Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Article in English | MEDLINE | ID: mdl-38963618

ABSTRACT

Riverbed sediments have been identified as temporary and long-term accumulation sites for microplastic particles (MPs), but the relocation and retention mechanisms in riverbeds still need to be better understood. In this study, we investigated the depth-specific occurrence and distribution (abundance, type, and size) of MPs in river sediments down to a depth of 100 cm, which had not been previously investigated in riverbeds. In four sediment freeze cores taken for the Main River (Germany), MPs (≥ 100 µm) were detected using two complementary analytical approaches (spectroscopy and thermoanalytical) over the entire depth with an average of 21.7 ± 21.4 MP/kg or 31.5 ± 28.0 mg/kg. Three vertical trends for MP abundance could be derived, fairly constant in top layers (0-|30 cm), a decrease in middle layers (30-60 cm), and a strong increase in deep layers (60-100 cm). The dominant polymer types were polyethylene (PE), polypropylene (PP), and polystyrene (PS). Polyethylene terephthalate (PET) and PP were also found in deep layers, albeit with the youngest age of earliest possible occurrence (EPO age of 1973 and 1954). The fraction of smaller-sized MPs (100-500 µm) increased with depth in shallow layers, but the largest MPs (> 1 mm) were detected in deep layers. Based on these findings, we elucidate the relationship between the depth-specific MP distribution and the prevailing processes of MP retention and sediment dynamics in the riverbed. We propose some implications and offer an initial conceptual approach, suggesting the use of microplastics as a potential environmental process tracer for driving riverbed sediment dynamics.

2.
Front Microbiol ; 15: 1384435, 2024.
Article in English | MEDLINE | ID: mdl-38989017

ABSTRACT

Introduction: Global warming affects air and water temperatures, which impacts the phenology of lakes and aquatic ecosystems. These changes are most noticeable during winter, when the potentially toxic Planktothrix rubescens forms its inoculum for annual blooms. Mostly, research has been conducted on alpine lakes, where blooms have persisted for decades, while a few have focused on temperate lakes. Our study aimed to determine the factors influencing the dynamics of the development of P. rubescens in temperate lakes where blooms occasionally occur, with a particular emphasis on the role of ice phenology. Methods: We investigated the vertical distribution of P. rubescens in an annual cycle in three temperate lakes. Samples were collected monthly in the winter and biweekly during the vegetative seasons. Overall, 434 samples were collected and analyzed according to biological and chemical parameters. Physical parameters were measured in situ. Results: The vegetation seasons in temperate lakes showed a similar development pattern in the P. rubescens population as that in alpine lakes. Our results also show the influence of physical and chemical factors on the vertical distribution of this cyanobacterium. These results revealed the significant impact of P. rubescens filaments on phytoplankton biodiversity and biomass. Our data show the role of ice phenology in the establishment of the winter inoculum of P. rubescens and its further mass development until its disappearance in autumn. Conclusion: A climate-zone-independent pattern of P. rubescens blooms was observed during the vegetation periods. The population of P. rubescens was more influenced by physical factors than by the availability of dissolved nutrients in the water. Despite the same etiology, global warming has been shown to cause different responses in aquatic ecosystems, which affect the different nature of P. rubescens appearances. We associated blooms in temperate lakes, in contrast to alpine lakes, mainly with the presence of ice cover during severe winters, when the species establishes its inoculum. Hence, blooms in temperate lakes occur at different time intervals. Therefore, the dynamics of periodic blooms of P. rubescens in temperate lakes provide novel knowledge to the case study and a counterpoint to permanent blooms found in deep alpine lakes.

3.
Heliyon ; 10(12): e32920, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948041

ABSTRACT

The historical sedimentary and evolutionary characteristics of persistent organic pollutants and endocrine disruptors in typical regions of the Three Gorges Reservoir are scarcely studied. Herein, the 96-year data on contaminated sediment history were reconstructed using Caesium 137 isotope dating. Polychlorinated biphenyl concentrations in the involved sediment cores ranged from non-detected (ND) to 11.39 ng/g. The concentrations of polycyclic aromatic hydrocarbons ranged from ND to 2075.20 ng/g and peaked in the 1970s owing to natural, agricultural and human activities. Further, phthalate esters (PAEs) and heavy metals (HMs) were detected at concentrations ranging from ND to 589.2 ng/g and 12.10-93.67 µg/g, respectively, with highest values recorded in the 1980s owing to rapid industrialisation and insufficient management during China's early reform and development stages. PAE and HM concentrations have increased in recent years, suggesting the need to focus on industrial and agricultural activities that have caused this impact. Although current pollutant concentrations in sediments do not pose a risk to the aquatic ecosystem, they should be continuously monitored.

