Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Braz J Microbiol ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320639

ABSTRACT

Very high gravity (VHG) fermentation is an industrial-scale process utilizing a sugar concentration above 250 g/L to attain a significant ethanol concentration, with the advantages of decreased labor, production costs, water usage, bacterial contamination, and energy consumption. Saccharomyces cerevisiae is one of the most extensively employed organisms in ethanol fermentation through VHG technology. Conversely, high glucose exposure leads to numerous stress factors that negatively impact the ethanol production efficiency of this organism. Here, the impact of various phytochemicals added to the VHG medium on viability, glucose consumption, ethanol production efficiency, total antioxidant-oxidant status (TAS and TOS), and the response of the enzymatic antioxidant system of yeast were investigated. 2.0 mM naringenin and caffeic acid increased ethanol production by 2.453 ± 0.198 and 1.261 ± 0.138-fold, respectively. The glucose consumption rate exhibited a direct relationship with ethanol production in the naringenin-supplemented group. The highest TAS was determined as 0.734 ± 0.044 mmol Trolox Eq./L in the same group. Furthermore, both phytochemical compounds exhibited robust positive correlations with TAS (rnaringenin = 0.9986; rcaffeic acid = 0.9553) and TOS levels (rnaringenin = -0.9824; rcaffeic acid = -0.9791). While naringenin caused statistically significant increases in glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, caffeic acid significantly increased TrxR and superoxide dismutase (SOD). Both phytochemicals seem to impact the ethanol production ability by regulating the redox status of the cells. We believe that the incorporation of particularly cost-effective antioxidants into the fermentation medium may serve as an alternative way to enhance the efficiency of bioethanol production using VHG technology.

2.
Bioprocess Biosyst Eng ; 44(3): 617-625, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33131002

ABSTRACT

Ethanol fermentation in very high gravity (VHG) saves energy consumption for ethanol distillation. As the technology offers high ethanol yield and low waste generation and it can be operated at low cost, it could be more efficient at an industrial scale than other ethanol production methods. This work studied ethanol production using a fed-batch bioreactor with a working volume of 1.5 L. The main objective of this research was evaluate the effects of temperature, sugar concentration, and cellular concentration using a Central Composite Design (CCD). Experimental conditions were selected using the surface response technique obtained from the CCD, and the results were validated to test the reproducibility. The following operating conditions were selected: temperature of 27.0 °C, sugar concentration 300.0 g/L, and cell concentration 15.0% (v/v). Under these conditions, after 30 h of fermentation the ethanol concentration, productivity and yield were 135.0 g/L, 4.42 g/(L·h) and 90.0%, respectively. All sugar was completely consumed.


Subject(s)
Bioreactors , Ethanol/metabolism , Hypergravity , Molasses , Saccharomyces cerevisiae/growth & development , Saccharum/chemistry
3.
Electron. j. biotechnol ; Electron. j. biotechnol;41: 88-94, sept. 2019. tab, ilus, graf
Article in English | LILACS | ID: biblio-1087247

ABSTRACT

Background: In industrial yeasts, selection and breeding for resistance to multiple stresses is a focus of current research. The objective of this study was to investigate the tolerance to multiple stresses of Saccharomyces cerevisiae obtained through an adaptive laboratory evolution strategy involving a repeated liquid nitrogen freeze­thaw process coupled with multi-stress shock selection. We also assessed the related resistance mechanisms and very high-gravity (VHG) bioethanol production of this strain. Results: Elite S. cerevisiae strain YF10-5, exhibiting improved VHG fermentation capacity and stress resistance to osmotic pressure and ethanol, was isolated following ten consecutive rounds of liquid nitrogen freeze­thaw treatment followed by plate screening under osmotic and ethanol stress. The ethanol yield of YF10-5 was 16% higher than that of the parent strain during 35% (w/v) glucose fermentation. Furthermore, there was upregulation of three genes (HSP26, HSP30, and HSP104) encoding heat-shock proteins involved in the stress response, one gene (TPS1) involved in the synthesis of trehalose, and three genes (ADH1, HXK1, and PFK1) involved in ethanol metabolism and intracellular trehalose accumulation in YF10-5 yeast cells, indicating increased stress tolerance and fermentative capacity. YF10-5 also showed excellent fermentation performance during the simultaneous saccharification and fermentation of VHG sweet potato mash, producing 13.40% (w/ v) ethanol, which corresponded to 93.95% of the theoretical ethanol yield. Conclusions: A multiple-stress-tolerant yeast clone was obtained using adaptive evolution by a freeze­thaw method coupled with stress shock selection. The selected robust yeast strain exhibits potential for bioethanol production through VHG fermentation.


Subject(s)
Saccharomyces cerevisiae/physiology , Ethanol/chemical synthesis , Saccharomyces cerevisiae/genetics , Selection, Genetic , Stress, Physiological , Trehalose , Yeasts , Breeding , Adaptation, Physiological , Hypergravity , Fermentation , Real-Time Polymerase Chain Reaction , Freezing , Heat-Shock Proteins
4.
Electron. j. biotechnol ; Electron. j. biotechnol;14(6): 3-3, Nov. 2011. ilus, tab
Article in English | LILACS | ID: lil-640520

ABSTRACT

Dried spent yeast (DSY) was used as a low-cost nitrogen supplement for ethanol fermentation from sweet sorghum juice under very high gravity (VHG) conditions by Saccharomyces cerevisiae NP 01. The fermentation was carried out at 30ºC in a 5-litre bioreactor. The results showed that DSY promoted ethanol production efficiencies. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) of the sterile juice (total sugar of 280 g l-1) supplemented with 8 g l-1 of DSY were not different from those supplemented with yeast extract and/or peptone at the same amount. The initial yeast cell concentration of 5 x 10(7) cells ml-1 was found to be optimal for scale-up ethanol production. In addition, an increase in sugar concentration in inoculum preparation medium (from 10 to 100 g l-1) improved the ability of the inoculum to produce ethanol under the VHG conditions. When S. cerevisiae NP 01 grown in the juice containing 100 g l-1 of total sugar was used as the inoculum for ethanol fermentation, the P, Qp and Yp/s obtained were 108.98 +/- 1.16 g l-1, 2.27 +/- 0.06 g l-1 h-1 and 0.47 +/- 0.01 g g-1, respectively. Similar results were also observed when the ethanol fermentation was scaled up to a 50-litre bioreactor under the same conditions. The cost of the sweet sorghum for ethanol production was US$ 0.63 per litre of ethanol. These results clearly indicate the high potential of using sweet sorghum juice supplemented with DSY under VHG fermentation for ethanol production in industrial applications.


Subject(s)
Ethanol/metabolism , Fermentation , Hypergravity , Nitrogen , Saccharomyces cerevisiae/physiology , Sorghum/metabolism , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL