Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Int Immunol ; 36(6): 303-316, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38387051

ABSTRACT

Lymphocyte homing to peripheral lymph nodes (PLN) is critical for immune surveillance. However, autoimmune diseases such as multiple sclerosis (MS) can occur due to excessive immune responses in the PLN. Here we show that 6-sulfo sialyl Lewis X (6-sulfo sLex) glycans on high endothelial venules that function as ligands for l-selectin on lymphocytes play a critical role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST)-1 and GlcNAc6ST-2 double-knockout mice lacking the expression of 6-sulfo sLeX glycans, the EAE symptoms and the numbers of effector Th1 and Th17 cells in the draining lymph nodes (dLN) and spinal cords (SC) were significantly reduced. To determine whether 6-sulfo sLeX could serve as a target for MS, we also examined the effects of anti-glycan monoclonal antibody (mAb) SF1 against 6-sulfo sLeX in EAE. Administration of mAb SF1 significantly reduced EAE symptoms and the numbers of antigen-specific effector T cells in the dLN and SC in association with suppression of critical genes including Il17a and Il17f that are involved in the pathogenesis of EAE. Taken together, these results suggest that 6-sulfo sLeX glycan would serve as a novel target for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Mice, Knockout , Sialyl Lewis X Antigen , Sialyl Lewis X Antigen/analogs & derivatives , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Mice , Th17 Cells/immunology , Sialyl Lewis X Antigen/metabolism , Polysaccharides/metabolism , Interleukin-17/metabolism , Interleukin-17/immunology , Oligosaccharides , Carbohydrate Sulfotransferases , Th1 Cells/immunology , Sulfotransferases/metabolism , Sulfotransferases/genetics , Sulfotransferases/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Female , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism , Cell Movement/immunology
2.
Biomedicines ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37893037

ABSTRACT

Small vessel diseases (SVD) is an umbrella term including several entities affecting small arteries, arterioles, capillaries, and venules in the brain. One of the most relevant and prevalent SVDs is cerebral amyloid angiopathy (CAA), whose pathological hallmark is the deposition of amyloid fragments in the walls of small cortical and leptomeningeal vessels. CAA frequently coexists with Alzheimer's Disease (AD), and both are associated with cerebrovascular events, cognitive impairment, and dementia. CAA and AD share pathophysiological, histopathological and neuroimaging issues. The venular involvement in both diseases has been neglected, although both animal models and human histopathological studies found a deposition of amyloid beta in cortical venules. This review aimed to summarize the available information about venular involvement in CAA, starting from the biological level with the putative pathomechanisms of cerebral damage, passing through the definition of the peculiar angioarchitecture of the human cortex with the functional organization and consequences of cortical arteriolar and venular occlusion, and ending to the hypothesized links between cortical venular involvement and the main neuroimaging markers of the disease.

3.
Microvasc Res ; 148: 104511, 2023 07.
Article in English | MEDLINE | ID: mdl-36822367

ABSTRACT

Immune checkpoint inhibitor therapy has been attracting attention as a new cancer treatment and is likely to be widely used in combination with radiotherapy. Therefore, examination of the effects of X-ray irradiation on sentinel lymph nodes and lymphatic vessels, which are involved in antigen presentation, is important for therapy. The hindlimbs of mice were irradiated with X-rays (total radiation doses: 2, 10, and 30 Gy), and X-ray computed tomography (CT) imaging was performed using 15-nm or 2-nm gold nanoparticles (AuNPs) as contrast agents on days 7, 14, and 28 after irradiation to evaluate the diameter of the collecting lymph vessels and lymph flow within the irradiated area. X-ray CT imaging data using 15-nm AuNPs on day 28 after irradiation showed that the diameter of the collecting lymph vessels was significantly larger in all irradiated groups compared to the control group (p ≤ 0.01). CT imaging with 2-nm AuNPs showed that lymphatic drainage was significantly reduced in the lymph nodes irradiated with 10 Gy and 30 Gy compared to the lymph nodes irradiated with 2 Gy (p ≤ 0.05). Additionally, immunohistochemical analyses were conducted to evaluate the area density and morphology of high endothelial venules (HEVs) in the lymph nodes, which are important vessels for naive T cells to enter the lymph nodes. The expression level of MECA-79, which specifically localized to HEVs, was significantly decreased in the 10 Gy and 30 Gy irradiation groups compared to the control group (p ≤ 0.05). There was a significant decrease in normal HEV morphology (p ≤ 0.05) and a significant increase in abnormal HEV morphology (p ≤ 0.05) in all irradiated groups. These results also showed that X-ray irradiation induced a time- and radiation dose-dependent increase in the diameter of the collecting lymph vessels, stagnation of intralymphatic lymph flow, and a reduction in the area density of HEVs and their abnormal morphology, demonstrating that X-ray irradiation affected the immune responses. Therefore, these findings suggest that X-ray irradiation to lymph nodes may impair the opportunity for antigen presentation in the lymph nodes, which is the key to cancer immunity, and that for this reason, it is important to carefully plan irradiation of sentinel lymph nodes and develop treatment strategies according to future treatment options.


