Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Food Sci Anim Resour ; 44(4): 873-884, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974729

ABSTRACT

Flunixin is a veterinary nonsteroidal anti-inflammatory agent whose residues have been investigated in their original form within tissues such as muscle and liver. However, flunixin remains in milk as a metabolite, and 5-hydroxy flunixin has been used as the primary marker for its surveillance. This study aimed to develop a quantitative method for detecting flunixin and 5-hydroxy flunixin in milk and to strengthen the monitoring system by applying to other livestock and fishery products. Two different methods were compared, and the target compounds were extracted from milk using an organic solvent, purified with C18, concentrated, and reconstituted using a methanol-based solvent. Following filtering, the final sample was analyzed using liquid chromatography- tandem mass spectrometry. Method 1 is environmentally friendly due to the low use of reagents and is based on a multi-residue, multi-class analysis method approved by the Ministry of Food and Drug Safety. The accuracy and precision of both methods were 84.6%-115% and 0.7%-9.3%, respectively. Owing to the low matrix effect in milk and its convenience, Method 1 was evaluated for other matrices (beef, chicken, egg, flatfish, and shrimp) and its recovery and coefficient of variation are sufficient according to the Codex criteria (CAC/GL 71-2009). The limits of detection and quantification were 2-8 and 5-27 µg/kg for flunixin and 2-10 and 6-33 µg/kg for 5-hydroxy flunixin, respectively. This study can be used as a monitoring method for a positive list system that regulates veterinary drug residues for all livestock and fisheries products.

3.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931755

ABSTRACT

A rapid and online microvolume flow-through dialysis probe designed for sample preparation in the analysis of veterinary drug residues is introduced. This study addresses the need for efficient and green sample preparation methods that reduce chemical waste and reagent use. The dialysis probe integrates with liquid chromatography and mass spectrometry (LC-MS) systems, facilitating automated, high-throughput analysis. The dialysis method utilizes minimal reagent volumes per sample, significantly reducing the generation of solvent waste compared to traditional sample preparation techniques. Several veterinary drugs were spiked into tissue homogenates and analyzed to validate the probe's efficacy. A diagnostic sensitivity of >97% and specificity of >95% were obtained for this performance evaluation. The results demonstrated the effective removal of cellular debris and particulates, ensuring sample integrity and preventing instrument clogging. The automated dialysis probe yielded recovery rates between 27 and 77% for multiple analytes, confirming its potential to streamline veterinary drug residue analysis, while adhering to green chemistry principles. The approach highlights substantial improvements in both environmental impact and operational efficiency, presenting a viable alternative to conventional sample preparation methods in regulatory and research applications.


Subject(s)
Drug Residues , Veterinary Drugs , Veterinary Drugs/analysis , Animals , Drug Residues/analysis , Dialysis/methods , Dialysis/instrumentation , Chromatography, Liquid/methods , Mass Spectrometry/methods
4.
Food Chem X ; 22: 101504, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38855097

ABSTRACT

The presence of veterinary drug residues in aquatic products represents a significant challenge to food safety. The current detection methods, limited in both scope and sensitivity, underscore the urgent need for more advanced techniques. This research introduces a swift and potent screening technique using high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and a refined QuEChERS protocol, allowing simultaneous qualitative and semi-quantitative analysis of 192 residues. A comprehensive database, employing full scan mode and data-dependent secondary mass spectroscopy, enhances screening accuracy. The method involves efficient extraction using 90% acetonitrile, dehydration with Na2SO4, and acetic acid, followed by cleanup using dispersive solid-phase extract sorbent primary secondary amine. It is suitable for samples with varying fat content, offering detection limits ranging from 0.5 to 10 µg/kg, high recovery rates (60-120%), and low relative standard deviations (<20%). Practical application has validated its effectiveness for multi-residue screening, marking a significant advancement in food safety evaluation.

