Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Bioengineered ; 14(1): 2252207, 2023 12.
Article in English | MEDLINE | ID: mdl-37712693

ABSTRACT

Residual antibiotics have become emerging contaminants of concern for their adverse impact on the ecosystem. Additionally, their accumulation in the environment is increasing antibiotic resistance among pathogens. This study assessed the impact of intensification of biochar, nutrients, aeration, and bacteria (BNAB) on the remediation potential of floating treatment wetlands (FTWs) to treat amoxicillin (AMX)-contaminated water. The FTWs were developed with saplings of Vetiveria zizanioides and intensified with biochar (1.5%), nutrients (25 mgL-1 N, 25 mgL-1 P, 20 mg L1 K), aeration (7 mg L-1), and AMX-degrading bacteria. The results showed that all the amendments enhanced the AMX degradation, while the maximum reduction in COD (89%), BOD (88%), TOC (87%), and AMX (97%) was shown by the combined application of all the amendments. The combined application also enhanced plant growth and persistence of the inoculated bacteria in the water, roots, and shoots. This approach can be employed for the low-cost, environment-friendly treatment, and recycling of antibiotic-contaminated wastewater, where BNAB intensification can further improve the bioremediation efficiency of FTWs in the case of heavily polluted waters.


Vetiver grass floating treatment wetlands (FTWs) removed 83% amoxicillin.Intensification of floating treatment wetlands enhanced amoxicillin removal to 97%.Intensified-FTW removed COD, BOD, and TOC by 89%, 88%, and 87%, respectively.Potential of Intensified-FTW for bioremediation of highly polluted water is shown.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Wetlands , Ecosystem , Broadly Neutralizing Antibodies , Nutrients , Bacteria , Water
2.
Insects ; 14(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36835724

ABSTRACT

Each binary mixture formulation of Vetiveria zizanioides (L.) Nash (VZ) with Andrographis paniculata (Burm.f.) Wall. ex Nees (AP) or Cananga odorata (Lam.) Hook.f. & Thomson (CO) and AP with CO at 1:1, 1:2, 1:3, and 1:4 ratios (v:v) was investigated for behavioral responses on laboratory and field strains of Aedes aegypti. Irritant and repellent activities of each formulation were compared with N,N-diethyl-3-methylbenzamide (DEET) using an excito-repellency test system. The result demonstrated that the mixture of VZ:AP in all combination ratios was the most effective in inducing an irritancy response against the laboratory strain (56.57-73.33%). The highest percentage of escaped mosquitoes exposed to the mixture at a 1:4 ratio (73.33%) was significantly different from DEET (26.67%) (p < 0.05). Against the field strain, the strongest escape response of AP:CO at a 1:1 ratio in the contact trial (70.18%) was significantly different compared with DEET (38.33%) (p < 0.05). There was a weak non-contact escape pattern in all combinations of VZ:CO against the laboratory strains (6.67-31.67%). These findings could lead to the further development of VZ and AP as active ingredients in a repellent that could advance to human use trials.