4.
Sci Total Environ ; 942: 173808, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848912

ABSTRACT

High concentrations of microplastic (MP) particles have been reported in the Arctic Ocean. However, studies on the high-resolution lateral and vertical transport of MPs from the European waters to the Arctic are still scarce. Here, we provide information about the concentrations and compositions of MPs in surface, subsurface, and deeper waters (< 1 m, ∼ 4 m, and 17-1679 m) collected at 18 stations on six transects along the Norwegian Coastal Current (NCC) using an improved Neuston Catamaran, the COntinuos MicroPlastic Automatic Sampling System (COMPASS), and in situ pumps, respectively. FTIR microscopy and spectroscopy were applied to measure MP concentration, polymer composition, and size distribution. Results indicate that the concentrations of small microplastics (SMPs, <300 µm) varied considerably (0-1240 MP m-3) within the water column, with significantly higher concentrations in the surface (189 MP m-3) and subsurface (38 MP m-3) waters compared to deeper waters (16 MP m-3). Furthermore, the average concentration of SMPs in surface water samples was four orders of magnitude higher than the abundance of large microplastics (LMPs, >300 µm), and overall, SMPs <50 µm account for >80 % of all detected MPs. However, no statistically significant geographical patterns were observed in SMP concentrations in surface/subsurface seawaters between the six sampling transects, suggesting a relatively homogeneous horizontal distribution of SMPs in the upper ocean within the NCC/Norwegian Atlantic Current (NwAC) interface. The Lagrangian particle dispersal simulation model further enabled us to assess the large-scale transport of MPs from the Northern European waters to the Arctic.

5.
Sci Total Environ ; 944: 173961, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38876338

ABSTRACT

The sulfur (S) cycle is an important biogeochemical cycle with profound implications for both cellular- and ecosystem-level processes by diverse microorganisms. Mangrove sediments are a hotspot of biogeochemical cycling, especially for the S cycle with high concentrations of S compounds. Previous studies have mainly focused on some specific inorganic S cycling processes without paying specific attention to the overall S-cycling communities and processes as well as organic S metabolism. In this study, we comprehensively analyzed the distribution, ecological network and assembly mechanisms of S cycling microbial communities and their changes with sediment depths using metagenome sequencing data. The results showed that the abundance of gene families involved in sulfur oxidation, assimilatory sulfate reduction, and dimethylsulfoniopropionate (DMSP) cleavage and demethylation decreased with sediment depths, while those involved in S reduction and dimethyl sulfide (DMS) transformation showed an opposite trend. Specifically, glpE, responsible for converting S2O32- to SO32-, showed the highest abundance in the surface sediment and decreased with sediment depths; in contrast, high abundances of dmsA, responsible for converting dimethyl sulfoxide (DMSO) to DMS, were identified and increased with sediment depths. We identified Pseudomonas and Streptomyces as the main S-cycling microorganisms, while Thermococcus could play an import role in microbial network connections in the S-cycling microbial community. Our statistical analysis showed that both taxonomical and functional compositions were generally shaped by stochastic processes, while the functional composition of organic S metabolism showed a transition from stochastic to deterministic processes. This study provides a novel perspective of diversity distribution of S-cycling functions and taxa as well as their potential assembly mechanisms, which has important implications for maintaining mangrove ecosystem functions.


Subject(s)
Geologic Sediments , Microbiota , Sulfur , Wetlands , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Sulfur/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics
6.
Microorganisms ; 12(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930560

