Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Mol Pharm ; 20(6): 3049-3059, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37155928

ABSTRACT

Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.


Subject(s)
Antineoplastic Agents , Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Mice , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Ovarian Neoplasms/pathology , Cell Line, Tumor
2.
Biochem Biophys Res Commun ; 567: 22-28, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34133998

ABSTRACT

ABT-737, a small molecule BH-3 mimetic, is less effective against human colon cancers due to its resistance. Verticillin A is a natural compound, which was previously purified from verticillium-infected mushrooms. Hence, we aimed at overcoming the ABT737 resistance observed in CRC tumors by combining Verticillin A with ABT-737 and figuring out the potential mechanism. In this study, we observed that Verticillin A could sensitize colon cancer to ABT-737-induced cell death through induction of mitochondrial-dependent apoptosis. Verticillin A could significantly increase the BIMEL/MCL-1 ratio to overcome ABT737 resistance through the suppression of the MEK/ERK pathway. In addition, up-regulation of BIM protein levels to activate BAX translocation results in apoptosis induction. Altogether, our work suggested the potential application of Verticillin A as a MEK inhibitor in BH3-mimetic-based therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , MAP Kinase Signaling System/drug effects , Nitrophenols/pharmacology , Sulfonamides/pharmacology , Bcl-2-Like Protein 11/metabolism , Cell Line, Tumor , Colonic Neoplasms/metabolism , Humans , Indoles/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Piperazines/pharmacology
3.
J Zhejiang Univ Sci B ; 21(10): 779-795, 2020 10.
Article in English | MEDLINE | ID: mdl-33043644

ABSTRACT

Verticillin A is a diketopiperazine compound which was previously isolated from Amanita flavorubescens Alk (containing parasitic fungi Hypomyces hyalines (Schw.) Tul.). Here, we initially found, by wound healing assay and Transwell assay in vitro, that verticillin A possesses an inhibitory effect against the migration and invasion of the human colon cancer cell. Subsequently, c-mesenchymal-epithelial transition factor (c-Met) was identified as a molecular target of verticillin A by screening key genes related to cell migration. Verticillin A-mediated c-Met suppression is at the transcriptional level. Further study demonstrated that verticillin A suppressed c-MET phosphorylation and decreased c-MET protein level. In addition, verticillin A inhibited the phosphorylation of c-MET downstream molecules including rat sarcoma (Ras)-associated factor (Raf), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Overexpression of Erk partially reversed the verticillin A-mediated anti-metastasis action in the human colon cancer cell. More importantly, verticillin A also inhibited cancer cell metastasis in vivo. Thus, verticillin A can significantly inhibit the migration and invasion of colon cancer cells by targeting c-Met and inhibiting Ras/Raf/mitogen-activated extracellular signal-regulated kinase (MEK)/ERK signaling pathways. Therefore, we determined that verticillin A is a natural compound that can be further developed as an anti-metastatic drug in human cancers.


Subject(s)
Cell Movement/drug effects , Colonic Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/biosynthesis , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Indoles/pharmacology , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-raf/metabolism , RNA Interference , Wound Healing , ras Proteins/metabolism
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-846932

ABSTRACT

Verticillin A is a diketopiperazine compound which was previously isolated from Amanita flavorubescens Alk (containing parasitic fungi Hypomyces hyalines (Schw.) Tul.). Here, we initially found, by wound healing assay and Transwell assay in vitro, that verticillin A possesses an inhibitory effect against the migration and invasion of the human colon cancer cell. Subsequently, c-mesenchymal-epithelial transition factor (c-Met) was identified as a molecular target of verticillin A by screening key genes related to cell migration. Verticillin A-mediated c-Met suppression is at the transcriptional level. Further study demonstrated that verticillin A suppressed c-MET phosphorylation and decreased c-MET protein level. In addition, verticillin A inhibited the phosphorylation of c-MET downstream molecules including rat sarcoma (Ras)-associated factor (Raf), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Overexpression of Erk partially reversed the verticillin A-mediated anti-metastasis action in the human colon cancer cell. More importantly, verticillin A also inhibited cancer cell metastasis in vivo. Thus, verticillin A can significantly inhibit the migration and invasion of colon cancer cells by targeting c-Met and inhibiting Ras/Raf/mitogen-activated extracellular signal-regulated kinase (MEK)/ERK signaling pathways. Therefore, we determined that verticillin A is a natural compound that can be further developed as an anti-metastatic drug in human cancers.

5.
Onco Targets Ther ; 12: 5823-5833, 2019.
Article in English | MEDLINE | ID: mdl-31440058

ABSTRACT

Background and purpose: Verticillin A is a fungal epipolythiodioxopiperazine (ETP) metabolite that was isolated from Amanita flavorubescens Alk infected by Verticillium sp. It was previously proven to possess potent anti-tumor cell growth activity, and we have recently determined that verticillin A is a selective inhibitor of H3K9me3-specific histone methyltransferase. The objective of this study was to find out whether verticillin A is an effective agent for suppression of gastric and cervical tumor progression. Materials and methods: Wound healing and transwell assays was performed to evaluate the effect of verticillin A on hepatocyte growth factor (HGF)-induced AGS and HeLa cells migration and invasion in vitro. Western blot was used to detect signaling proteins verticillin A affected. Results: We determined that verticillin A effectively suppressed hepatocyte growth factor (HGF)-induced AGS and HeLa cells migration and invasion in vitro. At the molecular level, we demonstrated that verticillin A inhibited HGF-induced c-Met phosphorylation and repressed the expression of total c-Met protein in AGS and HeLa cells, resulting from reduced expression of fatty acid synthase. In addition, verticillin A could suppress c-Met downstream FAK/Src signaling pathways by impairing c-Met phosphorylation induced by HGF. Conclusion: Our study demonstrated verticillin A inhibits the migration ability of human gastric cancer (AGS) cells and cervical cancer (HeLa) cells by targeting c-Met and its downstream FAK/Src signaling pathways, and suggested that verticillin A acts as a novel HGF/c-Met inhibitor by reducing expression of this receptor.

