1.3 mbar). Temporary differences in oxygenation between OLEV and MV did not reach clinically relevant levels. Ventilation in general tended to result in higher lung injury scores compared to NV, without differences between OLEV and MV. While pro-inflammatory tumor necrosis factor-α messenger RNA (mRNA) levels increased in both ventilation groups compared to NV, only animals in the MV group showed a higher number of CD45-positive cells in the lung. In contrast, mean (standard deviations) surfactant protein-B mRNA levels were significantly lower in OLEV, 0.63 (0.38) compared to NV 1.03 (0.32) (p = .023, one-way analysis of variance). CONCLUSION: In conclusion, a small reduction in pulmonary inflammation after 24 h of support with OLEV suggests potential to reduce preterm lung injury.

2.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L19-L39, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38712429

ABSTRACT

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.


Subject(s)
Positive-Pressure Respiration , Pulmonary Alveoli , Ventilator-Induced Lung Injury , Animals , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Rats , Male , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/adverse effects , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/physiopathology , Bleomycin/toxicity , Bleomycin/adverse effects , Rats, Sprague-Dawley , Lung/pathology , Lung/physiopathology , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Mechanics , Pulmonary Atelectasis/pathology , Pulmonary Atelectasis/physiopathology
3.
Crit Care ; 28(1): 142, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689313

ABSTRACT

RATIONALE: End-expiratory lung volume (EELV) is reduced in mechanically ventilated patients, especially in pathologic conditions. The resulting heterogeneous distribution of ventilation increases the risk for ventilation induced lung injury. Clinical measurement of EELV however, remains difficult. OBJECTIVE: Validation of a novel continuous capnodynamic method based on expired carbon dioxide (CO2) kinetics for measuring EELV in mechanically ventilated critically-ill patients. METHODS: Prospective study of mechanically ventilated patients scheduled for a diagnostic computed tomography exploration. Comparisons were made between absolute and corrected EELVCO2 values, the latter accounting for the amount of CO2 dissolved in lung tissue, with the reference EELV measured by computed tomography (EELVCT). Uncorrected and corrected EELVCO2 was compared with total CT volume (density compartments between - 1000 and 0 Hounsfield units (HU) and functional CT volume, including density compartments of - 1000 to - 200HU eliminating regions of increased shunt. We used comparative statistics including correlations and measurement of accuracy and precision by the Bland Altman method. MEASUREMENTS AND MAIN RESULTS: Of the 46 patients included in the final analysis, 25 had a diagnosis of ARDS (24 of which COVID-19). Both EELVCT and EELVCO2 were significantly reduced (39 and 40% respectively) when compared with theoretical values of functional residual capacity (p < 0.0001). Uncorrected EELVCO2 tended to overestimate EELVCT with a correlation r2 0.58; Bias - 285 and limits of agreement (LoA) (+ 513 to - 1083; 95% CI) ml. Agreement improved for the corrected EELVCO2 to a Bias of - 23 and LoA of (+ 763 to - 716; 95% CI) ml. The best agreement of the method was obtained by comparison of corrected EELVCO2 with functional EELVCT with a r2 of 0.59; Bias - 2.75 (+ 755 to - 761; 95% CI) ml. We did not observe major differences in the performance of the method between ARDS (most of them COVID related) and non-ARDS patients. CONCLUSION: In this first validation in critically ill patients, the capnodynamic method provided good estimates of both total and functional EELV. Bias improved after correcting EELVCO2 for extra-alveolar CO2 content when compared with CT estimated volume. If confirmed in further validations EELVCO2 may become an attractive monitoring option for continuously monitor EELV in critically ill mechanically ventilated patients. TRIAL REGISTRATION: clinicaltrials.gov (NCT04045262).


Subject(s)
Capnography , Critical Illness , Lung Volume Measurements , Humans , Male , Female , Critical Illness/therapy , Prospective Studies , Middle Aged , Aged , Lung Volume Measurements/methods , Capnography/methods , Respiration, Artificial/methods , COVID-19 , Tomography, X-Ray Computed/methods , Adult
4.
Sci Rep ; 14(1): 8080, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582767

ABSTRACT

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-ß1 (AdTGF-ß1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-ß1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-ß1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-ß1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-ß1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.