3.
Environ Sci Pollut Res Int ; 30(55): 116984-116999, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36484940

ABSTRACT

Vetiver zizanioides roots are considered the most useful part of the plant. It is widely used to extract oil. The aromatic oil is used in perfumery, food-flavouring and cosmetic industries. However, presently, there are no reports available for the usage of vetiver roots agro-waste after oil extraction in nano-based products. Considering the concept of value-added products and green-chemistry approaches, synthesising cellulose nanoparticles (CNPs) using enzymatic treatment from agro-waste has emerged as a viable option. CNP's non-toxicity, biodegradability, and biocompatibility have sparked the industry's interest in its production. Therefore, in the present study, 3 enzymes, cellulase, pectinase, and viscozymes, were used for the green synthesis of CNP. The characterisation of CNP was done using techniques like DLS, FTIR, TEM, SEM, AFM, and TG/DTG, and cytotoxicity of CNP was studied in human skin cell-line (HaCaT) using MTT assay. Results show that CNPs synthesised using viscozyme and pectinase were of crystalline nature (2.0-3.0 nm) and cellulase were of fibres (40-60 nm). The FTIR confirmed that CNPs were devoid of lignin/hemicellulose. The AFM pictures revealed thick and thin nanoparticles with a variety of morphologies. The thermal stability of cellulose was higher compared to CNP. All the synthesised CNPs were crystaline, with a 60-70% crystallinity index. Furthermore, CNP did not show cytotoxic effect on HaCaT cells upto 500 µg/mL concentrations. In conclusion, pectinase and viscosyme may be used for synthesing cellulose-nanocrystals and cellulase enzyme for cellulose-nanofibers from the vetiver roots agro-waste. The findings revealed that Vetiveria zizanioides agro-waste-derived CNP is a sustainable material that can be used as a reinforcing agent/nanocarrier in textile and drug-delivery systems.


Subject(s)
Cellulases , Chrysopogon , Nanoparticles , Humans , Cellulose/chemistry , Polygalacturonase , Nanoparticles/toxicity , Nanoparticles/chemistry
4.
Environ Health Insights ; 16: 11786302221142749, 2022.
Article in English | MEDLINE | ID: mdl-36506919

ABSTRACT

Constructed wetlands are engineered systems built to use natural processes and remove pollutants from contaminated water in a more controlled environment. The research was an experimental research carried out to assess the effectiveness of natural and constructed wetland systems in the treatment of coffee wastewater. The 2 vertical flow constructed wetland was built. The first wetland covered an area of 132 m2. It has 12 m width and 11 m length. Open space is constructed between 2 constructed wetlands with a dimension of 11 m × 3 m × 1 m. The second wetland was constructed and its function is similar to the first one, from this wetland water is discharged to the river. The construction of the wetland is accomplished by constructing 20 cm wide furrows with a spacing of 30 cm. Vetiver grasses have planted with a spacing of 20 cm intervals. The physicochemical data were recorded, organized, and analyzed using R software (version 4.1) and Microsoft Excel. Data were processed using parametric (one-way ANOVA) and nonparametric (Mann-Whitney's U test) statistical tests of homogeneity. One-way analysis of Variance (ANOVA) was used to determine the significance of differences in variations in physicochemical variables within the constructed wetland sites. Tukey's multiple comparisons for differences between means were also assessed. Findings indicated that a natural wetland had a mean influent and effluent of total suspended solids (TSS) of 2190.78 ± 448.46 mg/l and 972.67 ± 234.312 mg/l, respectively. A Mann-Whitney U test revealed that TSS were significantly higher in natural wetland (median = 1551.50) compared to constructed wetland (median = 922.5), U = 676.5, z = -2.435, P = .015, r = .257. Natural wetlands had a mean influent of biological oxygen demand (BOD) was 4277.94 ± 157.02 mg/l, while in the effluent of BOD it was 326.83 ± 112.24 mg/l. While in constructed wetland it was 4192.4 ± 191.3 mg/l, 782.72 ± 507.6 mg/l, and 88.28 ± 20.08 mg/l in influent, middle, and effluent respectively. Average chemical oxygen demand (COD) value at influent in natural wetlands was 8085.61 ± 536.99 mg/l and in the effluent it was 675.33 ± 201.4 mg/l. In constructed wetland, it was found to be 8409.8 ± 592.9, 1372.6 ± 387.94, and 249.0 ± 7.68 for influent, middle, and effluent respectively. Comparatively, the purification efficiency of organic pollutants (TSS, BOD, and COD) of constructed wetlands was better than natural wetlands, whereas natural wetlands had better purification efficiency of nitrogen compounds such as ammonium, nitrite, and nitrate. On average, removal rates for nitrogen compounds were 39.53% and -24.41% for ammonium, 79.44% and 55.4% for nitrite, and 68.90% and 60.6% for nitrate in natural and constructed wetlands respectively, while the phosphate removal rate was 43.17% and 58.7% in natural and constructed wetlands, respectively. A Mann-Whitney U test revealed that there is no significance difference in nitrite, nitrate, ammonium, and phosphate concentration between natural and constructed wetlands(P > .05). Based on these results, both systems of treatment were effective in treating the coffee effluent since most of the values obtained were below the permissible EEPA limits. Even though the constructed wetland treatment plant performed better overall, in comparison, the natural wetlands had better purification efficiency for nitrogen compounds like ammonium, nitrite, and nitrate and the constructed wetlands had better purification efficiency for organic pollutants (TSS, BOD, and COD).