6.
J Pharm Biomed Anal ; 139: 187-192, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28284083

ABSTRACT

Verticillin A is a natural product isolated from fungal cultures and has displayed potent antibiotic, antiviral, nematocidal, and anticancer properties in vitro. While in vivo studies have been limited due to sparse supply, the in vivo efficacy data that does exist demonstrates potent anti-tumor activity in murine cancer models. The current study aims to investigate the pharmacokinetics and bioavailability of verticillin A in mice to provide guidance for further efficacy assessment in mouse models. A sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of verticillin A in mouse plasma. Sample preparation was accomplished through protein precipitation, and chromatographic separation was achieved on an Agilent Zorbax Extend C18 column with a security guard cartridge C8 using a binary gradient with mobile phase A (water/0.1% formic acid) and B (ACN/0.1% formic acid) at a flow rate of 400µl/min. Elution of verticillin A and internal standard, hesperetin, occurred at 4.87 and 2.06min, respectively. The total chromatographic run time was 8min, and the assay was linear in the concentration range of 1-1000nM. The within- and between day precisions and accuracy were in the range of 2.58-8.71 and 90-105%, respectively. The assay was applied to determine plasma drug concentration in a mouse pharmacokinetic study. It was found that intraperitoneal dosing of 3mg/kg resulted in high systemic exposure and achieved Cmax of 110nM with plasma concentrations sustained above 10nM for the 24-h duration of the study. Intravenous and oral dosing achieved observed Cmax of 73nM and 9nM, respectively. Oral dosing resulted in an approximate 9% bioavailability. Comparing with previously published in vitro studies that demonstrated verticillin A is active in the 20nM to 130nM range, the pharmacokinetic data demonstrate similar levels are achieved in mouse plasma via intravenous or intraperitoneal dosing routes.


Subject(s)
Tandem Mass Spectrometry/methods , Administration, Intravenous , Administration, Oral , Animals , Biological Availability , Chromatography, Liquid/methods , Female , Indoles/administration & dosage , Indoles/blood , Indoles/pharmacokinetics , Injections, Intraperitoneal , Mice , Mice, Inbred ICR
7.
Clin Exp Pharmacol ; 6(6)2016 Nov.
Article in English | MEDLINE | ID: mdl-28184331

ABSTRACT

OBJECTIVE: The heterogeneity of soft tissue sarcoma (STS) represents a major challenge for the development of effective therapeutics. Comprised of over 50 different histology subtypes of various etiologies, STS subsets are further characterized as either karyotypically simple or complex. Due to the number of genetic anomalies associated with genetically complex STS, development of therapies demonstrating potency against this STS cluster is especially challenging and yet greatly needed. Verticillin A is a small molecule natural product with demonstrated anticancer activity; however, the efficacy of this agent has never been evaluated in STS. Therefore, the goal of this study was to explore verticillin A as a potential STS therapeutic. METHODS: We performed survival (MTS) and clonogenic analyses to measure the impact of this agent on the viability and colony formation capability of karyotypically complex STS cell lines: malignant peripheral nerve sheath tumor (MPNST) and leiomyosarcoma (LMS). The in vitro effects of verticillin A on apoptosis were investigated through annexin V/PI flow cytometry analysis and by measuring fluorescently-labeled cleaved caspase 3/7 activity. The impact on cell cycle progression was assessed via cytometric measurement of propidium iodide intercalation. In vivo studies were performed using MPNST xenograft models. Tumors were processed and analyzed using immunohistochemistry (IHC) for verticillin A effects on growth (Ki67) and apoptosis (cleaved caspase 3). RESULTS: Treatment with verticillin A resulted in decreased STS growth and an increase in apoptotic levels after 24 h. 100 nM verticillin A induced significant cellular growth abrogation after 24 h (96.7, 88.7, 72.7, 57, and 39.7% reduction in LMS1, S462, ST88, SKLMS1, and MPNST724, respectively). We observed no arrest in cell cycle, elevated annexin, and a nearly two-fold increase in cleaved caspase 3/7 activity in all MPNST and LMS cell lines. Control normal human Schwann (HSC) and aortic smooth muscle (HASMC) cells displayed higher tolerance to verticillin A treatment compared to sarcoma cell lines, although toxicity was seen in HSC at the highest treatment dose. In vivo studies mirrored the in vitro results: by day 11, tumor size was significantly reduced in MPNST724 xenograft models with treatment of 0.25 and 0.5 mg/kg verticillin A. Additionally, IHC assessment of tumors demonstrated increased cleaved caspase 3 and decreased proliferation (Ki67) following treatment with verticillin A. CONCLUSION: Advancement in the treatment of karyotypically complex STS is confounded by the high level of genetic abnormalities found in these diseases. Consequently, the identification and investigation of novel therapies is greatly needed. Our data suggest that verticillin A selectively inhibits MPNST and LMS growth via induction of apoptosis while exhibiting minimal to moderate effects on normal cells, pointing to verticillin A as a potential treatment for MPNST and LMS, after additional preclinical validation.

SELECTION OF CITATIONS
SEARCH DETAIL
...