ABSTRACT

Bacterial diversity and its distribution characteristics in sediments are critical to understanding and revealing biogeochemical cycles in sediments. However, little is known about the relationship between biogeochemistry processes and vertical spatial distribution of bacterial communities in sandy sediments. In this study, we used fluorescence quantitative PCR, high-throughput sequencing technology and statistical analysis to explore the vertical distribution pattern of bacterial community diversity and its influencing factors in sandy sediments of the Yangtze River Basin. The aim is to enrich the understanding of the ecological characteristics and functions of bacteria in river ecosystems. The results showed that both sediment bacterial abundance and diversity showed a gradual decrease from surface to bottom in the vertical distribution. The main environmental factors that influenced the bacterial distribution pattern were pore water dissolved oxygen (DO), total nitrogen (TN) concentration and sediment nitrogen (N) content. The dominant bacterial species, Massilia and Flavobacterium, are suitable for growth and reproduction in high oxygen and nutrient-richer environments, while Limnobacter prefers low oxygen or anaerobic conditions. The vertical distribution pattern of bacteria and its influencing factors in river sandy sediment found in this study differ from the results in mud sediment, which may be related to the larger granular gap between sandy sediment and the lower content of organic matter. The findings of this study further our understanding of the distribution patterns and ecological preferences of microbial communities in river sediments, providing insights into how these communities may adapt to varying environmental conditions.

7.
Environ Sci Pollut Res Int ; 31(24): 34922-34935, 2024 May.
Article in English | MEDLINE | ID: mdl-38713355

ABSTRACT

Metal(loid)s pose a significant hazard due to inherent toxicity. Individuals are particularly exposed to metal(loid)s in soil through direct or indirect contact. Identifying metal(loid) sources in soil is required for exposure mitigation to anthropogenic metal(loid)s, while metal(loid)s are natural constitutes of soil. Metal(loid) concentrations and Pb isotopes were determined in residential soil profiles impacted by a Zn smelter to distinguish the anthropogenic effect from natural levels. One hundred sixty-nine core soil samples were collected from depths down to 5.5 m below ground level at 19 sites and were divided into Zn-Cd-As- and As-contaminated groups based on the worrisome level (WL) of soil contamination. The Zn-Cd-As-contaminated group (n = 62) was observed at depths < 1 m, showed high Zn levels (mean of 1168 mg/kg) and Cd and As frequently exceeding WLs, and had low 206Pb/207Pb ratios close to the Zn smelter. In contrast, the As-contaminated group (n = 96) was observed at depths > 1 m, did not have other metals exceeding WLs, and showed a wide range of 206Pb/207Pb ratios far away from the Zn smelter. The results indicated that the pollution sources of Zn-Cd-As- and As-contaminated soils were fugitive dust emissions from smelter stacks and geology, respectively. The metal(loid)s in host rock set geochemical baselines in soil profiles, while smelting activities affected the upper layers over 50 years. This study demonstrated the effectiveness of utilizing the vertical distribution of metal(loid) concentrations and Pb isotopes in soil profiles for distinguishing between anthropogenic and geogenic origins, in combination with baseline assessment.


Subject(s)
Environmental Monitoring , Soil Pollutants , Soil , Zinc , Soil Pollutants/analysis , Zinc/analysis , Soil/chemistry , Republic of Korea , Metals/analysis , Metallurgy
8.
Ecotoxicol Environ Saf ; 280: 116476, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38820822

ABSTRACT

Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.


Subject(s)
Metals, Heavy , Soil Microbiology , Soil Pollutants , Soil , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil Pollutants/analysis , Soil Pollutants/toxicity , China , Soil/chemistry , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , RNA, Ribosomal, 16S , Waste Disposal Facilities , Environmental Monitoring , Proteobacteria , Actinobacteria/genetics , Microbiota/drug effects , Chloroflexi/drug effects , Chloroflexi/genetics
9.
Front Plant Sci ; 15: 1381798, 2024.
Article in English | MEDLINE | ID: mdl-38584942