Subject(s)
Lymphatic Vessels , Metal Nanoparticles , Animals , Mice , X-Rays , Gold , Lymphatic Metastasis/pathology , Lymph Nodes/pathology , Lymph Nodes/radiation effects , Lymphatic Vessels/diagnostic imaging , Immunity
4.
Cephalalgia ; 43(3): 3331024221147494, 2023 03.
Article in English | MEDLINE | ID: mdl-36786365

ABSTRACT

INTRODUCTION: Retinal vessel dynamics analysis has proven to be a viable, non-invasive surrogate marker for increased intracranial pressure. We aimed to test this method in patients with suspected idiopathic intracranial hypertension. METHODS: Patients with suspected idiopathic intracranial hypertension were prospectively enrolled for hand-held fundus-videography during diagnostic lumbar puncture. After extracting optic disc images, peripapillary arteriole-to-venule-ratios were measured using machine-learning algorithms with manual identification control. A general linear model was applied to arteriole-to-venule-ratios and corresponding lumbar opening pressures to estimate cerebrospinal fluid pressure. RESULTS: Twenty-five patients were included with a significant difference in arteriole-to-venule-ratio between patients with (n = 17) and without (n = 8) idiopathic intracranial hypertension (0.78 ± 0.10 vs 0.90 ± 0.08, p = 0.006). Arteriole-to-venule-ratio correlated inversely with lumbar opening pressure (slope regression estimate -0.0043 (95% CI -0.0073 to -0.0023), p = 0.002) and the association was stronger when lumbar opening pressure exceeded 15 mm Hg (20 cm H2O) (slope regression estimate -0.0080 (95% CI -0.0123 to -0.0039), p < 0.001). Estimated cerebrospinal fluid pressure predicted increased lumbar opening pressure >20 mm Hg (27 cm H2O) with 78% sensitivity and 92% specificity (AUC 0.81, p = 0.02). A stand-alone arteriole-to-venule-ratio measurement predicting lumbar opening pressure >20 mm Hg (27 cm H2O) was inferior with a 48% sensitivity and 92% specificity (AUC 0.73, p = 0.002). CONCLUSION: Retinal vessel dynamics analysis with the described model for estimating cerebrospinal fluid pressure is a promising non-invasive method with a high sensitivity and specificity for detecting elevated intracranial pressure at follow-up assessments of patients with confirmed idiopathic intracranial hypertension if initial lumbar opening pressure and arteriole-to-venule-ratio data are available.


