Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Environ Res ; 259: 119489, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925469

ABSTRACT

Gut digestion by earthworms (GDE) is a crucial step in vermicomposting, affecting the fate of antibiotic resistance genes (ARGs) in vermicompost sludge. The extracellular polymeric substance (EPS) matrix of sludge is an important space for ARG transfer. However, the effect of GDE on EPS-associated ARGs remains unclear. Therefore, this study explored the role of GDE in driving the transfer of ARGs within different EPS layers in sludge. For this, the changes in intracellular ARGs and EPS-associated ARGs in sludge were analyzed after 5 days of the GDE process. The results showed that after the GDE process, both nitrate and dissolved organic carbon significantly increased in all EPS layers of sludge, while the proteins and polysaccharides only enhanced in soluble and loosely bound EPS of sludge. In addition, a 7.0% decrease in bacterial diversity was recorded after the GDE process, with a functional bacterial community structure emerging. Moreover, the absolute abundance of total ARGs and mobile genetic elements decreased by 90.71% and 61.83%, respectively, after the GDE process. Intracellular ARGs decreased by 92.1%, while EPS-associated ARGs increased by 4.9%, indicative of intracellular ARG translocation into the EPS during the GDE process. Notably, the ARGs exhibited significant enrichment in both the soluble and loosely bound EPS, whereas they were reduced in the tightly bound EPS. The structural equation modeling revealed that the GDE process effectively mitigated the ARG dissemination risk by modulating both the EPS structure and microenvironment, with the organic structure representing a primary factor influencing ARGs in the EPS.

2.
Microorganisms ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930634

ABSTRACT

Heavy-metal contamination in agricultural soil, particularly of cadmium (Cd), poses serious threats to soil biodiversity, rice production, and food safety. Soil microbes improve soil fertility by regulating soil organic matter production, plant nutrient accumulation, and pollutant transformation. Addressing the impact of Cd toxicity on soil fungal community composition, soil health, and rice yield is urgently required for sustainable rice production. Vermicompost (VC) is an organic fertilizer that alleviates the toxic effects of Cd on soil microbial biodiversity and functionality and improves crop productivity sustainably. In the present study, we examined the effects of different doses of VC (i.e., 0, 3, and 6 tons ha-1) and levels of Cd stress (i.e., 0 and 25 mg Cd kg-1) on soil biochemical attributes, soil fungal community composition, and fragrant-rice grain yield. The results showed that the Cd toxicity significantly reduced soil fertility, eukaryotic microbial community composition and rice grain yield. However, the VC addition alleviated the Cd toxicity and significantly improved the soil fungal community; additionally, it enhanced the relative abundance of Ascomycota, Chlorophyta, Ciliophora, Basidiomycota, and Glomeromycta in Cd-contaminated soils. Moreover, the VC addition enhanced the soil's chemical attributes, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), and microbial biomass C and N, compared to non-VC treated soil under Cd toxicity conditions. Similarly, the VC application significantly increased rice grain yield and decreased the Cd uptake in rice. One possible explanation for the reduced Cd uptake in plants is that VC amendments influence the soil's biological properties, which ultimately reduces soil Cd bioavailability and subsequently influences the Cd uptake and accumulation in rice plants. RDA analysis determined that the leading fungal species were highly related to soil environmental attributes and microbial biomass C and N production. However, the relative abundance levels of Ascomycota, Basidiomycota, and Glomeromycta were strongly associated with soil environmental variables. Thus, the outcomes of this study reveal that the use of VC in Cd-contaminated soils could be useful for sustainable rice production and safe utilization of Cd-polluted soil.

3.
BMC Plant Biol ; 24(1): 545, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872089

ABSTRACT

The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.