5.
ACS Chem Neurosci ; 15(11): 2091-2098, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38747710

ABSTRACT

Xylazine (also known as "tranq") is a potent nonopioid veterinary sedative that has recently experienced a surge in use as a drug adulterant, most often combined with illicitly manufactured fentanyl. This combination may heighten the risk of fatal overdose. Xylazine has no known antidote approved for use in humans, and age-adjusted overdose deaths involving xylazine were 35 times higher in 2021 than 2018. In April 2023, the Biden Administration declared xylazine-laced fentanyl an emerging drug threat in the United States. In 2022, the Drug Enforcement Agency (DEA) reported nearly a quarter of seized fentanyl powder contained xylazine. This dramatic increase in prevalence has solidified the status of xylazine as an emerging drug of abuse and an evolving threat to public health. The following narrative review outlines the synthesis, pharmacokinetics, pharmacodynamics, and adverse effects of xylazine, as well as the role it may play in the ongoing opioid epidemic.


Subject(s)
Xylazine , Xylazine/pharmacology , Humans , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemistry , Fentanyl/pharmacology , Fentanyl/chemistry , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Drug Overdose/epidemiology
6.
Front Vet Sci ; 11: 1336660, 2024.
Article in English | MEDLINE | ID: mdl-38774908

ABSTRACT

A pharmaceutical warehouse is part of the pharmaceutical supply chain and is essential to maintaining the quality and efficacy of veterinary pharmaceuticals for successful animal health service delivery. However, poor storage conditions, improper handling, and inappropriate use and disposal constitute challenges for veterinary supplies in animal health services. Therefore, this study aimed to assess the existing practices and challenges in warehouse management in government veterinary clinics and private veterinary drug wholesalers in Ethiopia. A cross-sectional study was conducted on 37 veterinary health facilities in four selected zones (south Gondar, west Gondar, central Gondar, and west Gojam zones) and Bahir Dar administrative city. Zones were selected using a simple random sampling technique. Data was collected using a structured questionnaire, pre-defined and tested observational checklists, and semi-structured interview guides. Descriptive statistics were used to analyze the quantitative data, while qualitative data was analyzed using a thematic approach. The study revealed the presence of poor stock management practices, such as the absence of standard operating procedures for warehouse activities in ~59.5% of facilities surveyed. In none of the surveyed facilities, bin cards and system software utilization were satisfactory. The absence of disposal guidelines was detected in 83.8% of the facilities, and the practice of timely disposal of expired drugs was not satisfactory. Compared to the government veterinary clinics, private veterinary drug wholesalers had better storage practices (86.25%) following theoretical recommendations. The storage conditions in government clinics were rated poor at 48.3% (>80%, which is the limit to the acceptable rate for good storage conditions). The challenges of inadequate infrastructure, a lack of qualified staff, problems with the availability and affordability of pharmaceutical products, insufficient regulatory practice, and budget constraints were identified. A holistic approach involving related stakeholders should be followed to improve the existing challenges and the sector's efficiency.

7.
Vet Med (Auckl) ; 15: 91-108, 2024.
Article in English | MEDLINE | ID: mdl-38595914

ABSTRACT

Background: The intentional and illegal misrepresentation of fake medications involves falsely indicating their source. These fraudulent medications can include products that contain either accurate or incorrect ingredients, lack proper labeling, have insufficient quantities of ingredients, and are packaged with counterfeit packaging. This unlawful activity has led to treatment failures, the development of antibiotic resistance, adverse effects, and even deaths. Hence, the objective of this study was to assess the knowledge, practice, and regulatory status of veterinary drug experts in the central Gondar zone of Ethiopia regarding counterfeit veterinary medications. Methods: From January 2023 to July 2023, a self-administered structured questionnaire was utilized to conduct a cross-sectional study in Central Gondar Zone, Ethiopia. The analysis of the data involved the application of descriptive and chi-square tests. Results: The study revealed that the majority of professionals possessed a work experience ranging from 5 to 9 years (23; 56.1%). Additionally, a total of 25 individuals (61.0%) who participated in the research had not undergone any kind of training. It was observed that a significant proportion of participants (82.9%) possessed knowledge about counterfeit veterinary drugs. Only about 63% and 36% of respondents had high knowledge and good practice concerning veterinary counterfeit drugs, respectively. Only 29.3% of participants have reported practices. Furthermore, a poor regulatory level of coordination was detected (85.4%). The study revealed a significant (χ2 =7.6165; p = 0.022) disparity between the respondents' practice levels and training. Respondents' regulatory levels were also significantly associated (p < 0.05) with their sex (χ2 = 13.34; p = 0.001) and work experience (χ2 = 13.64; p = 0.033). The research findings also revealed a noteworthy correlation between practice and regulatory activity (χ2 = 15.0463; p = 0.005). Conclusion: The study outlines the necessity of awareness initiatives, with a focus on the significance of veterinary experts' knowledge, practice, and regulatory efforts in addressing the issue of counterfeit veterinary medications.