Subject(s)
Intracranial Hypertension , Papilledema , Pseudotumor Cerebri , Humans , Pseudotumor Cerebri/diagnosis , Intracranial Pressure , Retinal Vessels , Biomarkers
5.
Immunity ; 56(1): 162-179.e6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630914

ABSTRACT

Immunotherapies have shown remarkable, albeit tumor-selective, therapeutic benefits in the clinic. Most patients respond transiently at best, highlighting the importance of understanding mechanisms underlying resistance. Herein, we evaluated the effects of the engineered immunocytokine PD1-IL2v in a mouse model of de novo pancreatic neuroendocrine cancer that is resistant to checkpoint and other immunotherapies. PD1-IL2v utilizes anti-PD-1 as a targeting moiety fused to an immuno-stimulatory IL-2 cytokine variant (IL2v) to precisely deliver IL2v to PD-1+ T cells in the tumor microenvironment. PD1-IL2v elicited substantial infiltration by stem-like CD8+ T cells, resulting in tumor regression and enhanced survival in mice. Combining anti-PD-L1 with PD1-IL2v sustained the response phase, improving therapeutic efficacy both by reprogramming immunosuppressive tumor-associated macrophages and enhancing T cell receptor (TCR) immune repertoire diversity. These data provide a rationale for clinical trials to evaluate the combination therapy of PD1-IL2v and anti-PD-L1, particularly in immunotherapy-resistant tumors infiltrated with PD-1+ stem-like T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Macrophages , Neoplasms , Animals , Mice , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Immunotherapy/methods , Macrophages/immunology , Macrophages/metabolism , Neoplasms/therapy , Tumor Microenvironment , Antibodies, Bispecific/immunology , Interleukin-2 , Programmed Cell Death 1 Receptor/immunology
6.
Ophthalmol Ther ; 12(2): 879-894, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36547863

ABSTRACT

INTRODUCTION: The purpose of this study was to evaluate the impact of COVID-19 infection on retinal microvasculature by topographically mapping the retinal arteriole-to-venule ratio (AVR). METHODS: In a comparative cross-sectional case-control study, fundus photos were obtained in COVID-19-infected patients and healthy controls. AVT was measured over 16 points across the retina using retinal vascularity index (RVI)-a novel semi-automated computerized parameter based on retinal vasculature. RESULTS: A total of 51 COVID-19-positive patients and 65 healthy controls were enrolled in the study. Overall, the mean RVI of all 16 points across the retina was 0.34 ± 0.02 in patients with COVID-19 and 0.33 ± 0.02 in control subjects (p = 0.64). Out of the 16 points being measured, three points had a statistically significant greater value in patients with COVID compared to normal controls. CONCLUSION: Localised greater RVI values were found in some of the points in COVID-19-positive patients, which likely indicates a more focal change of the vasculature.

7.
Cureus ; 15(12): e51049, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38269235

ABSTRACT

Neurologic symptoms are common in COVID-19, and a variety of neuropathological changes have been reported. One of the important neuropathological findings is demyelination. However, the underlying pathogenesis of demyelination remained poorly understood. We witnessed a case of COVID-19 with distinct types of demyelination in the cerebrum, medulla oblongata, and spinal canal, who died of sepsis. The postmortem examination showed the solitary massive demyelination in the medulla oblongata. The massive lesion was filled with components of perineuronal nets. In the spinal canal, confluent demyelination in bilateral lateral and dorsal funiculi was detected over the entire length from C1 to S5, which was maximum at the level of cervical spinal canal stenosis. Demyelination in the cerebrum was mainly perivenular, and augmented in the area of lacunar infarcts and dilated perivascular spaces. Considering the distribution patterns of the following three types of demyelination, the traces of viral spreading could be highlighted. Discontinuous perivenous demyelination in the cerebrum showed the result of hematogenous spreading. Longitudinal confluent demyelination of the spinal cord should be the picturesque of the trace of axonal spreading. The distribution of demyelination was possibly modified by the underlying diseases, diabetes mellitus, hypertension, and spinal canal stenosis.