ABSTRACT

The vertical distribution of phytoplankton plays a crucial role in shaping the dynamics and structure of aquatic communities. In highly dynamic reservoir systems, water level fluctuations significantly affect the physiochemical conditions and the phytoplankton community. However, the specific effects on the vertical characteristics of phytoplankton between the mainstream and the tributary bay of the reservoir remain unstudied. This study investigated the vertical aspects of phytoplankton density, biomass, α and ß diversity through monthly sampling over two years in the mainstream (Chang Jiang, CJ) and a tributary bay (Xiang Xi, XX) of the Three Gorges Reservoir in China. Phytoplankton density and biomass were significantly higher in XX, indicating an increased risk of algal blooms in the tributary. The phytoplankton community in CJ showed more stable species-environment relationships, a lower Shannon index and a higher evenness index, suggesting a relatively simple structure and a more uniform distribution of phytoplankton among different water layers. Conversely, XX showed greater differences between water layers (higher ß diversity), with significant negative correlations with water level and positive correlations with DO difference, dissolved silica (DSi) difference, and stratification. Peak phytoplankton density and biomass, as well as high ß diversity in XX, occurred during periods of decreased water levels with strong stratification in spring and summer. A structural equation model complemented by path analysis revealed that a decrease in water level could increase ß diversity either directly through internal processes with extended residence time or indirectly by modifying stratification and the vertical distribution of DSi in XX. Therefore, a proposed water quality management strategy for XX was to increase the water level or reduce ß diversity by implementing artificial mixing during stratification periods. Overall, this study lies in its comprehensive investigation of the vertical characteristics of the phytoplankton community in both the mainstream and the tributary bay of the Three Gorges Reservoir, elucidating the significant impact of water level fluctuations and providing insights for targeted water quality management strategies in the tributary bay to mitigate potential ecological impacts.

10.
Sci Total Environ ; 927: 172256, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583613

ABSTRACT

The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.


Subject(s)
Environmental Monitoring , Soil Microbiology , Soil Pollutants , Soil , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Soil Pollutants/analysis , China , Anaerobiosis , Soil/chemistry , Aerobiosis
11.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38643575

ABSTRACT

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Polyethylene , Polypropylenes , Water Pollutants, Chemical , Polypropylenes/chemistry , Polyethylene/chemistry , Polyethylene/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Microplastics/toxicity , Microplastics/metabolism , Fresh Water/microbiology , Estuaries
12.
J Nematol ; 56(1): 20240006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38510970

ABSTRACT

Control of plant-parasitic nematodes (PPNs) on golf putting greens with nematicides is dependent on the seasonal occurrence and depth distribution of target PPN populations. This study aimed to determine if plant-parasitic nematode populations on golf course putting greens in Missouri and Indiana peaked at a targetable depth at a specific time in the year, focusing primarily on lance (Hoplolaimus spp.) and root-knot (Meloidogyne spp.) nematodes. To elucidate species diversity in the region, rDNA from a subset of lance and root-knot nematodes was sequenced and analyzed, with additional micromorphology of a lance nematode assessed in scanning electron micrographs (SEM). Soil samples were taken to a depth of 25 cm and stratified into 5 cm increments during April, June, August and October at seven sites across Missouri, three in the Kansas City metro of Kansas in 2021 and in ten sites across Indiana in 2022. Samples were stratified in five-centimeter increments and aggregated for a total of 100 cm3 of soil at each depth for each sampling. Samples were processed using a semi-automatic elutriator followed by the sucrose-flotation method, and populations were counted using a hemocytometer and recorded. For molecular characterization, rDNA was extracted and analyzed from 31 individual lance nematodes from one site in Missouri and eight sites in Indiana, and 13 root-knot nematodes from nine sites across Indiana. A significant interaction occurred between sampling month and depth for lance and ring nematodes Missouri/KS, with both PPN populations peaking at the 0-5 cm depth during October, which is well after most targeted nematicide applications are applied. Ring nematodes in Indiana did not follow this trend and were most abundant in August at a depth of 0-5 cm. No significant interaction between depth and month occurred for lance or root-knot nematodes in Indiana, or root-knot nematodes in Missouri/KS. Hoplolaimus stephanus and H. magnistylus were the lance species identified on golf greens, and Meloidogyne naasi, M. graminicola and M. marylandi were the root-knot species identified. Scanning-electron micrographs confirmed morphological characteristics unique to H. stephanus.