8.
Food Sci Biotechnol ; 33(6): 1467-1486, 2024 May.
Article in English | MEDLINE | ID: mdl-38585567

ABSTRACT

ß-Lactam is one of the widely used veterinary drugs, but simultaneous analytical methods for ß-lactam on various animal foods have not been established. In this study, we aimed to detect 34 ß-lactam antibiotics simultaneously in livestock samples (beef, pork, chicken, egg, and milk) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were extracted using phosphate buffer/acetonitrile or water/acetonitrile and then cleaned with 150 mg of C18 and 900 mg of MgSO4. The method showed acceptable recovery and repeatability of 66.1-119% and 1.5-26%, respectively. The method was employed to monitor 127 real samples from the domestic market to confirm its applicability, and no ß-lactam residues were detected. It was also applied to other matrices (eel, flat fish, and shrimp) and showed acceptable recovery (62.1-120%) and repeatability (1.0-28%). The method is expected to improve the efficiency of monitoring veterinary drug residues in domestic livestock products and fishery foods.

9.
Foods ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540862

ABSTRACT

Sheep's milk is a significant source of nucleotide monophosphates (NMPs) but can also contain undesirable residues from veterinary drugs, posing a potential human health risk. This study introduces a novel application of two-dimensional liquid chromatography (2D-LC), in heart-cutting mode, for the simultaneous determination of nucleotides and veterinary drug residues in sheep's milk. 2D-LC allows for the separation of these compounds in a single chromatographic run despite their differing physicochemical properties. The proposed method separates six veterinary drug residues and five NMPs in a single injection. The compounds were separated using a C18 reversed-phase column in the first dimension and a Primesep SB analytical column in the second dimension. The method performance was evaluated in terms of linearity range, detection and quantification limits, matrix effects, precision, and accuracy. The results demonstrated good linearity and sensitivity, with quantification limits allowing for the quantification of veterinary drugs at the maximum residue level and nucleotides at typical levels found in milk samples. The method has been successfully applied to the analysis of sheep's milk samples acquired from local supermarkets, with recoveries within a range of 70-119% and 82-117% for veterinary residues and NMPs, respectively.

10.
J Sep Sci ; 47(3): e2300696, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356232

ABSTRACT

Although filtration is one of the most common steps in sample preparation for chemical analysis, filter membrane materials can leach contaminants and/or retain some analytes in the filtered solutions. In multiclass, multiresidue analysis of veterinary drugs, it is challenging to find one type of filter membrane that does not retain at least some of the analytes before injection in ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In this study, different filter membranes were tested for use in UHPLC-MS/MS analysis of 183 diverse drugs in bovine muscle, kidney, and liver tissues. Membranes evaluated consisted of polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF), polyethersulfone, nylon, and regenerated cellulose. Drug classes represented among the analytes included ß-agonists, ß-lactams, anthelmintics, macrolides, tetracyclines, sulfonamides, tranquilizers, (fluoro)quinolones, anti-inflammatories, nitroimidazoles, coccidiostats, phenicols, and others. Although the presence of a matrix helped reduce the binding of analytes on surface active sites, all of the filter types partially retained at least some of the drugs in the final extracts. In testing by flow-injection analysis, all of the membrane filters were also observed to leach interfering components. Ultimately, filtration was avoided altogether in the final sample preparation approach known as the quick, easy, cheap, effective, rugged, safe, efficient, and robust (QuEChERSER) mega-method, and ultracentrifugation was chosen as an alternative.