Subject(s)
Pulmonary Atelectasis , Transforming Growth Factor beta1 , Mice , Animals , Positive-Pressure Respiration/methods , Lung , Pulmonary Alveoli/physiology
5.
Respir Res ; 25(1): 4, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178216

ABSTRACT

RATIONALE: Lung recruitment and continuous distending pressure (CDP) titration are critical for assuring the efficacy of high-frequency ventilation (HFOV) in preterm infants. The limitation of oxygenation (peripheral oxygen saturation, SpO2) in optimizing CDP calls for evaluating other non-invasive bedside measurements. Respiratory reactance (Xrs) at 10 Hz measured by oscillometry reflects lung volume recruitment and tissue strain. In particular, lung volume recruitment and decreased tissue strain result in increased Xrs values. OBJECTIVES: In extremely preterm infants treated with HFOV as first intention, we aimed to measure the relationship between CDP and Xrs during SpO2-driven CDP optimization. METHODS: In this prospective observational study, extremely preterm infants born before 28 weeks of gestation undergoing SpO2-guided lung recruitment maneuvers were included in the study. SpO2 and Xrs were recorded at each CDP step. The optimal CDP identified by oxygenation (CDPOpt_SpO2) was compared to the CDP providing maximal Xrs on the deflation limb of the recruitment maneuver (CDPXrs). RESULTS: We studied 40 infants (gestational age at birth = 22+ 6-27+ 5 wk; postnatal age = 1-23 days). Measurements were well tolerated and provided reliable results in 96% of cases. On average, Xrs decreased during the inflation limb and increased during the deflation limb. Xrs changes were heterogeneous among the infants for the amount of decrease with increasing CDP, the decrease at the lowest CDP of the deflation limb, and the hysteresis of the Xrs vs. CDP curve. In all but five infants, the hysteresis of the Xrs vs. CDP curve suggested effective lung recruitment. CDPOpt_SpO2 and CDPXrs were highly correlated (ρ = 0.71, p < 0.001) and not statistically different (median difference [range] = -1 [-3; 9] cmH2O). However, CDPXrs were equal to CDPOpt_SpO2 in only 6 infants, greater than CDPOpt_SpO2 in 10, and lower in 24 infants. CONCLUSIONS: The Xrs changes described provide complementary information to oxygenation. Further investigation is warranted to refine recruitment maneuvers and CPD settings in preterm infants.


Subject(s)
High-Frequency Ventilation , Infant, Extremely Premature , Humans , Infant, Newborn , Oscillometry , Lung , Lung Volume Measurements/methods , High-Frequency Ventilation/methods
6.
Eur J Pediatr ; 183(2): 697-705, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37975943

ABSTRACT

To evaluate the effectiveness of a novel protocol, adopted in our institution, as a quality improvement project for congenital diaphragmatic hernia (CDH). A maximal lung protection (MLP) protocol was implemented in 2019. This strategy included immediate use of high-frequency oscillatory ventilation (HFOV) after birth, during the stay at the Neonatal Intensive Care Unit (NICU), and during surgical repair. HFOV strategy included low distending pressures and higher frequencies (15 Hz) with subsequent lower tidal volumes. Surgical repair was performed early, within 24 h of birth, if possible. A retrospective study of all inborn neonates prenatally diagnosed with CDH and without major associated anomalies was performed at the NICU of Schneider Children's Medical Center of Israel between 2009 and 2022. Survival rates and pulmonary outcomes of neonates managed with MLP were compared to the historical standard care cohort. Thirty-three neonates were managed with the MLP protocol vs. 39 neonates that were not. Major adverse outcomes decreased including death rate from 46 to 18% (p = 0.012), extracorporeal membrane oxygenation from 39 to 0% (p < 0.001), and pneumothorax from 18 to 0% (p = 0.013). CONCLUSION:  MLP with early surgery significantly improved survival and additional adverse outcomes of neonates with CDH. Prospective randomized studies are necessary to confirm the findings of the current study. WHAT IS KNOWN: • Ventilator-induced lung injury was reported as the main cause of mortality in neonates with congenital diaphragmatic hernia (CDH). • Conventional ventilation is recommended by the European CDH consortium as the first-line ventilation modality; timing of surgery is controversial. WHAT IS NEW: • A maximal lung protection strategy based on 15-Hz high-frequency oscillatory ventilation with low distending pressures as initial modality and early surgery significantly reduced mortality and other outcomes.