Subject(s)
Arsenic , Biodegradation, Environmental , Charcoal , Oryza , Soil Pollutants , Oryza/metabolism , Oryza/growth & development , Arsenic/metabolism , Soil Pollutants/metabolism , Composting/methods , Araceae/metabolism , Araceae/drug effects , Araceae/growth & development , Soil/chemistry
4.
Plants (Basel) ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794384

ABSTRACT

OBJECTIVES: To slow down the chemical fixation of phosphate fertilizer, reduce the risk of active phosphorus leaching, stimulate the inherent phosphorus resource activity of soil, and improve phosphorus supply capacity. METHODS: This study utilized a combination of field experiments and indoor chemical analysis. Six types of exogenous organic matter (fulvic acid, biochar, compound microbial fertilizer, high-energy microbial inoculum, pig manure-vermicompost, cow manure-vermicompost) were added based on conventional fertilization. The experiment was conducted under the wheat-maize rotation system in the Huang-Huai-Hai region. RESULTS: Compared with control (CK) without exogenous organic matter (EOM), all the other treatments with EOM had an enhancing effect on the available phosphorus of the cultivated soil. During the maize harvest, the combined application of biochar, pig manure-vermicompost and cow manure-vermicompost treatment significantly increased the content of available phosphorus in 0-20 cm soil by 45.87-56.59% compared with CK. The combined application of fulvic acid, biochar, pig manure-vermicompost and cow manure-vermicompost treatment significantly increased the content of Ca2-P in 0-20 cm soil by 34.04-65.14%. The content of Ca10-P in each treatment with EOM exhibited a lower level compared to CK. EOM could slow down the fixation of phosphorus to some degree. Correlation analysis revealed significant associations between Ca2-P, Ca8-P, Al-P, Fe-P, neutral phosphatase activity, acid phosphatase activity, and the available phosphorus content in the soil. The combined application of fulvic acid, biochar, and cow manure-vermicompost could enhance the activity of neutral and acid phosphatase in topsoil to a certain extent, thereby facilitating the conversion of phosphorus into highly available Ca2-P. EOM could enhance the soil phosphorus availability and decelerate the conversion of soil phosphorus into O-P and Ca10-P forms with low availability. Among all treatments, biochar exhibited the most pronounced efficiency in mitigating phosphorus leaching downward. CONCLUSIONS: All the EOMs had the potential to enhance the conversion of phosphorus into soluble phosphorus (Ca2-P), thereby mitigating the chemical fixation of soil phosphorus and ameliorating non-point source pollution caused by phosphorus. EOM enhanced the activity of neutral and acid phosphatase, which was beneficial to the conversion of organic phosphorus to inorganic phosphorus and increasing the content of available phosphorus. All EOMs had good effects on the retention of soil effective phosphorus, among which biochar had the best effect on retaining effective phosphorus in the tillage layer and blocking phosphorus leaching downward.

5.
Heliyon ; 10(8): e29693, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699734

ABSTRACT

The demand for organic agriculture has been growing due to concerns about the environmental and health impacts of chemical-intensive farming. The study aimed to investigate the effects organic fertilizers on carrot (Nantes) growth and yield in Tehuledere district. The experiment was conducted at two sites (Gobeya and Libannos) using four fertilizer types (vermicompost, conventional compost, mixture of the two, and inorganic fertilizer) and a control. The experiment was laid out in randomized complete block design with three replications, and data were analyzed using R-software. The study analyzed various growth (emergence percentage, plant height, leaf number, fresh weight, and dry weight of leaves), and yield (root length, root diameter, fresh weight of roots, marketable root yield, unmarketable root yield, and total root yield) parameters. Generally, fertilizer application improved (p < 0.001) growth and yield compared to the control. Vermicompost and inorganic fertilizer (NPSB) showed similar results (p > 0.001) but the highest values (p < 0.001) for most of the parameters (marketable yield was 41.7 t/ha±0.76 for vermicompost and 42.5 t/ha±1.14 for NPSB). However, NPSB could pose negative environmental impact that could not result in sustainability if used in excess and inappropriate (method and time) in particular. Therefore, carrot production using vermicompost is recommended for farmers of Tehuledere district and similar agroecological areas to enhance productivity while contributing to sustainable agriculture. The results have implications for policy makers, researchers, and farmers interested in promoting environmentally friendly and sustainable carrot production.