5.
J Environ Manage ; 310: 114751, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35220100

ABSTRACT

In this novel study, acid mine drainage (AMD) was treated using a hybrid approach comprising a nano-and-biotic system synergistically integrated in a step-wise and modular fashion. Specifically, the treatment chains were made up of different stages, which comprise, neutralization using activated magnesite or MgO-nanoparticles (NPs) (Stage 1) and polishing the product water using a series of wetlands (Stage 2) in a step-wise connection. In stage One (1), real AMD was treated with MgO-NPs at a ratio of 1:100 (1 g/100 mL - w/v ratio), 500 rpm of mixing speed, and One (1) hour of hydraulic retention time (HRT) whilst in stage 2, the final water was fed into constructed wetlands, i.e. Three (3) interconnected wetland with different flow modalities [(I) subsurface vertical flow (SSVF-CW), (II) free water surface flow (FWS-CW), and (III) subsurface horizontal flow (SSHF-CW)], for further purification and polishing to the desired product. In this stage, i.e. stage 2, the product water and substrate were collected daily at the outlet and bottom of each wetland. After the treatment process, the pH of the product water was observed to have increased from 2.6 to 10.4. Significant removal of inorganic contaminants was also observed and the following removal sequence was registered, Fe (99.8%) ≥ Al (99.5%) ≥ Mn (99.24%) ≥ Zn (98.36%) ≥ Cu (97.38%) ≥ Ni (97.7%) ≥ SO42─ (80.59%). Reduction in electrical conductivity (EC) was also observed (86%). Specifically, the nano-part removed the metals and sulphate partially whereas the bio-part effectively removed SO42─ and EC levels, thus denoting stellar combination and complementary performance for the hybrid system in integrated fashion. The state-of-the-art analytical instruments were used to underpin and succinct the fate of chemical species in raw and product MgO-NPs, substrates, and the grass. Finally, the product water conformed to the prescribed standards for effluent discharge hence proving that the synergy of neutralization and bio-remediation, i.e. nano-and-biotic system, could potentially yield the desired results in mine water management and afield. This will go a long way in curtailing ecological footprints associated with mining activities thus fostering the concept of sustainable development.


Subject(s)
Chrysopogon , Nanoparticles , Water Pollutants, Chemical , Acids , Magnesium Oxide , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Wetlands
6.
J Med Entomol ; 59(3): 891-902, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35094070

ABSTRACT

Efficacies of essential oils (EOs) of Vetiveria zizanioides (L.) Nash. (Poales: Poaceae) (VZ EO), Cananga odorata (Lam) Hook. F. & Thomson (Magnoliales: Annonaceae) (CO EO), and crude extract (CE) of Andrographis paniculata (Burm.F.) Wall ex. Nees (Lamiales: Acanthaceae) (AP CE), against laboratory (lab) and field strains of Culex quinquefasciatus Say were investigated. Irritant and repellent activities of individual and binary mixtures of plant extracts were compared with N,N-diethyl-m-toluamide (DEET) using an excito-repellency system. The irritant activity (direct tarsal contact), the mean percent escape response of VZ EO (91.67%, 83.33%), and CO EO (80%, 88.33%) were not significantly different compared with DEET (88.33%, 95%) against lab and field strains, respectively. Similarly, irritant responses in combinations (1:1 and 1:2, v:v) of either VZ EO or CO EO with AP CE were not significantly different from DEET against both strains (P > 0.001). The repellent activity (no tarsal contact), the mean percent escape response of VZ EO (68.33%), CO EO (61.67%), and VZ EO+AP CE (1:1, v:v) (81.67%) against lab strain and CO EO (85%) against field strain were not significantly different from that of DEET (P > 0.001). Interestingly, the greatest contact irritancy of VZ EO+AP CE (1:1, v:v) (96.67%) (P = 0.0026) and a stronger repellency response of CO EO (85%) (P = 0.0055) produced significantly different patterns of escape response compared with DEET against both lab and field strains, respectively. The EOs of VZ EO and CO EO or their mixture with AP CE showed potential as plant-based active ingredients for mosquito repellents. In addition, the major chemical constituents of VZ EO were ß-vetivone (6.4%), khusimol (2.96%), and α-vetivone (2.94%) by gas chromatograpy-mass spectrometry.