13.
Environ Pollut ; 348: 123893, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556146

ABSTRACT

Below the boundary layer, the air pollutants have been confirmed to present the decreasing trend with the height in most situaitons. However, the disperiosn rate of air pollutants in the vertical profile is rarely investigated in detail, especially through in-situ measurement. With this consideration, we employed an unmanned aerial vehicle equipped with portable monitoring equipments to scrutinize the vertical distribution of PM2.5. Based on the original data, we found that PM2.5 concentration decreases gradually with altitude below the boundary layer and demonstrated an obvious linear correlation. Therefore, the vertical distribution of PM2.5 was quantified by representing the distribution of PM2.5 with the slope of PM2.5 vertical distribution. We used backward trajectories to reveal the causes of outliers (PM2.5 increasing with altitude), and found that PM2.5 in the high altitude came from the southwest. Besides, the relationship between the vertical distribution of PM2.5 and various meteorological factors was investigated using stepwise regression analysis. The results show that the four meteorological factors most strongly correlated with the slope values are: (a) the difference in relative humidity between the ground and the air; (b) the difference in temperature between the ground and the air; (c) the height of the boundary layer; and (d) the wind speed. The slope values increase with increasing the difference in relative humidity between ground and air and the difference in temperature between the ground and the air, and decrease with increasing boundary layer height and wind speed. According to the Random Forest calculations, the ground-to-air relative humidity difference is the most important at 0.718; the wind speed is the least important at 0.053; and the ground-to-air temperature difference and boundary layer height are 0.140 and 0.088, respectively.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Unmanned Aerial Devices , Environmental Monitoring/methods , Air Pollutants/analysis , Wind , Air Pollution/analysis , China
14.
Microorganisms ; 12(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543525

ABSTRACT

Free-living amoebae (FLA) are widely distributed protozoa in both natural and artificial environments such as drinking water. In addition to the ability of all FLA to transport various pathogenic microorganisms, certain species, such as Acanthamoeba spp. or Balamuthia mandrillaris, have intrinsic pathogenic abilities and cause severe cerebral infections. Previous work has shown an enrichment of FLA cysts in biofilm developed in upper levels of Drinking Water Storage Towers (DWSTs), suggesting that differences in densities of FLA cysts may play a role in their unequal distribution in the water column. To evaluate this hypothesis, a model of a water column was created for this study and used to analyze the vertical distribution of cysts of the FLA Acanthamoeba castellanii, Vermamoeba vermiformis, and Balamuthia mandrillaris from 0 to 23 weeks. Interestingly, our data showed that the cysts of both A. castellanii and V. vermiformis were enriched in upper water levels during their aging. However, B. mandrillaris cysts were equally distributed in the water column during the entire study. These results show that, in addition to the role of water level variation in the DWST, some FLA cysts can become less dense during their aging, which contributes to their enrichment in upper water and therefore biofilm levels.

15.
Ecology ; 105(5): e4285, 2024 May.
Article in English | MEDLINE | ID: mdl-38523437

ABSTRACT

Although herbivores are well known to incur positive density-dependent damage and mortality, thereby likely shaping plant community assembly, the response of belowground root feeders to changes in plant density has seldom been addressed. Locally rare plant species (with lower plant biomass per area) are often smaller with shallower roots than common species (with higher plant biomass per area) in competition-intensive grasslands. Likewise, root feeders are often distributed in the upper soil layers. We hypothesized, therefore, that root feeders would incur negative density (biomass)-dependent damage across plant species. To test this hypothesis, we investigated the diversity and abundance of plant and root feeder species in an alpine meadow and determined the diet of the root feeders using metabarcoding. Across all species, root feeder load decreased with increasing aboveground plant biomass, root biomass, and total plant biomass per area, indicating a negative density dependence of damage across plant species. Aboveground plant biomass per area increased with increasing individual plant biomass and root depth per area across species, suggesting that rare plant species were smaller in size and had shallower root systems compared to common plant species. Both root biomass per area and root feeder biomass per area decreased with soil depth, but the root feeder biomass decreased disproportionately faster compared to root biomass with increasing root depth. Root feeder load decreased with increasing root depth but was not correlated with the feeding preference of root feeder species. Moreover, the prediction derived from a random process incorporating vertical distributions of root biomass and root feeder biomass significantly accounted for interspecific variation in root feeder load. In conclusion, the data indicate that root feeders incur negative density-dependent damage across plant species. On this basis, we suggest that manipulative experiments should be conducted to determine the effect of the negative density-dependent damage on plant community structure and that different types of plant-animal interactions should be concurrently examined to fully understand the effect of plant density on overall herbivore damage across plant species.