8.
Front Physiol ; 14: 1322250, 2023.
Article in English | MEDLINE | ID: mdl-38187133

ABSTRACT

Mural cells are critical components of the cerebral vasculature. They are categorized into three primary subsets: arteriole smooth muscle cells (aSMCs), pericytes (PCs) and venule smooth muscle cells (vSMCs). It is well known that aSMCs can directly regulate cerebral blood flow (CBF) with their own contraction and dilation mechanisms. On the other hand, the direct involvement of PCs or vSMCs in CBF regulation is controversial. This ambiguity is largely due to the lack of specifically manipulable tools to isolate their function. To address this issue, we employed a set-subtraction approach by using a combination of tTA-mediated gene induction and Cre-mediated gene excision. We developed transgenic mice expressing optical actuators, channelrhodopsin-2 (ChR2) and photoactivated adenylyl cyclase (PAC) in smooth muscle actin (SMA)-negative mural cells that lack the machinery for SMA-mediated vasoregulation. Using these mouse models, we assessed CBF alterations in response to optical stimulation using laser Doppler techniques. Our results showed that optical stimulation induced notable CBF changes in both models. This study provides evidence for the potential regulatory role of PCs and vSMCs in cerebral hemodynamics and introduces powerful tools to specifically manipulate these cell types in vascular neurobiology.

9.
Curr Opin Physiol ; 362023 Dec.
Article in English | MEDLINE | ID: mdl-38523879

ABSTRACT

High endothelial venules (HEVs), high walled cuboidal blood vessels, through their expression of adhesion molecules and chemokines, allow the entrance of lymphoid cells into primary, secondary, and tertiary lymphoid structures (aka tertiary lymphoid organs). HEV heterogeneity exists between various lymphoid organs in their expression of peripheral node addressin (PNAd) and mucosal vascular addressin adhesion molecule 1(MAdCAM-1). Transcriptomic analyses reveal extensive heterogeneity, plasticity, and regulation of HEV gene expression in ontogeny, acute inflammation, and chronic inflammation within and between lymphoid organs. Rules regulating HEV development are flexible in inflammation. HEVs in tumor tertiary lymphoid structures are diagnostic of favorable clinical outcome and response to Immunotherapy, including immune check point blockade. Immunotherapy induces HEVs and provides an entrance for naïve, central memory, and effector cells and a niche for stem like precursor cells. Understanding HEV regulation will permit their exploitation as routes for drug delivery to autoimmune lesions, rejecting organs, and tumors.

10.
Cancer Cell ; 40(12): 1600-1618.e10, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36423635

ABSTRACT

The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood. By employing single-cell transcriptomics, endothelial fate mapping, and functional multiplex immune profiling, we demonstrate that antiangiogenic immune-modulating therapies evoke transdifferentiation of postcapillary venules into inflamed high-endothelial venules (HEVs) via lymphotoxin/lymphotoxin beta receptor (LT/LTßR) signaling. In turn, tumor HEVs boost intratumoral lymphocyte influx and foster permissive lymphocyte niches for PD1- and PD1+TCF1+ CD8 T cell progenitors that differentiate into GrzB+PD1+ CD8 T effector cells. Tumor-HEVs require continuous CD8 and NK cell-derived signals revealing that tumor HEV maintenance is actively sculpted by the adaptive immune system through a feed-forward loop.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Venules/pathology , Immunotherapy , Lymph Nodes , Neoplasms/pathology
11.
Trends Immunol ; 43(9): 728-740, 2022 09.
Article in English | MEDLINE | ID: mdl-35931612

ABSTRACT

High endothelial venules (HEVs) are specialized blood vessels that support the migration of lymphocytes from the bloodstream into lymph nodes (LNs). They are also formed ectopically in mammalian organs affected by chronic inflammation and cancer. The recent arrival of immunotherapy at the forefront of many cancer treatment regimens could boost a crucial role for HEVs as gateways for the treatment of cancer. In this review, we describe the microanatomical and biochemical characteristics of HEVs, mechanisms of formation of newly made HEVs, immunotherapies potentially dependent on HEV-mediated T cell homing to tumors, and finally, how HEV-targeted therapies might be used as a complementary approach to potentially shape the therapeutic landscape for the treatment of cancer and immune-mediated diseases.


Subject(s)
Lymph Nodes , Neoplasms , Animals , Humans , Lymphocytes , Mammals , T-Lymphocytes , Venules
12.
Pflugers Arch ; 474(5): 541-551, 2022 05.
Article in English | MEDLINE | ID: mdl-35157133

ABSTRACT

The higher permeability of the venules in jejunal microcirculation to albumin contributes to the increased mesenteric lymph formation. Recently, we demonstrated that water intake induced serotonin release from enterochromaffin cells in rat jejunum, serotonin of which circulated through the portal vein into blood circulation and then increased the mesenteric lymph formation. The mode of action of serotonin remains unclear. Therefore, we aimed to clarify the mechanisms involved in the regulation of the jejunal lymph formation with permeant albumin in in vivo rat experiments. We investigated the effects of intravenous administration of serotonin or water intake on the jejunal-originated lymph volume and the concentration of albumin in the lymph in the presence or absence of L-NAME. The effects of intravenous administration of L-NAME, nicardipine, A23187, and ML-7 on the lymph formation with permeant albumin were also evaluated. Serotonin or water intake significantly increased the mesenteric lymph volume with permeant albumin in the jejunal microcirculation. The serotonin- and water intake-mediated responses were significantly reduced by the pretreatment with intravenous administration of L-NAME. Intravenous administration of L-NAME itself also decreased significantly the jejunal lymph formation. Administration of A23187 and ML-7 significantly reduced the jejunal lymph formation with permeant albumin. In contrast, administration of nicardipine significantly increased the lymph formation. In conclusion, portal venous blood flow- or serotonin-mediated NO release from venular endothelial cells plays physiologically key roles in the lymph formation in rat jejunum via the extrusion of calcium ions and inactivation of MLCK in endothelial cells.


Subject(s)
Jejunum , Serotonin , Albumins , Animals , Calcimycin/pharmacology , Endothelial Cells , NG-Nitroarginine Methyl Ester/pharmacology , Nicardipine/pharmacology , Rats , Serotonin/pharmacology
13.
Cancer Cell ; 40(3): 318-334.e9, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35120598

ABSTRACT

Recruitment of lymphocytes into tumors is critical for anti-tumor immunity and efficacious immunotherapy. We show in murine models that tumor-associated high endothelial venules (TA-HEVs) are major sites of lymphocyte entry into tumors at baseline and upon treatment with anti-PD-1/anti-CTLA-4 immune checkpoint blockade (ICB). TA-HEV endothelial cells (TA-HECs) derive from post-capillary venules, co-express MECA-79+ HEV sialomucins and E/P-selectins, and are associated with homing and infiltration into tumors of various T cell subsets. Intravital microscopy further shows that TA-HEVs are the main sites of lymphocyte arrest and extravasation into ICB-treated tumors. Increasing TA-HEC frequency and maturation increases the proportion of tumor-infiltrating stem-like CD8+ T cells, and ameliorates ICB efficacy. Analysis of tumor biopsies from 93 patients with metastatic melanoma reveals that TA-HEVs are predictive of better response and survival upon treatment with anti-PD-1/anti-CTLA-4 combination. These studies provide critical insights into the mechanisms governing lymphocyte trafficking in cancer immunity and immunotherapy.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Endothelial Cells , Humans , Immunologic Factors , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Melanoma/pathology , Mice , T-Lymphocyte Subsets , Venules/pathology
14.
Adv Exp Med Biol ; 1329: 51-68, 2021.
Article in English | MEDLINE | ID: mdl-34664233

ABSTRACT

The different forms of lymphoid organization that coexist in our bodies appeared at distinct time points during the evolution of the animal kingdom. Some of these forms are constitutive, either in fully dedicated organs, such as lymph nodes, or in tissue interfacing with the external environment, such as mucosal-associated lymphoid tissues. Others, known as tertiary lymphoid structures (TLS), are selectively induced in response to inflammation in any peripheral tissues and organs. In this chapter, we discuss the functional interest of each of these lymphoid organizations under different physiopathological conditions. In the context of cancer, recent findings have identified TLS formation as a hallmark of active T- and B-cell immune responses against tumors. TLS are thus a powerful prognostic factor in nearly all solid cancers, which must be taken into account along with the tumor microenvironment. The presence of TLS also predicts the response to immunotherapy including immune checkpoint blockade. With tumor-associated TLS now a key target for the next generation of immunotherapy, this chapter discusses their potential therapeutic manipulations in oncology.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Animals , Biomarkers, Tumor/genetics , Immunotherapy , Neoplasms/therapy , Tertiary Lymphoid Structures/genetics , Tumor Microenvironment
15.
Oncol Lett ; 22(6): 836, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34712360