Subject(s)
Aedes , Culex , Culicidae , Insect Repellents , Oils, Volatile , Aedes/physiology , Animals , DEET , Insect Repellents/pharmacology , Irritants
7.
Bioresour Technol ; 345: 126475, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34864186

ABSTRACT

The study highlights the potential of Vetiveria Zizanioides derived biochar for heavy metal removal in multicomponent systems. Biochar efficiency varies with pH, metal ion concentration and residence time. Maximum removal efficiency was found to be 66.34, 67.23, 46.54, 69.92, 68.23 and 63.34% for Arsenic, Copper, Nickel, Cadmium, Lead and Chromium at 90 min respectively. Ternary system revealed that Copper ions have inhibitory effect on Lead ions and have lower adsorption capacity than binary system. Multicomponent isotherm model was used to analyse simultaneous adsorption of metal ions and shows a good fit with modified Langmuir model for binary and ternary systems. Fixed-bed column was tested for scale-up feasibility and maximum adsorption capacity of 139, 130, and 123 mg/g for Lead, Copper, and Nickel ions were obtained at 1.5 L/h and a bed height of 12 cm. In fixed bed column, multicomponent sequence provides more protection against premature exhaustion of biochar.


Subject(s)
Chrysopogon , Water Pollutants, Chemical , Adsorption , Charcoal , Hydrogen-Ion Concentration , Ions , Kinetics
8.
J Food Biochem ; 45(9): e13901, 2021 09.
Article in English | MEDLINE | ID: mdl-34396545

ABSTRACT

The nephroprotective effect of standardized aqueous root extract of Vetiveria zizanioides (L.) Nash (Family: Poaceae) was investigated in doxorubicin-induced (20 mg/kg, ip) experimental nephrotoxicity model of Wistar rats. The freeze-dried aqueous refluxed (4 hr) root extract of V. zizanioides (25, 50; equivalent human therapeutic dose and 100 mg/kg) was administered separately to nephrotoxic Wistar rats (n = 6/group). Supplement of V. zizanioides resulted a dose-dependent reduction in raised serum creatinine, ß2 -microglobulin, and blood urea nitrogen and a subsequent increase in serum total protein and albumin in nephrotoxic rats (p < .05). An attenuation of the doxorubicin-induced features of renal parenchymal injury was observed on H- and E-stained sections of the kidney tissues. Nootkatone, dehydroaromadendrene, isokhusenic acid, α-vetivone, and isolongifolene were identified in the methanol extract of V. zizanioides based on the GC-MS chromatogram analysis. The findings revealed that the supplement of standardized aqueous root extract of V. zizanioides had a significant dose-dependent nephroprotective activity against doxorubicin-induced experimental nephrotoxicity. PRACTICAL APPLICATIONS: Vetiveria zizanioides is a medicinal plant with a variety of therapeutic applications in kidney-related diseases. Apparently, it is used as a food ingredient due to its fresh and elegant scent and potential bioactivities. The aqueous root extract of V. zizanioides exerted relatively high antioxidant potential in vitro, substantiating the health effects of the plant pertaining to kidney diseases as a potential source of dietary antioxidant. The administration of the plant extract resulted in significant nephroprotection against doxorubicin-induced experimental nephrotoxicity revealing the significance of V. zizanioides as a promising dietary supplement in the management of kidney disease.