6.
Front Plant Sci ; 15: 1376362, 2024.
Article in English | MEDLINE | ID: mdl-38708396

ABSTRACT

Introduction: Codonopsis pilosula is widely sought-after in China as a substitute for the more expensive ginseng. Continuous cropping of C. pilosula supports a vibrant health-supplement industry but requires significant inputs of fertilizers which increase production costs and degrade the environment. Methods: Here, three environmentally-friendly natural fertilizers, including biochar, bacterial fertilizer, and vermicompost, were used at different concentrations (undiluted, diluted 10 times, diluted 50 times) to determine their efficacy in seed germination and growth physiology of C. pilosula in continuous cropping. Results: The results showed that biochar, bacterial fertilizer, and vermicompost with different concentrations of leachate could all increase the germination rate, germination potential and germination index of C. pilosula seeds treated with inter-root soil leachate of continuous C. pilosula; increase the activity of antioxidant enzymes (superoxide dismutase and peroxidase) in C. pilosula seedlings under the stress of inter-root soil leachate of continuous C. pilosula, reduce the over-accumulation of malondialdehyde (MDA) content, and increase the resistance of C. pilosula seedlings. After transplanting, superoxide dismutase (SOD) activity increased by an average of 16.1%. Peroxidase (POD) levels showed an average increase of 16.4%. Additionally, there was a significant reduction in the MDA content, with an average decrease of 50%, and the content of osmotic-regulating substances (free proline content and soluble protein content) exhibited a significant increase. Discussion: In conclusion, biochar, bacterial manure, and vermicompost have the potential to overcome the challenges of extensive fertilizer use in continuous cropping of C. pilosula.

7.
J Hazard Mater ; 471: 134280, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38636233

ABSTRACT

Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.


Subject(s)
Composting , Feces , Fruit , Mucus , Oligochaeta , Vegetables , Animals , Feces/microbiology , Enterobacteriaceae , Soil Microbiology
8.
Article in English | MEDLINE | ID: mdl-38517632

ABSTRACT

The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.

9.
Environ Monit Assess ; 196(4): 363, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478213

ABSTRACT

Improper pesticide handling is the main cause of contamination of the environment in agricultural systems. This could be caused by leakage of spraying liquid, leftovers, and inappropriate washing of spraying equipment. This study assessed the ability of suggested biomixture modules for remediate repetitive cycles of high chlorpyrifos doses. In three consecutive treatments, four tested modules were contaminated with 160 µg g-1 chlorpyrifos. Chlorpyrifos residues, dehydrogenase activity, and microbial respiration were continuously monitored for 22 weeks. Six bacterial consortia were isolated at the end of the experiment from four treated modules (B+3, BF+3, S+3, and SF+3) and two from untreated modules (B and S). The isolated consortium efficiency in degrading chlorpyrifos was studied. The results revealed that the best chlorpyrifos removal efficiency was achieved when using the stimulated biomixture module (BF) recorded 98%, 100%, and 89%, at the end of three chlorpyrifos treatments, respectively. Such removal efficiency was compatible with the biological activity results of the tested modules: dehydrogenase activity and microbial respiration. There was no difference in the efficiency among the S, B, and BF+3 consortia. The results presented here demonstrate that the combination of vermicompost, wheat straw, soil, and NPK (stimulated biomixture module) can successfully reduce the risk of a point source of pesticide pollution.


Subject(s)
Chlorpyrifos , Pesticides , Soil Pollutants , Biodegradation, Environmental , Environmental Monitoring , Pesticides/analysis , Soil/chemistry , Oxidoreductases , Soil Microbiology , Soil Pollutants/analysis
10.
Sci Total Environ ; 919: 170791, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38342454