Subject(s)
Grassland , Herbivory , Insecta , Plant Roots , Animals , Plant Roots/physiology , Insecta/physiology , Population Density , Plants/classification , Biomass , Species Specificity
16.
Open Life Sci ; 19(1): 20220807, 2024.
Article in English | MEDLINE | ID: mdl-38299010

ABSTRACT

Branches covering (BC) is a way to reuse the pruned branches and save the cost of ground cloth. This study investigated the effects of BC and ground-cloth covering on the soil microcosm environment by measuring the chemical properties and microbial communities at different soil depths for 6 years. The results revealed that BC significantly improved soil chemical properties, increased the abundance of bacterial microbial communities and the diversity and homogeneity of bacteria and fungi, while decreased the abundance of fungal microbial communities. There was a threshold value for the regulation of microbial communities by BC, which decreased the high-abundance communities (Proteobacteria, Ascomycota, etc.) and increased the low-abundance communities (Acidobacteriota, Basidiomycota, etc.). Fungi were more sensitive to BC than bacteria. The stability and homogeneity of microorganisms were stronger in the 15-25 cm soil layer. The bacterial phyla were dominated by Proteobacteria, with the top 10 phyla accounting for more than 80% of the relative abundance; the genera were dominated by MND1, with the top 10 genera accounting for about 10%. The fungal phyla were dominated by Ascomycota, with the top 10 phyla accounting for 50-90%; the genera were dominated by unidentified Pyronemataceae sp., with the top 10 genera accounting for 30-60%. The phyla that differed significantly between treatments were mainly Proteobacteria, Ascomycota, Acidobacteriota, and Basidiomycota. In addition, metabolism was the predominant function in bacteria, while Saprotroph was the predominant function in fungi. Bacteroidota correlated strongly with soil chemical properties and bacterial functions, while Chytridiomycota correlated strongly with soil chemical properties and Pathogen-Saprotroph-Symbiotroph. In conclusion, BC can improve soil nutrient content and optimize microbial community structure and function. Through initially assessing the effects of BC on soil nutrients and microorganisms in pear orchard rows, this study provides a reference for excavating key microorganisms and updating the soil row management model.

17.
Article in English | MEDLINE | ID: mdl-38366322

ABSTRACT

This study investigates the vertical distribution of pollutants emitted from coal yards using unmanned aerial vehicles (UAVs). Vertical concentration measurements of black carbon (BC) and particulate matter (PM) in a range of 1 m to 100 m above ground level (AGL) in the central coal yard showed clear spatial patterns and gradients of these pollutants. In addition, measurements were taken at specific heights (1 m, 30 m AGL, and 60 m AGL) at seven locations approximately 3 km from the yard. Thirteen measurements were carried out during the non-heating period under similar weather conditions. The measured BC concentrations decreased significantly with increasing altitude, with ground-level concentrations reaching 1.88 ± 0.61 µg/m3 and decreasing by over 46% at 80 m AGL. Similarly, PM10 concentrations at 60 m AGL decreased by 21.7%, with values of 25.99 ± 9.24 µg/m3 measured near the ground level and 16.52 ± 8.31 µg/m3 at 60 m AGL. The maximum coal particle pollution from the coal depot ranges from 500 to 1,000 m. The study showed a significant decrease in BC concentrations with height above the coal yard surface. Concentrations of PM10 and PM10-TSP showed a complex distribution influenced by local emissions and long-range particle transport. Meteorological factors, especially wind speed and direction, significantly influenced the pollutant dispersion. In addition, higher pollutant concentrations were measured during dry periods than after rainfall. The findings of this study contribute to a better understanding of the dispersion patterns and potential impacts of coal dust, enabling the implementation of targeted mitigation strategies and improved pollution control measures.

18.
Front Plant Sci ; 15: 1335524, 2024.
Article in English | MEDLINE | ID: mdl-38348271

ABSTRACT

Introduction: Canopy species need to shift their ecological adaptation to improve light and water resources utilization, and the study of intraspecific variations in plant leaf functional traits based at individual scale is of great significance for evaluating plant adaptability to climate change. Methods: In this study, we evaluate how leaf functional traits of giant trees relate to spatial niche specialization along a vertical gradient. We sampled the tropical flagship species of Parashorea chinensis around 60 meters tall and divided their crowns into three vertical layers. Fourteen key leaf functional traits including leaf morphology, photosynthetic, hydraulic and chemical physiology were measured at each canopy layer to investigate the intraspecific variation of leaf traits and the interrelationships between different functional traits. Additionally, due to the potential impact of different measurement methods (in-situ and ex-situ branch) on photosynthetic physiological parameters, we also compared the effects of these two gas exchange measurements. Results and discussion: In-situ measurements revealed that most leaf functional traits of individual-to-individual P. chinensis varied significantly at different canopy heights. Leaf hydraulic traits such as midday leaf water potential (MWP) and leaf osmotic potential (OP) were insignificantly correlated with leaf photosynthetic physiological traits such as maximal net assimilation rate per mass (A mass). In addition, great discrepancies were found between in-situ and ex-situ measurements of photosynthetic parameters. The ex-situ measurements caused a decrease by 53.63%, 27.86%, and 38.05% in A mass, and a decrease of 50.00%, 19.21%, and 27.90% in light saturation point compared to the in-situ measurements. These findings provided insights into our understanding of the response mechanisms of P. chinensis to micro-habitat in Xishuangbanna tropical seasonal rainforests and the fine scale adaption of different resultant of decoupled traits, which have implications for understanding ecological adaption strategies of P. chinensis under environmental changes.