Subject(s)
Hernias, Diaphragmatic, Congenital , Humans , Infant, Newborn , Hernias, Diaphragmatic, Congenital/surgery , Lung , Prospective Studies , Quality Improvement , Retrospective Studies , Survival Rate
8.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373199

ABSTRACT

Thoracic surgeries involving resection of lung tissue pose a risk of severe postoperative pulmonary complications, including acute respiratory distress syndrome (ARDS) and respiratory failure. Lung resections require one-lung ventilation (OLV) and, thus, are at higher risk of ventilator-induced lung injury (VILI) attributable to barotrauma and volutrauma in the one ventilated lung, as well as hypoxemia and reperfusion injury on the operated lung. Further, we also aimed to assess the differences in localized and systemic markers of tissue injury/inflammation in those who developed respiratory failure after lung surgery versus matched controls who did not develop respiratory failure. We aimed to assess the different inflammatory/injury marker patterns induced in the operated and ventilated lung and how this compared to the systemic circulating inflammatory/injury marker pattern. A case-control study nested within a prospective cohort study was performed. Patients with postoperative respiratory failure after lung surgery (n = 5) were matched with control patients (n = 6) who did not develop postoperative respiratory failure. Biospecimens (arterial plasma, bronchoalveolar lavage separately from ventilated and operated lungs) were obtained from patients undergoing lung surgery at two timepoints: (1) just prior to initiation of OLV and (2) after lung resection was completed and OLV stopped. Multiplex electrochemiluminescent immunoassays were performed for these biospecimen. We quantified 50 protein biomarkers of inflammation and tissue injury and identified significant differences between those who did and did not develop postoperative respiratory failure. The three biospecimen types also display unique biomarker patterns.


Subject(s)
Lung , Respiratory Insufficiency , Humans , Case-Control Studies , Prospective Studies , Lung/surgery , Lung/metabolism , Respiratory Insufficiency/etiology , Respiratory Insufficiency/metabolism , Inflammation/etiology , Inflammation/metabolism , Postoperative Complications/etiology , Postoperative Complications/metabolism , Respiration, Artificial
9.
Int Immunopharmacol ; 120: 110356, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244115

ABSTRACT

Ventilator-induced lung injury (VILI) has become an increasingly common complication in the clinic concerning mechanical ventilation. Previous research showed that VILI is the result of a response to cascade inflammation; however, the inflammatory mechanism involved remains unclear. As a newly recognized form of cell death, ferroptosis can release damage-related molecules (DAMPs) to trigger and amplify the inflammatory response and is involved in several inflammatory diseases. The present study aimed to investigate a previously unrecognized role of ferroptosis in VILI. A mouse model of VILI and a model of cyclic stretching (CS)-induced lung epithelial cell injury were established. Mice and cells were pretreated with ferrostain-1, an inhibitor of ferroptosis. Lung tissue and cells were then harvested to determine lung injury, inflammatory responses, indicators and protein expression associated with ferroptosis. Compared to the control group, mice subjected to high tidal volumes (HTV) for 4 h showed more severe pulmonary edema and inflammation and the activation of ferroptosis. Ferrostain-1 significantly ameliorated histological injury and inflammation in the VILI mouse and alleviated CS-induced lung epithelial cell injury. Mechanistically, ferrostain-1 markedly limited the activation of ferroptosis and recovered functionality of the SLC7A11/GPX4 axis both in vitro and in vivo, thus demonstrating its potential as a novel therapeutic target for VILI.


Subject(s)
Ferroptosis , Ventilator-Induced Lung Injury , Mice , Animals , Lung/pathology , Inflammation/drug therapy , Ventilator-Induced Lung Injury/pathology
10.
Crit Care Clin ; 39(3): 437-449, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37230549

ABSTRACT

Critical care and mechanical ventilation have a relatively brief history in medicine. Premises existed through the seventeenth to nineteenth centuries but modern mechanical ventilation started in the twentieth century. Noninvasive ventilation techniques had started both in the intensive care unit and for home ventilation at the end of the 1980s and the 1990s. The need for mechanical ventilation is increasingly influenced worldwide by the spread of respiratory viruses, and the last coronavirus disease 2019 pandemic has seen a massive successful use of noninvasive ventilation.