ABSTRACT

Marigolds (Tagetes erecta L.) were evaluated for phytoremediation potential of cadmium (Cd) and zinc (Zn) as a function of amendment application to soil. Vermicompost (V), biodigestate (Bi), and combined V + Bi (VBi) were used as soil amendments in Zn and Cd co-contaminated soils. Application of soil amendments can alter physicochemical properties of soils, particularly pH, EC, CEC and nutrient concentrations. The VBi treatment resulted in highest percentage growth rate in biomass (52 %) for the Twenty yellow variety of marigold. Also, in the VBi treatment, leaves of Dragon yellow variety exhibited maximal accumulation of Zn and Cd. Flower extracts of Twenty yellow in the V treatment had substantial carotenoid content (71.7 mg L-1) and lowest IC50 value (43.7 mg L-1), thus indicating it had highest DPPH free radical scavenging activity. Dragon yellow exhibited highest values of ferric reducing antioxidant power (FRAP; 2066 mg L-1), total flavonoids content (TFC; 64.1 mg L-1), and total phenolics content (TPC; 50.9 mg L-1). Using X-ray fluorescence (XRF) spectroscopy, the atomic percentages of Zn and Cd in all marigold varieties and treatments showed similar patterns over flower surfaces, seeds, and flower petals in descending order. Prime yellow in the V treatment resulted in higher Zn accumulation in roots (bioconcentration factor of root value) > 1 and translocation factor value < 1, indicating an enhanced ability of the plant for phytostabilization. Application of V altered antioxidant activities and production of bioactive compounds as well as enhanced the excluder potential of Cd and Zn, particularly in the Prime yellow variety. Application of Bi contributed to increased flower numbers, suggesting that floriculturists cultivating marigolds for ornamental purposes may be able to generate revenue in terms of productivity and quality of flowers when marigolds are grown on contaminated land.


Subject(s)
Soil Pollutants , Tagetes , Cadmium/analysis , Zinc , Antioxidants , Soil/chemistry , Soil Pollutants/analysis , Biodegradation, Environmental , Organic Chemicals
11.
J Environ Sci (China) ; 141: 277-286, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38408828

ABSTRACT

The dissemination of antibiotic resistance genes (ARGs) in soil has become a global environmental issue. Vermicomposting is gaining prominence in agricultural practices as a soil amendment to improve soil quality. However, its impact on soil ARGs remains unclear when it occurs in farmland. We comprehensively explored the evolution and fate of ARGs and their hosts in the field soil profiles under vermicompost application for more than 3 years. Vermicompost application increased several ARG loads in soil environment but decreased the high-risk bla-ARGs (blaampC, blaNDM, and blaGES-1) by log(0.04 - 0.43). ARGs in soil amended with vermicompost primarily occurred in topsoil (approximately 1.04-fold of unfertilized soil), but it is worth noting that their levels in the 40-60 cm soil layer were the same or even less than in the unfertilized soil. The microbial community structure changed in soil profiles after vermicompost application. Vermicompost application altered the microbial community structure in soil profiles, showing that the dominant bacteria (i.e., Proteobacteria, Actinobacteriota, Firmicutes) were decreased 2.62%-5.48% with the increase of soil depth. A network analysis further revealed that most of ARG dominant host bacteria did not migrate from surface soil to deep soil. In particular, those host bacteria harboring high-risk bla-ARGs were primarily concentrated in the surface soil. This study highlights a lower risk of the propagation of ARGs caused by vermicompost application and provides a novel approach to reduce and relieve the dissemination of ARGs derived from animals in agricultural production.


Subject(s)
Anti-Bacterial Agents , Soil , Animals , Soil/chemistry , Genes, Bacterial , Manure/analysis , Soil Microbiology , Bacteria/genetics , Crops, Agricultural
12.
Int J Environ Health Res ; : 1-12, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390773

ABSTRACT

The demand for food is increasing and the use of soil organic amendments in agricultural management practices has been instructed to increase crop yield and reduce dependence on synthetic inorganic fertilizers at low cost to limited resource farmers. However, the effect of organic amendments on the quality and nutritional composition of edible plants has received little attention. Locally available organic amendments (sewage sludge SS, chicken manure CM, cow manure Cow, vermicompost Vermi, and biochar Bio) were chosen to test their impact on field-grown sweet potato, Ipomoea batatas L. yield, root quality, and root nutritional composition. The results indicated that utilizing Cow manure in growing sweet potatoes significantly promoted root yield and root nutritional composition. Cow treatment produced the greatest number of roots compared to Bio, CM, SS, and the control treatments. The results also revealed that the concentrations of vitamin C (260. 3 µg g-1), ß-carotene (45.4 µg g-1), soluble sugars (16.7 mg g-1), and total phenols (196.3 3 µg g-1 fresh roots) were greater in the roots of plants grown in Cow compared to the roots of the control treatment. The results indicated the low impact of biochar whereas Cow is recommended for enhancing sweet potato yield and nutritional composition.