19.
Sci Total Environ ; 921: 171168, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401734

ABSTRACT

Fine roots are the primary organ of tree species in water and nutrient acquisition, and are the major contributor of forest soil organic carbon (C). However, it remains largely unknown how fine root growth dynamics and vertical distribution respond to long-term nitrogen (N) enrichment, which prevents us from accurately evaluating forest C sequestration potential under N deposition. Here, we investigated the effects of nine-year N addition (0 and 10 g N m-2 year-1) on fine root nutrients, biomass, production, turnover rate and vertical distribution in three soil layers (0-10, 10-20 and 20-40 cm) of a Mongolian pine (Pinus sylvestris var. mongolica) plantation in the Keerqin Sandy Lands, Northeast China. We found that soil inorganic N was increased and Olsen-P was decreased by N addition. N addition increased fine root N, C:P and N:P ratios, but reduced fine root P and C:N ratio across all soil layers. N addition reduced fine root biomass in 0-10 cm soil layer but increased it in 20-40 cm soil layer. N addition accelerated fine root turnover rate in 0-10 cm soil layer, and increased fine root necromass across all soil layers. Moreover, N addition significantly enhanced biomass of ectomycorrhizal extraradical hyphae in the 0-10 cm soil layer. Redundancy analysis showed that variations of fine root traits were well explained by soil NO3--N in 0-10 and 10-20 cm soil layers, and by soil NH4+-N and Olsen-P in 20-40 cm soil layer. Collectively, our results highlight the shift from N limitation to P limitation of Mongolian pine plantations under long-term N addition, and suggest that changes in fine root growth and vertical distribution induced by N addition could accelerate belowground C allocation in Mongolian pine plantations.


Subject(s)
Pinus , Soil , Nitrogen/analysis , Carbon/analysis , Forests , Biomass , Nutrients , China , Plant Roots/chemistry
20.
Sci Total Environ ; 917: 170485, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38296080

ABSTRACT

Understanding aerosol vertical distribution is of great importance to climate change and atmospheric chemistry, but there is a dearth of systematical analysis for aerosol vertical distribution amid rapid emission decline after 2013 in China. Here, the GEOS-Chem model and multiple-sourced observations were applied to quantify the changes of aerosol vertical distributions in response to clean air actions. In 2013-2020, the MODIS aerosol optical depth (AOD) presented extensive decreasing trends by -7.9 %/yr to -4.2 %/yr in summer and -6.1 %/yr to -5.8 %/yr in winter in polluted regions. Vertically, the aerosol extinction coefficient (AEC) from CALIPSO decreased by -8.0 %/yr to -5.5 %/yr below ~1 km, but the trends weakened significantly with increasing altitude. Compared with available measurements, the model can reasonably reproduce 2013-2020 trends and seasonality in AOD and vertical AEC. Model simulations confirm that emission reduction was the dominant driver of the 2013-2020 decline in AOD, while the effect of meteorology varied seasonally, with contributions ranging from -2 % to 13 % in summer and -67 % to -2 % in winter. Vertical distributions of emission-driven AEC trends strongly depended on emission reductions, local planetary boundary layer height, and relative humidity. For aerosol components, sulfate accounted for ~50 % of the AOD decline during summer, followed by ammonium and organic aerosol, while in winter the contribution of organic aerosol doubled (24 %-35 %), and nitrate exhibited a weak increasing trend. Chemical production and meteorological conditions (e.g., relative humidity) primarily drove the nitrate contribution, but emission reduction and hygroscopicity were decisive for other components. This work provides an integrated observational and modeling effort to better understand rapid changes in aerosol vertical distribution over China.

SELECTION OF CITATIONS
SEARCH DETAIL
...