Subject(s)
COVID-19 , Noninvasive Ventilation , Humans , Respiration, Artificial/methods , COVID-19/therapy , Intensive Care Units , Critical Care/methods
11.
Chinese Critical Care Medicine ; (12): 217-220, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-992006

ABSTRACT

Mechanical ventilation is an advanced life support treatment for patients with acute respiratory failure. While stabilizing respiratory function, it also acts as an injury factor to exacerbate or lead to lung injury, that is, ventilation-induced lung injury (VILI). There may be a more subtle form of damage to VILI known as "biotrauma". However, the mechanism of biotrauma in VILI is still unclear. This article intends to review the mechanism of biotrauma of VILI from the aspects of inflammatory response, oxidative stress and complement activation, in order to provide a new strategy for clinical prevention and treatment of biotrauma caused by VILI.

12.
Front Med (Lausanne) ; 9: 987202, 2022.
Article in English | MEDLINE | ID: mdl-36405620

ABSTRACT

Prone positioning is an established treatment for severe acute lung injury conditions. Neuronal dysfunction frequently occurs with mechanical ventilation-induced acute lung injury (VILI) and clinically manifests as delirium. We previously reported a pathological role for systemic interleukin 6 (IL-6) in mediating neuronal injury. However, currently no studies have investigated the relationship between prone or supine positioning and IL-6 mediated neuronal dysfunction. Here, we hypothesize that prone positioning mitigates neuronal injury, via decreased IL-6, in a model of VILI. VILI was induced by subjecting C57BL/6J mice to high tidal volume (35 cc/kg) mechanical ventilation. Neuronal injury markers [cleaved caspase-3 (CC3), c-fos, heat shock protein 90 (Hsp90)] and inflammatory cytokines (IL-6, IL-1ß, TNF-α) were measured in the frontal cortex and hippocampus. We found statistically significantly less neuronal injury (CC3, c-Fos, Hsp90) and inflammatory cytokines (IL-6, IL-1ß, TNF-α) in the frontal cortex and hippocampus with prone compared to supine positioning (p < 0.001) despite no significant group differences in oxygen saturation or inflammatory infiltrates in the bronchoalveolar fluid (p > 0.05). Although there were no group differences in plasma IL-6 concentrations, there was significantly less cortical and hippocampal IL-6 in the prone position (p < 0.0001), indicating supine positioning may enhance brain susceptibility to systemic IL-6 during VILI via the IL-6 trans-signaling pathway. These findings call for future clinical studies to assess the relationship between prone positioning and delirium and for investigations into novel diagnostic or therapeutic paradigms to mitigate delirium by reducing expression of systemic and cerebral IL-6.

13.
Physiol Rep ; 10(6): e15225, 2022 03.
Article in English | MEDLINE | ID: mdl-35340133

ABSTRACT

The extent of ventilator-induced lung injury may be related to the intensity of mechanical ventilation--expressed as mechanical power. In the present study, we investigated whether there is a safe threshold, below which lung damage is absent. Three groups of six healthy pigs (29.5 ± 2.5 kg) were ventilated prone for 48 h at mechanical power of 3, 7, or 12 J/min. Strain never exceeded 1.0. PEEP was set at 4 cmH2 O. Lung volumes were measured every 12 h; respiratory, hemodynamics, and gas exchange variables every 6. End-experiment histological findings were compared with a control group of eight pigs which did not undergo mechanical ventilation. Functional residual capacity decreased by 10.4% ± 10.6% and 8.1% ± 12.1% in the 7 J and 12 J groups (p = 0.017, p < 0.001) but not in the 3 J group (+1.7% ± 17.7%, p = 0.941). In 3 J group, lung elastance, PaO2 and PaCO2 were worse compared to 7 J and 12 J groups (all p < 0.001), due to lower ventilation-perfusion ratio (0.54 ± 0.13, 1.00 ± 0.25, 1.78 ± 0.36 respectively, p < 0.001). The lung weight was lower (p < 0.001) in the controls (6.56 ± 0.90 g/kg) compared to 3, 7, and 12 J groups (12.9 ± 3.0, 16.5 ± 2.9, and 15.0 ± 4.1 g/kg, respectively). The wet-to-dry ratio was 5.38 ± 0.26 in controls, 5.73 ± 0.52 in 3 J, 5.99 ± 0.38 in 7 J, and 6.13 ± 0.59 in 12 J group (p = 0.03). Vascular congestion was more extensive in the 7 J and 12 J compared to 3 J and control groups. Mechanical ventilation (with anesthesia/paralysis) increase lung weight, and worsen lung histology, regardless of the mechanical power. Ventilating at 3 J/min led to better anatomical variables than at 7 and 12 J/min but worsened the physiological values.