Subject(s)
Chrysopogon , Animals , Antioxidants , Dietary Supplements , Doxorubicin/toxicity , Rats , Rats, Wistar
9.
Environ Sci Pollut Res Int ; 28(32): 44216-44225, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33851293

ABSTRACT

Main aim of the present research is to explore the potential use of Vetiveria zizanioides L. for phytoremediation of arsenic, fluoride, and manganese simultaneously from synthetic wastewater in a batch scale floating platform unit. Half strength Hoagland's nutrient solution spiked with arsenic, fluoride, and manganese concentrations of 1, 20, and 10 mg/L, respectively has been used. The effects of pH and treatment time on simultaneous removal of arsenic, fluoride, and manganese have been performed. V. zizanioides has exhibited optimum growth at pH 8 and the removal of arsenic and fluoride is observed to be 59.6 and 38.1%, respectively. This plant has successfully removed all of the manganese (99.3%). The uptake of manganese is found to be faster than the arsenic and fluoride. The trend of arsenic, fluoride, and manganese accumulation in various parts of V. zizanioides is found as roots > stems > leaves. Result showed that the use of V. zizanioides would be appropriate to treat arsenic, fluoride, and manganese contaminated wastewater.


Subject(s)
Arsenic , Chrysopogon , Arsenic/analysis , Biodegradation, Environmental , Fluorides , Manganese , Wastewater
10.
Environ Sci Pollut Res Int ; 28(13): 15597-15606, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33534103

ABSTRACT

Vetiver has a broad history of traditional medicinal uses, but only a handful of research article has reported its utility in treating diseases. But unfortunately, no work has been reported on the anti-inflammatory activity of its plant extract and inflammatory-linked diseases. Hence, the present review focuses on investigating the several presumptions which can be put forward to explain its anti-inflammatory property. Thus, for ensuring the same, all the databases like science direct, PubMed, book chapters, and other authenticated papers were thoroughly studied to present a connection between inflammation and the plant potential. After gaining enough knowledge on pathogenesis of inflammation, it has been observed that the release of mediators from the arachidonic acid metabolism pathway and generation of oxidative and nitrogen species are presented as the main reason for the occurrence of inflammation condition. The stimulation of antioxidant enzyme system network by the plant extract reduces the level of oxidative stress, creating a balance between oxidant and antioxidant system. Moreover, its antimicrobial activity will prevent the biological source of stimulation towards injury and the CNS depressant effect will subside the pain of inflammation. Amalgamating all the factors together, the plant can be utilized as anti-inflammatory can be and also can be proved as a beneficial perspective in the treatment of inflammation-linked disorders.


Subject(s)
Chrysopogon , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Biodegradation, Environmental , Oxidative Stress , Plant Extracts/pharmacology
11.
Chemosphere ; 272: 129871, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35534964

ABSTRACT

The removal of nitrogen compounds from a pretreated explosives wastewater in vertical flow constructed wetland planted with Vetiveria zizanioides (0.24 m2 × 0.70 m), filled with light expanded clay aggregates (Leca®NR 10/20), was studied. Experiments under constant hydraulic load, 50 ± 4 L m-2 d-1 and 83 ± 5 L m-2 d-1 without and with flooding level (25%), respectively, were made at different ammonium (3-48 mg NH4+-N L-1), nitrate (56-160 mg NO3--N L-1) and nitrite (0.3-1.1 mg NO2--N L-1) concentrations. Results indicate that without flooding level (unsaturated) the removal efficiencies obtained were 30 ± 9, 7 ± 1 and 96 ± 2%, respectively to NH4+-N, NO3--N and NO2--N. When using flooding level and an external carbon source (C/N ratio from 1.3 ± 0.19 to 2.5 ± 0.20), the organic matter (COD) removal efficiencies were above 90%, 75% for NH4+-N and 55% to NO3--N. Increasing the C/N ratio from 2.9 ± 0.21 to 4 ± 0.22 did not contributed to upgrade the efficiencies of COD, NH4+-N and NO3--N removal. The denitrification process was occurred in aerobic conditions and nitrite production have ben occurred, probably due to the presence of aerobic conditions that inhibited partially denitrification.