Subject(s)
Drug Residues , Veterinary Drugs , Animals , Cattle , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Anti-Bacterial Agents/analysis , Veterinary Drugs/analysis , Drug Residues/analysis
11.
J Sep Sci ; 47(1): e2300716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234024

ABSTRACT

This study introduces a cost-effective, automated ultra-high-performance liquid chromatography-tandem mass spectrometry method for the detection of 14 ß-agonists in pork using a novel solid-phase microextraction probe composed of polyacrylonitrile and molecularly imprinted polymer. Integrated into an automated extraction device, the probe optimizes extraction prior to analysis while reducing expenses and time compared to traditional solid-phase extraction procedures. The method validation followed the Chinese National Standard (GB/T 27404-2008) and examined limits of detection, limits of quantification, matrix effects, linearity, intraday, and interday precision. Average recovery rates ranged from 71.6% to 82.2%, with relative standard deviations less than 15%. Limits of detection and limits of quantification ranged from 0.09 to 0.39 and 0.27 to 0.99 µg/kg, respectively. The new method identified positive samples more accurately than the current National Standard GB/T 31658.22-2022 and demonstrated its potential for routine assessment and regulatory compliance in the detection of ß-agonists in pork.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Chromatography, High Pressure Liquid/methods , Red Meat/analysis , Pork Meat/analysis , Tandem Mass Spectrometry/methods , Solid Phase Microextraction , Solid Phase Extraction/methods
12.
Huan Jing Ke Xue ; 45(1): 151-158, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216467

ABSTRACT

To explore the exposure level of pesticides and veterinary drugs in an aquaculture environment and its impact on the ecological environment, this study took the aquaculture environment in Shanghai as an example, and samples of water, sediment, and inputs from 40 major aquaculture farms were collected from July to September 2022. The types and contents of pesticides and veterinary drugs were screened using high-performance liquid chromatography-electrostatic field orbital ion trap mass spectrometry, and the risk quotient (RQ) method was used to assess the ecological risk of pesticide contamination in water and sediment. The results showed that 13 drugs were screened out from 204 samples (72 samples of water, 72 samples of mud, and 60 samples of input), namely, chlorpromazine, carbendazim, thiophanate, diazepam, florfenicol, simazine, amantidine, diazepam, trimethoprim, ciprofloxacin, ofloxacin, mebendazole, and enrofloxacin. Among them, 12 species were found in water samples with concentrations ranging from 0.016 µg·L-1 to 2.084 µg·L-1. The concentrations of seven species in the mud samples ranged from 0.018 µg·kg-1 to 23.101 µg·kg-1. The results showed that there were four types of inputs, ranging from 1.979 µg·kg-1 to 101.940 µg·kg-1. Seven drugs were found in both water and sediment. The risk quotient (RQ) results showed that there were some high and middle risks in both water and sediment samples of aquaculture farms, and the ecological risks of carbendazim were the highest in both water and sediment samples of aquaculture farms; the RQ values were 3.848 and 1.580, respectively, indicating high risk. It is suggested to strengthen the control and management of exogenous pesticides and veterinary drugs in aquaculture environments to protect the ecosystem health of the aquaculture environment.