Subject(s)
Respiration, Artificial , Ventilator-Induced Lung Injury , Animals , Lung/pathology , Respiration, Artificial/adverse effects , Respiratory Function Tests , Respiratory Rate , Swine
14.
Inflammopharmacology ; 30(4): 1395-1406, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35296962

ABSTRACT

OBJECTIVES: Ventilation-induced lung injury (VILI) causes a huge economic and social burden, and its prevention and treatment have gained increasing attention in recent years. IL-9 is an important inflammatory factor, but its potential role in VILI remains unclear. This study intended to explore whether blocking IL-9 could alleviate VILI and explore its underlying mechanism. METHODS: Lung injury was induced by mechanical ventilation (MV) in C57BL/6 mice. Changes in inflammatory factors and NLRP3-related proteins were assessed using quantitative reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. Subsequently, Nlrp3-/- mice were used to further elucidate the underlying mechanism. RESULTS: The percentage of Th9 cells in the peripheral blood, bronchoalveolar lavage fluid (BALF), and lung tissues of MV mice was increased compared to those of control mice. Treatment with anti-IL-9 mAb significantly alleviated the changes in lung histopathology, wet/dry lung proportion, total protein content, and neutrophil content in BALF induced by VILI. Additionally, administering anti-IL-9 mAb significantly downregulated the expression levels of inflammatory factors in BALF and lung tissues of mice with VILI. In addition, administering anti-IL-9 mAb inhibited NLRP3 inflammasome activation, as evidenced by the observed downregulation of NLRP3, ASC, cleaved caspase-1, and GSDMD-N. Additionally, NLRP3-deficient mice had lower lung injury induced by VILI than wild-type mice. Furthermore, the anti-IL-9 mAb only partially inhibited VILI in Nlrp3-/- mice. CONCLUSIONS: In MV mice, the anti-IL-9 mAb alleviated lung injury and reduced the secretion and expression of inflammatory factors partly by inhibiting the NLRP3 inflammasome pathway.


Subject(s)
Inflammasomes , Ventilator-Induced Lung Injury , Animals , Disease Models, Animal , Inflammasomes/metabolism , Inflammation/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respiration, Artificial , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology
15.
BJA Open ; 42022 Dec.
Article in English | MEDLINE | ID: mdl-36687665

ABSTRACT

Background: High airway driving pressure is associated with adverse outcomes in critically ill patients receiving mechanical ventilation, but large multicentre studies investigating airway driving pressure during major surgery are lacking. We hypothesised that increased driving pressure is associated with postoperative pulmonary complications in patients undergoing major abdominal surgery. Methods: In this preregistered multicentre retrospective observational cohort study, the authors reviewed major abdominal surgical procedures in 11 hospitals from 2004 to 2018. The primary outcome was a composite of postoperative pulmonary complications, defined as postoperative pneumonia, unplanned tracheal intubation, or prolonged mechanical ventilation for more than 48 h. Associations between intraoperative dynamic driving pressure and outcomes, adjusted for patient and procedural factors, were evaluated. Results: Among 14 218 qualifying cases, 389 (2.7%) experienced postoperative pulmonary complications. After adjustment, the mean dynamic driving pressure was associated with postoperative pulmonary complications (adjusted odds ratio for every 1 cm H2O increase: 1.04; 95% confidence interval [CI], 1.02-1.06; P<0.001). Neither tidal volume nor PEEP was associated with postoperative pulmonary complications. Increased BMI, shorter height, and female sex were predictors for higher dynamic driving pressure (ß=0.35, 95% CI 0.32-0.39, P<0.001; ß=-0.01, 95% CI -0.02 to 0.00, P=0.005; and ß=0.74, 95% CI 0.63-0.86, P<0.001, respectively). Conclusions: Dynamic airway driving pressure, but not tidal volume or PEEP, is associated with postoperative pulmonary complications in models controlling for a large number of risk predictors and covariates. Such models are capable of risk prediction applicable to individual patients.