13.
J Environ Manage ; 352: 120056, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38219670

ABSTRACT

This study focused on the waste management of livestock manure and wetland plant residues and their increasing effect on terrestrial and aquatic ecosystems. The benefits of nutrient-rich plants and manures are often overlooked. By conducting a soil column experiment with a fully factorial design, this work found that adding the vermicompost amendments of wetland plants [combination of Canna indica (CiV), Cyperus alternifollius (CaV), Acorus calamus (AcV), and Hydrocotyle vulgaris (HvV) vermicompost] to agricultural wastes affected maize growth throughout its growing season. The results demonstrated that the use of combined AcV and HvV wetland plant-based vermicompost as an organic fertilizer increased the plant total nitrogen (TN: 92% increase) and soil organic matter (SOM: 192% increase) compared with those in control CK. Meanwhile, the combination of CaV with HvV increased the shoot biomass by 3.4 and 4.6 folds compared with that in NPK and CK, respectively. Overall, a new approach for transforming ecological wastes into organic fertilizers was proposed.


Subject(s)
Agriculture , Ecosystem , Agriculture/methods , Soil/chemistry , Plants , Technology , Fertilizers , Manure , Nitrogen
14.
Article in English | MEDLINE | ID: mdl-38284699

ABSTRACT

BACKGROUND: The present study investigates the effect of conventional and organic farming systems on the nutritional profile of crops. Different crops, namely -millet, sorghum, sesame, mustard, fenugreek, berseem, pea, potato, and onion were cultivated through conventional agriculture in which chemical fertilizers like urea, DAP (Diammonium Phosphate) and pesticides were used and organic farming in which organic fertilizers like seaweed and vermicompost were used. OBJECTIVE: The experimental study was done on a field in north India from 2019 to 2021 in six different seasons, and the nutrient profile of the crops with respect to macroelements (S, K, Na, P, Ca, Mg) and microelements (B, Cu, Fe, Mn, Zn, Al) was compared. METHODS: Macro and microelements were analyzed by Element analyzer and ICP-OES in both types of farming systems. The content of macro, as well as microelements, was found to be significantly higher in all the organically produced crops as compared to the conventionally grown crops. RESULTS: Significant differences were observed in the macroelement content of organic onion (P900 mg/kg, K-2000mg/kg) and organic pea (K 2250 mg/kg) as compared to the content of conventionally grown onion (P-756 mg/kg, K- 1550 mg/kg) and pea (K-2000 mg/kg). Similarly, microelement content in the organic sesame (Fe - 3.12 mg/kg), organic millet (Fe- 2.19 mg/kg), and organic potato (Zn-200 mg/kg) was higher as compared to conventionally grown sesame (Fe 2.05 mg/kg), millet (Fe- 1.56 mg/kg) and potato (Zn 167 mg/kg). CONCLUSION: This investigation concludes that crops with optimum nutritional content can be produced through organic farming with minimum input and maximum production.

15.
Plant Dis ; 108(6): 1833-1841, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277652

ABSTRACT

Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris [Frank] Donk) is an aggressive soilborne pathogen with a wide host range that survives saprophytically between crops, presenting a challenge for organic vegetable farmers who lack effective management tools. A 2-year field experiment was conducted at two organic farms to compare anaerobic soil disinfestation (ASD) and worm-cured compost (vermicompost) to manage bottom rot caused by R. solani subspecies AG1-IB in field-grown organic lettuce (Lactuca sativa). At each farm, four replicate plots of seven treatments were arranged in a randomized complete block design. Randomization was restricted by grouping treatments to evaluate ASD, and treatments to evaluate vermicompost in starter plugs. ASD experiment treatments were three different ASD carbon sources that are commonly used and widely available to local farmers in Vermont: compost, cover crop residues, and poultry manure fertilizer, as well as a tarped control. Vermicompost experimental treatments were vermicompost compared with two types of controls: a commercial biocontrol product (RootShield PLUS + G), and unamended (untarped control). This study demonstrated that the ASD method is achievable in a field setting on Vermont farms. However, neither ASD nor vermicompost produced significant disease suppression or resulted in higher marketable yields than standard growing practices. Given the laborious nature of ASD, it is likely more appropriate in a greenhouse setting with high-value crops that could especially benefit from being grown in plastic tarped beds (e.g., tomatoes and strawberries). This study is the first known attempt of field-implemented ASD for soil pathogen control in the northeastern United States.