Subject(s)
Benzimidazoles , Carbamates , Pesticides , Veterinary Drugs , Water Pollutants, Chemical , Pesticides/toxicity , Pesticides/analysis , Ecosystem , Environmental Monitoring/methods , China , Aquaculture , Water/analysis , Diazepam/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
13.
BMC Vet Res ; 20(1): 24, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216988

ABSTRACT

BACKGROUND: Salinomycin, an antibiotic, have potential as a veterinary drug for fish due to its anti-parasitic activity against several fish parasites. Thus the residual levels of salinomycin in muscles of two significant aquaculture species in Korea, olive flounder and black rockfish, were analyzed using HPLC-MS-MS. RESULTS: The proper method to analyze the residual salinomycin in fish muscles using LC-MS-MS was settled and the method was validated according to CODEX guidelines. The residues in three distinct groups for two fish species were analyzed using the matrix match calibration curves at points of five different times following oral administration. After oral administration, salinomycin rapidly breaks down in both olive flounder and black rockfish. After 7th days, the average residue in all groups of two fish spp. decreased below limit of quantitation (LOQ). CONCLUSION: Due to low residue levels in fish muscles, salinomycin may therefore be a treatment that is safe for both fish and humans. This result could contribute to establishment of MRL (minimal residual limit) for approval of salinomycin for use in aquaculture.


Subject(s)
Fish Diseases , Flounder , Perciformes , Polyether Polyketides , Pyrans , Humans , Animals , Fish Diseases/drug therapy , Fish Diseases/parasitology , Fishes , Muscles/parasitology , Administration, Oral
14.
Article in English | MEDLINE | ID: mdl-37988113

ABSTRACT

Levamisole, an anthelmintic and immunostimulant drug, has been studied as a promising alternative for aquaculture use. While oral administration through feeding is the main route of administration in fish farming, no studies evaluating methods of levamisole incorporation into the feed have been reported so far. Therefore, this study aimed to evaluate potential procedures for levamisole incorporation in extruded fish feed using ethyl cellulose, gelatin, or vegetable oil, to avoid drug leaching to the water during the animal's medication. A suitable LC-MS/MS method was optimized (full factorial design), validated, and applied to evaluate the efficiency of the process, the homogeneity of the drug concentration, and the leaching rate. The method has been demonstrated to be selective, precise (RSD < 4.9%), accurate (recovery > 98.4%), and linear (r > 0.99, 125-750 mg kg-1). The incorporation procedures using the three coating agents showed high incorporation efficiency (70%) and a homogeneous drug concentration among the extruded feed pellets. A low levamisole leaching rate was verified in the feed prepared using the ethyl cellulose coating procedure (4.3% after 15 min of immersion in the water). On the other hand, fish feed coated with gelatin and oil resulted in a high leaching rate (30-35% after 15 min). Thus, this study shows that coating ethyl cellulose may be a promising procedure for levamisole incorporation in fish feed and with the potential to enhance its use in animal production while reducing environmental contamination.


Subject(s)
Levamisole , Water , Animals , Chromatography, Liquid , Gelatin , Tandem Mass Spectrometry , Fishes , Animal Feed/analysis
15.
Foods ; 12(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37761131

ABSTRACT

The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.

16.
J Biol Eng ; 17(1): 59, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752501

ABSTRACT

BACKGROUND: Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance. RESULTS: In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. CONCLUSION: Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.

17.
Front Nutr ; 10: 1244459, 2023.
Article in English | MEDLINE | ID: mdl-37593680

ABSTRACT

Food safety is a widespread global concern with the emergence of foodborne diseases. Thus, establishing accurate and sensitive detection methods of harmful contaminants in different food matrices is essential to address and prevent the associated health risks. Among various analytical tools, mass spectrometry (MS) can quantify multiple impurities simultaneously due to high resolution and accuracy and can achieve non-target profiling of unknown pollutants in food. Therefore, MS has been widely used for determination of hazardous contaminants [e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes MS applications in detecting harmful contaminants in food matrices, discusses advantages of MS for food safety study, and provides a perspective on future directions of MS development in food research. With the persistent occurrence of novel contaminants, MS will play a more and more critical role in food analysis.