16.
Biology (Basel) ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36671759

ABSTRACT

Acute respiratory distress syndrome (ARDS) remains an important clinical challenge with a mortality rate of 35-45%. It is being increasingly demonstrated that the improvement of outcomes requires a tailored, individualized approach to therapy, guided by a detailed understanding of each patient's pathophysiology. In patients with ARDS, disturbances in the physiological matching of alveolar ventilation (V) and pulmonary perfusion (Q) (V/Q mismatch) are a hallmark derangement. The perfusion of collapsed or consolidated lung units gives rise to intrapulmonary shunting and arterial hypoxemia, whereas the ventilation of non-perfused lung zones increases physiological dead-space, which potentially necessitates increased ventilation to avoid hypercapnia. Beyond its impact on gas exchange, V/Q mismatch is a predictor of adverse outcomes in patients with ARDS; more recently, its role in ventilation-induced lung injury and worsening lung edema has been described. Innovations in bedside imaging technologies such as electrical impedance tomography readily allow clinicians to determine the regional distributions of V and Q, as well as the adequacy of their matching, providing new insights into the phenotyping, prognostication, and clinical management of patients with ARDS. The purpose of this review is to discuss the pathophysiology, identification, consequences, and treatment of V/Q mismatch in the setting of ARDS, employing experimental data from clinical and preclinical studies as support.

17.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884645

ABSTRACT

BACKGROUND: Ventilator-induced lung injury (VILI) frequently worsens acute respiratory distress syndrome (ARDS) severity. Human mesenchymal stem/stromal cells (MSCs) offer considerable therapeutic promise, but the key impediments of clinical translation stem from limitations due to cell source and availability, and concerns regarding the loss of efficacy following cryopreservation. These experiments compared the efficacy of umbilical-cord-derived MSCs (UC-MSCs), a readily available and homogenous tissue source, to the previously more widely utilised bone-marrow-derived MSCs (BM-MSCs). We assessed their capacity to limit inflammation, resolve injury and enhance repair in relevant lung mechanical stretch models, and the impact of cryopreservation on therapeutic efficacy. METHODS: In series 1, confluent alveolar epithelial layers were subjected to cyclic mechanical stretch (22% equibiaxial strain) and wound injury, and the potential of the secretome from BM- and UC-derived MSCs to attenuate epithelial inflammation and cell death, and enhance wound repair was determined. In series 2, anesthetized rats underwent VILI, and later received, in a randomised manner, 1 × 107 MSCs/kg intravenously, that were: (i) fresh BM-MSCs, (ii) fresh UC-MSCs or (iii) cryopreserved UC-MSCs. Control animals received a vehicle (PBS). The extent of the resolution of inflammation and injury, and repair was measured at 24 h. RESULTS: Conditioned medium from BM-MSCs and UC-MSCs comparably decreased stretch-induced pulmonary epithelial inflammation and cell death. BM-MSCs and UC-MSCs comparably enhanced wound resolution. In animals subjected to VILI, both fresh BM-MSCs and UC-MSCs enhanced injury resolution and repair, while cryopreserved UC-MSCs comparably retained their efficacy. CONCLUSIONS: Cryopreserved UC-MSCs can reduce stretch-induced inflammation and cell death, enhance wound resolution, and enhance injury resolution and repair following VILI. Cryopreserved UC-MSCs represent a more abundant, cost-efficient, less variable and equally efficacious source of therapeutic MSC product.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Ventilator-Induced Lung Injury/therapy , Animals , Cell Line, Tumor , Cells, Cultured , Cryopreservation/methods , Culture Media, Conditioned , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Umbilical Cord/metabolism , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology
18.
Front Physiol ; 12: 743153, 2021.
Article in English | MEDLINE | ID: mdl-34588999

ABSTRACT

Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to assess the role of positive fluid balance in the framework of ventilation-induced lung injury. Methods: Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with mechanical power ranging from 18 to 137 J/min and divided into two groups: high vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p < 0.01). Respiratory mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at 0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-osmotic sodium storage compartments was estimated assuming osmotic equilibrium. Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured at the end of the experiment. Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92 vs. 3.41 ± 1.68 L/min; p < 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs. 5.79 ± 9.69 mcg/kg; p < 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L; p < 0.01). This hemodynamic status was associated with significantly increased sodium and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol, p < 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p < 0.01). Ten percent of the infused sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium retention was positively associated with lung-weight (R 2 = 0.43, p < 0.01; R 2 = 0.48, p < 0.01) and with wet-to-dry ratio of the lungs (R 2 = 0.14, p < 0.01; R 2 = 0.18, p < 0.01) and kidneys (R 2 = 0.11, p = 0.02; R 2 = 0.12, p = 0.01). Conclusion: Increased mechanical power and pleural pressures dictated an increase in hemodynamic support resulting in proportionally increased sodium and fluid retention and pulmonary edema.