Subject(s)
Composting , Lactuca , Plant Diseases , Rhizoctonia , Soil , Lactuca/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Composting/methods , Soil/chemistry , Rhizoctonia/physiology , Soil Microbiology , Anaerobiosis , Organic Agriculture/methods
16.
J Hazard Mater ; 465: 133118, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38101017

ABSTRACT

Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Oryza/chemistry , Carbon/analysis , Bacteria , Acidobacteria , Proteobacteria , Edible Grain/chemistry , Phosphorus/analysis , Nitrogen/analysis , China , Soil Pollutants/analysis
17.
Heliyon ; 9(12): e23110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076110

ABSTRACT

Improved fertilizer management, with a combination of organic and inorganic inputs, has the potential to enhance rice yield while maintaining soil health. However, studies on the effects of broadcast prilled urea (PU) and urea deep placement (UDP) applied in combination with organic inputs (poultry litter [PL] and vermicompost [VC]), as integrated plant nutrition systems (IPNSs), on rice yields and nitrogen use efficiency (NUE) under alternate wetting and drying (AWD) irrigation are limited. We conducted field experiments during the dry and wet seasons of 2018, 2019, and 2020 to investigate the effects of fertilizer treatments, including control (no nitrogen), UDP, PU, and IPNSs (PU + VC, PU + PL, and UDP + PL) on rice yield and NUE under two irrigation regimes - AWD and continuous flooding (CF). The results revealed that fertilizer treatment and irrigation regime had significant (p < 0.05) interaction effects on rice yield and the agronomic efficiency of N (AEN) during the dry season. UDP significantly (p < 0.05) boosted rice yield, total dry matter (TDM), and NUE as compared to broadcast PU in both wet and dry seasons. Similarly, the IPNS treatment of UDP with PL significantly (p < 0.05) boosted rice yield, TDM, and NUE in comparison to broadcast PU. Under AWD irrigation, UDP alone produced higher rice yields than other treatments, while UDP, and UDP with PL produced similar yields under CF irrigation. During the dry season, AWD irrigation significantly (p < 0.05) increased rice yield, TDM, and AEN when compared to CF conditions, but during the wet season, AWD irrigation demonstrated a rice yield and NUE equivalent to CF. This research implies that using a UDP alone or in combination with PL as an IPNS could be a good way to boost crop productivity while also maintaining soil fertility.

18.
Chem Biodivers ; 20(11): e202301074, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37779102

ABSTRACT

Leucojum aestivum L. contains galanthamine and lycorine, which are two pharmaceutically valuable alkaloids. Vermicompost (VC), an organic waste product created by earthworms enhances soil quality and can improve the medicinal quality of the plant that is crucial to the pharmaceutical industry. The aim of this study was to determine the effects of four different VC concentrations (5 %, 10 %, 25 %, and 50 %) on L. aestivum growth parameters, alkaloid levels (galanthamine and lycorine), total phenol-flavonoid content, free radical scavenging potential, and defense enzyme activities (SOD and CAT) compared to control (no VC). The width, length, and fresh weight of the leaves were improved by 10 % VC treatment. The highest total phenolic content was found in the bulbs and leaves treated with 50 % VC. HPLC-DAD analysis of alkaloids showed that 10 % and 50 % VC treatments contained the most galanthamine in the bulb and leaf extracts, respectively. The application of 25 % VC was the most efficient in terms of lycorine content in both extracts. CAT activity was elevated at 10 %, 25 %, and 50 % VC. Based on the growth performance and galanthamine content of the bulbs and leaves, it can be concluded that a 10 % VC application was the most effective in the cultivation of L. aestivum.