ABSTRACT

The tertiary lymphoid structure (TLS), also referred to as the ectopic lymphoid structure, has recently become a focus of attention. The TLS consists of T-cell and B-cell-rich regions, as well as plasma cells, follicular helper T cells, follicular dendritic cells (FDCs), germinal centers (GCs) and high endothelial venules. TLSs can be divided into different subtypes and mature stages according to the density of FDCs and GCs. The TLS serves as an effective site in which an antitumor inflammatory response is generated through infiltrating immune cells. B-cell-related pathways, known as the CXC chemokine ligand 13/CXC chemokine receptor type 5 axis and the CC chemokine ligand (CCL)19/CCL21/CC-chemokine receptor 7 axis, play a key role in the generation and formation of TLSs. The aim of the present review was to systematically summarize updated research progress on the formation, subtypes, evaluation and B-cell-related pathways of TLSs. Furthermore, researchers have previously reported that TLSs are present in several types of solid cancers and that they are associated with survival outcomes. Therefore, studies on TLS in breast, lung, colorectal and ovarian cancers and melanoma were summarized and compared. The TLS and B-cell-related pathways require further investigation as important immune signals and promising new immunotherapy targets in the era of T-cell therapy revolution.

16.
Prog Biomater ; 10(3): 223-233, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34553343

ABSTRACT

The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.

17.
Front Mol Biosci ; 8: 661516, 2021.
Article in English | MEDLINE | ID: mdl-34568423

ABSTRACT

Tertiary lymphoid structures (TLSs) develop in non-lymphatic tissue in chronic inflammation and cancer. TLS can mature to lymph node (LN) like structures with germinal centers and associated vasculature. TLS neogenesis in cancer is highly varied and tissue dependent. The role of TLS in adaptive antitumor immunity is of great interest. However, data also show that TLS can play a role in cancer metastasis. The importance of lymphatics in cancer distant metastasis is clear yet the precise detail of how various immunosurveillance mechanisms interplay within TLS and/or draining LN is still under investigation. As part of the tumor lymphatics, TLS vasculature can provide alternative routes for the establishment of the pre-metastatic niche and cancer dissemination. The nature of the cytokine and chemokine signature at the heart of TLS induction can be key in determining the success of antitumor immunity or in promoting cancer invasiveness. Understanding the biochemical and biomechanical factors underlying TLS formation and the resulting impact on the primary tumor will be key in deciphering cancer metastasis and in the development of the next generation of cancer immunotherapeutics.

18.
Eye Brain ; 13: 205-217, 2021.
Article in English | MEDLINE | ID: mdl-34335068

ABSTRACT

PURPOSE: Schizophrenia is associated with alterations in neural structure and function of the retina that are similar to changes seen in the retina and brain in multiple neurodegenerative disorders. Preliminary evidence suggests that retinal microvasculature may also be compromised in schizophrenia. The goal of this study was to determine, using optical coherence tomography angiography (OCTA), whether 1) schizophrenia is associated with alterations in retinal microvasculature density; and 2) microvasculature reductions are associated with retinal neural layer thinning and performance on a measure of verbal IQ. PATIENTS AND METHODS: Twenty-eight outpatients with schizophrenia or schizoaffective disorder and 37 psychiatrically healthy control subjects completed OCT and OCTA exams, and the Wechsler Test of Adult Reading. RESULTS: Schizophrenia patients were characterized by retinal microvasculature density reductions, and enlarged foveal avascular zones, in both eyes. These microvascular abnormalities were generally associated with thinning of retinal neural (macular and peripapillary nerve fiber layer) tissue (but the data were stronger for the left than the right eye) and lower scores on a proxy measure of verbal IQ. First- and later-episode patients did not differ significantly on OCTA findings. CONCLUSION: The retinal microvasculature impairments seen in schizophrenia appear to be a biomarker of overall brain health, as is the case for multiple neurological conditions. Additional research is needed, however, to clarify contributions of social disadvantage and medical comorbidities to the findings.