19.
Intensive Care Med ; 47(10): 1130-1139, 2021 10.
Article in English | MEDLINE | ID: mdl-34529118

ABSTRACT

PURPOSE: We investigated if the stress applied to the lung during non-invasive respiratory support may contribute to the coronavirus disease 2019 (COVID-19) progression. METHODS: Single-center, prospective, cohort study of 140 consecutive COVID-19 pneumonia patients treated in high-dependency unit with continuous positive airway pressure (n = 131) or non-invasive ventilation (n = 9). We measured quantitative lung computed tomography, esophageal pressure swings and total lung stress. RESULTS: Patients were divided in five subgroups based on their baseline PaO2/FiO2 (day 1): non-CARDS (median PaO2/FiO2 361 mmHg, IQR [323-379]), mild (224 mmHg [211-249]), mild-moderate (173 mmHg [164-185]), moderate-severe (126 mmHg [114-138]) and severe (88 mmHg [86-99], p < 0.001). Each subgroup had similar median lung weight: 1215 g [1083-1294], 1153 [888-1321], 968 [858-1253], 1060 [869-1269], and 1127 [937-1193] (p = 0.37). They also had similar non-aerated tissue fraction: 10.4% [5.9-13.7], 9.6 [7.1-15.8], 9.4 [5.8-16.7], 8.4 [6.7-12.3] and 9.4 [5.9-13.8], respectively (p = 0.85). Treatment failure of CPAP/NIV occurred in 34 patients (24.3%). Only three variables, at day one, distinguished patients with negative outcome: PaO2/FiO2 ratio (OR 0.99 [0.98-0.99], p = 0.02), esophageal pressure swing (OR 1.13 [1.01-1.27], p = 0.032) and total stress (OR 1.17 [1.06-1.31], p = 0.004). When these three variables were evaluated together in a multivariate logistic regression analysis, only the total stress was independently associated with negative outcome (OR 1.16 [1.01-1.33], p = 0.032). CONCLUSIONS: In early COVID-19 pneumonia, hypoxemia is not linked to computed tomography (CT) pathoanatomy, differently from typical ARDS. High lung stress was independently associated with the failure of non-invasive respiratory support.


Subject(s)
COVID-19 , Cohort Studies , Humans , Lung/diagnostic imaging , Prospective Studies , SARS-CoV-2
20.
Front Med (Lausanne) ; 8: 682526, 2021.
Article in English | MEDLINE | ID: mdl-34277659

ABSTRACT

With the goal of protecting injured lungs and extrapulmonary organs, venovenous extracorporeal membrane oxygenation (VV-ECMO) has been increasingly adopted as a rescue therapy for patients with severe acute respiratory distress syndrome (ARDS) when conventional mechanical ventilation failed to provide effective oxygenation and decarbonation. In recent years, it has become a promising approach to respiratory support for awake, non-intubated, spontaneously breathing patients with respiratory failure, referred to as awake ECMO, to avoid possible detrimental effects associated with intubation, mechanical ventilation, and the adjunctive therapies. However, several complex clinical issues should be taken into consideration when initiating and implementing awake ECMO, such as selecting potential patients who appeared to benefit most; techniques to facilitating cannulation and maintain stable ECMO blood flow; approaches to manage pain, agitation, and delirium; and approaches to monitor and modulate respiratory drive. It is worth mentioning that there had also been some inherent disadvantages and limitations of awake ECMO compared to the conventional combination of ECMO and invasive mechanical ventilation. Here, we review the use of ECMO in awake, spontaneously breathing patients with severe ARDS, highlighting the issues involving bedside clinical practice, detailing some of the technical aspects, and summarizing the initial clinical experience gained over the past years.

SELECTION OF CITATIONS
SEARCH DETAIL
...