18.
Animals (Basel) ; 13(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570313

ABSTRACT

Sulfadimethoxine (SDM) and ormetoprim (OMP) are antimicrobials used in combination to treat bacterial infections in fish farming. The use of this drug combination is not yet regulated in some countries, such as Brazil. Due to the lack of regulated drugs for aquaculture in Brazil, this study investigated the residue depletion profile of SDM and OMP in Nile tilapia (Oreochromis sp.) after oral administration. Fish were treated with medicated feed containing a 5:1 ratio of SDM:OMP at the dose of 50 mg kg BW-1 for five consecutive days with an average water temperature of 28 °C. The drugs were incorporated into the feed by using a gelatin coating process which promoted homogeneity in drug concentration and prevented the drug leaching into the water during medication. The SDM and OMP determination in fish fillets (muscle plus skin in natural proportions) was performed using the QuEChERS approach followed by LC-MS/MS quantification. The analytical method was validated according to Brazilian and selected international guidelines. A withdrawal period of 9 days (or 252 °C days) was estimated for the sum of SDM and OMP residues at concentration levels below the maximum residue level of 100 µg kg-1.

19.
Environ Sci Pollut Res Int ; 30(32): 78973-78987, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37278894

ABSTRACT

Rapid synthesis of carbon-based magnetic materials derived from cobalt and iron metal-organic frameworks (MOFs), ZIF-67, and MIL-100(Fe), by microwave-assisted method, followed by carbonization under a N2 atmosphere is described in this study. The carbon-derived MOFs (CDMs) were evaluated for the removal of the emerging pollutants sulfadiazine (SDZ) and flumequine (FLU) used as veterinary drugs. The study aimed to link the adsorption behavior with their surface properties and elemental composition. C-ZIF-67 and C-MIL-100(Fe) showed hierarchical porous structures with specific surface areas of 295.6 and 163.4 m2 g-1, respectively. The Raman spectra of the CDMs show the characteristic D and G bands associated with defect-rich carbon and sp2 graphitic carbon, respectively. The CDMs exhibit cobalt species (Co3O4, CoO, and Co) in C-ZIF-67 and iron species (Fe2O3, Fe3O4, and Fe) in C-MIL-100 (Fe) which are related to the magnetic behavior of CDMs. C-ZIF-67 and C-MIL-100 (Fe) had saturation magnetization values of 22.9 and 53.7 emu g-1, respectively, allowing easy solid-liquid separation using a magnet. SDZ and FLU removal rates on CDMs follow pseudo-second-order kinetics, and adsorption isotherms fit the Langmuir model based on regression coefficient values. Adsorption thermodynamics calculations showed that the adsorption of SDZ and FLU by CDMs was a thermodynamically favorable process. Therefore, these properties of C-ZIF-67 and C-MIL-100 (Fe) and their regeneration ability facilitate their use as adsorbents for emerging pollutants.


Subject(s)
Metal-Organic Frameworks , Veterinary Drugs , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Iron/chemistry , Water Pollutants, Chemical/analysis , Carbon , Adsorption , Water/chemistry
20.
Food Chem ; 426: 136569, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37302312

ABSTRACT

Veterinary drugs which are primarily meant for livestock treatment have now been categorised under potential food contaminant due to its unregulated usage and abuse. Their over usage by animal workers lead to production of contaminated animal-based food products which contain veterinary drug residues. These drugs are also misused as growth promoters to enhance the muscle to fat ratio in human body. This review highlights the misuse of such a veterinary drug; Clenbuterol. In this review, we have comprehensively discussed the usage of nanosensors to detect clenbuterol in food samples. Colorimetric, fluorescent, electrochemical, SERS and electrochemiluminescence are major categories of nanosensors that have been utilized for this purpose. The mechanism through which these nanosensors detect clenbuterol have been discussed in detail. The limit of detection and recovery percentage values of each nanosensor have been compared. This review will impart significant information on various nanosensors for clenbuterol detection in real samples.


Subject(s)
Clenbuterol , Veterinary Drugs , Animals , Humans , Clenbuterol/analysis , Food Contamination/analysis , Meat/analysis , Livestock
SELECTION OF CITATIONS
SEARCH DETAIL
...