19.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34172585

ABSTRACT

Capillary networks are essential for distribution of blood flow through the brain, and numerous other homeostatic functions, including neurovascular signal conduction and blood-brain barrier integrity. Accordingly, the impairment of capillary architecture and function lies at the root of many brain diseases. Visualizing how brain capillary networks develop in vivo can reveal innate programs for cerebrovascular growth and repair. Here, we use longitudinal two-photon imaging through noninvasive thinned skull windows to study a burst of angiogenic activity during cerebrovascular development in mouse neonates. We find that angiogenesis leading to the formation of capillary networks originated exclusively from cortical ascending venules. Two angiogenic sprouting activities were observed: 1) early, long-range sprouts that directly connected venules to upstream arteriolar input, establishing the backbone of the capillary bed, and 2) short-range sprouts that contributed to expansion of anastomotic connectivity within the capillary bed. All nascent sprouts were prefabricated with an intact endothelial lumen and pericyte coverage, ensuring their immediate perfusion and stability upon connection to their target vessels. The bulk of this capillary expansion spanned only 2 to 3 d and contributed to an increase of blood flow during a critical period in cortical development.


Subject(s)
Brain/blood supply , Brain/diagnostic imaging , Capillaries/diagnostic imaging , Neuroimaging , Animals , Animals, Newborn , Arterioles/diagnostic imaging , Brain/cytology , Capillaries/growth & development , Endothelial Cells/cytology , Green Fluorescent Proteins/metabolism , Mice, Transgenic , Neovascularization, Physiologic , Pericytes/cytology , Regional Blood Flow/physiology , Time Factors
20.
Clin Exp Nephrol ; 25(9): 1035-1046, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33999275

ABSTRACT

BACKGROUND: During peritoneal dialysis (PD), solute transport and ultrafiltration are mainly achieved by the peritoneal blood vasculature. Glycocalyx lies on the surface of endothelial cells and plays a role in vascular permeability. Low-glucose degradation product (GDP), pH-neutral PD solutions reportedly offer higher biocompatibility and lead to less peritoneal injury. However, the effects on the vasculature have not been clarified. METHODS: Peritoneal tissues from 11 patients treated with conventional acidic solutions (acidic group) and 11 patients treated with low-GDP, pH-neutral solutions (neutral group) were examined. Control tissues were acquired from 5 healthy donors of kidney transplants (control group). CD31 and ratio of luminal diameter to vessel diameter (L/V ratio) were evaluated to identify endothelial cells and vasculopathy, respectively. Immunostaining for heparan sulfate (HS) domains and Ulex europaeus agglutinin-1 (UEA-1) binding was performed to assess sulfated glycosaminoglycans and the fucose-containing sugar chain of glycocalyx. RESULTS: Compared with the acidic group, the neutral group showed higher CD31 positivity. L/V ratio was significantly higher in the neutral group, suggesting less progression of vasculopathy. Both HS expression and UEA-1 binding were higher in the neutral group, whereas HS expression was markedly more preserved than UEA-1 binding in the acidic group. In vessels with low L/V ratio, which were found only in the acidic group, HS expression and UEA-1 binding were diminished, suggesting a loss of glycocalyx. CONCLUSION: Peritoneal endothelial glycocalyx was more preserved in patients treated with low-GDP, pH-neutral solution. The use of low-GDP, pH-neutral solutions could help to protect peritoneal vascular structures and functions.


Subject(s)
Capillaries/pathology , Dialysis Solutions/adverse effects , Endothelial Cells/metabolism , Glycocalyx/metabolism , Peritoneal Dialysis , Peritoneum/metabolism , Adult , Aged , Biopsy , Capillaries/metabolism , Dialysis Solutions/chemistry , Endothelial Cells/pathology , Female , Glucose/metabolism , Glycocalyx/pathology , Heparitin Sulfate/metabolism , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Peritoneum/blood supply , Peritoneum/pathology , Plant Lectins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...