Subject(s)
Alkaloids , Liliaceae , Galantamine/pharmacology , Alkaloids/pharmacology , Alkaloids/analysis , Phenols/pharmacology , Free Radicals
19.
Front Plant Sci ; 14: 1238663, 2023.
Article in English | MEDLINE | ID: mdl-37799545

ABSTRACT

Recently, biochar (B) and vermicompost (V) have been widely used as amendments to improve crop productivity and soil quality. However, the ameliorative effects of biochar and vermicompost on the continuous cropping of pepper under open-air conditions, particularly in the karst areas of southwestern China, remain unclear. A field experiment was conducted to study the effects of biochar and vermicompost application, alone or in combination, on the yield, quality, nutrient accumulation, fertilizer utilization, and economic benefits of continuous pepper cropping from 2021 to 2022. The experiment included six treatments: CK (no fertilizer), TF (traditional fertilization of local farmers), TFB (TF combined with biochar of 3000 kg·ha-1), TFV (TF combined with vermicompost of 3000 kg·ha-1), TFBV1 (TF combined with biochar of 1500 kg·ha-1 and vermicompost of 1500 kg·ha-1), and TFBV2 (TF combined with biochar of 3000 kg·ha-1 and vermicompost of 3000 kg·ha-1). Compared with the TF treatment, biochar and vermicompost application alone or in combination increased the yield of fresh pod pepper by 24.38-50.03% and 31.61-88.92% in 2021 and 2022, respectively, whereas the yield of dry pod pepper increased by 14.69-40.63% and 21.44-73.29% in 2021 and 2022, respectively. The application of biochar and vermicompost reduced the nitrate content and increased the vitamin C (VC) and soluble sugar content of the fruits, which is beneficial for improving their quality. Biochar and vermicompost application alone or in combination not only increased nutrient uptake but also significantly improved agronomic efficiency (AE) and recovery efficiency (RE). In addition, although the application of biochar or vermicompost increased production costs, the increase in yield improved net income (ranging from 0.77 to 22.34% in 2021 and 8.82 to 59.96% in 2022), particularly in the TFBV2 treatment. In conclusion, the use of biochar and vermicompost amendments had a positive effect on the productivity and economic benefits of continuous pepper cropping, and the co-application of biochar and vermicompost could be an effective nutrient management strategy for the continuous cropping of pepper in the karst mountain areas of southwest China.

20.
Article in English | MEDLINE | ID: mdl-37864696

ABSTRACT

Farming, food processing, animal husbandry and other agro-based activities contribute to global environmental degradation by producing millions of tons of organic and inorganic solid waste. In terms of sustainable agriculture, agricultural waste management and conversion into useful products are essential. In addition, plants are facing various kinds of biotic stress, which ultimately affects their defense system. Altered defense systems in plants ultimately lead to the death of plants and a reduction in crop production. The present study is designed to keep the abovementioned fact in mind, which mainly focuses on the reuse of agricultural waste and its application to the antioxidant potential and structural components of tomato plants during nematode stress. In the present study, neem leaves were collected and mixed with cattle dung for the preparation of vermicompost. Then, tomato seeds were pre-treated with vermicompost extract before being germinated in earthen pots. After germination, they were transplanted to separate pots and inoculated with freshly hatched juveniles of Meloidogyne incognita. The experiments were conducted for 10 days under glass house conditions, and after that, plants were harvested and various physiological (antioxidant capacity, percent electrolyte leakage) and structural markers (carbohydrate content, Fourier transform infrared spectroscopy) were analyzed. Results revealed that all physico-chemical properties make vermicompost superior as compared to soil and pre-compost material. Further, nematode stress leads to altered physiological and structural markers as compared to uninfected seedlings. However, treatment with vermicompost significantly increases carbohydrate content and antioxidative capacity in a concentration dependent manner. In addition, electrolyte leakage was found to be decrease with an increase in the concentration of vermicompost. All these findings conclude that vermicompost has strong potential to limit the damage caused by nematodes and boost the antioxidant potential of the host plants. Further, this study provides strong evidence for using vermicompost as an eco-friendly alternative to chemical nematicides and a potential strategy for agricultural waste management. This is the first study in which the tomato plant's structural and physiological markers were assessed during nematode stress after being supplemented with vermicompost under glass house conditions for an initial 10 days of nematode exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...