Subject(s)
Explosive Agents , Wetlands , Denitrification , Nitrites , Nitrogen/analysis , Nitrogen Dioxide , Wastewater
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-950233

ABSTRACT

Objective: To decipher the responsible compound present in the aqueous root extract of Vetiveria zizanioides which has tremendous immunomodulatory activity. Methods: Different fractions of the water extract were collected and analyzed for immunomodulatory activity by analyzing in vitro phagocytic activity and nitric oxide production. One fraction VF3 was selected and further analyzed for possible compounds by high performance liquid chromatography and gas chromatography coupled with a mass spectrometer. The in vitro immunomodulatory parameters such as phagocytic index, nitrite content, and tumor necrosis factor-α production in murine macrophages were analyzed. In vivo studies, sheep red blood cell induced haemagglutination titer, the number of antibody-producing cells, and sheep red blood cell induced delayed-type hypersensitivity were analyzed. Cytotoxic studies in L929 normal fibroblasts were also performed. Results: One of the fractions, VF3, was selected and confirmed the presence of an active compound valencene. The in vitro immunomodulatory parameters were significantly (P<0.05) increased by valencene treatment. In vivo studies in Swiss albino mice showed that valencene could significantly (P<0.05) increase haemagglutination titer, the number of antibody-producing cells, and delayed-type hypersensitivity. Cytotoxic studies also showed that valencene did not cause any morphological changes and DNA damage in normal fibroblasts. Conclusions: Valencene possesses immunomodulatory activities and can be commercially exploited for its immunostimulatory potentials.

13.
Environ Geochem Health ; 42(11): 3995-4010, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32661876

ABSTRACT

Vetiver grass (Vetiveria zizanioides L. Nash) has a great application potential to the phytoremediation of heavy metals pollution. However, few studies explored the bioavailability and distribution of different speciations of As and Sb in V. zizanioides. This study aimed to clarify the allocation and accumulation of two inorganic species arsenic (As(III) and As(V)) and antimony (Sb(III) and Sb(V)) in V. zizanioides, to understand the self-defense mechanisms of V. zizanioides to these metal(loids) elements. Thus, an experiment was conducted under greenhouse conditions to identify distribution of As and Sb in plant roots and shoots. Antioxidant enzymes (superoxide dismutase, SOD) and changes of subcellular structures were tested to evaluate metal(loids) tolerance capacities of V. zizanioides. This study demonstrated that V. zizanioides had higher capacity to accumulate Sb than As. For Sb absorption, Sb(III) content is significantly higher than Sb(V) in tissues of V. zizanioides under all concentration levels, despite the oxidation of Sb(III) on the nutrient solution surface. Additional Sb was mainly accumulated in plant roots due to Sb immobilization by transforming it into precipitates. As was more easily transferred to aerial tissues and had low accumulation rates, probably due to its restricted uptake rather than restricted transport. In many cases, two inorganic species of As and Sb showed almost same biotoxicity to V. zizanioides estimated from its biomass, SOD activity, and MDA content as well as functional groups. In summary, the results of this study provide new insights into understanding allocation, accumulation and phytotoxicity effects of arsenic and antimony in V. zizanioides. Schematic diagram of distribution of and biochemical responses to As(III), As(V), Sb(III), and Sb(V) in tissue of V. zizanioides.


Subject(s)
Antimony/pharmacokinetics , Arsenic/pharmacokinetics , Chrysopogon/drug effects , Antimony/analysis , Arsenic/analysis , Bioaccumulation , Biodegradation, Environmental , Biological Availability , Biomass , Chrysopogon/physiology , Hydroponics , Malondialdehyde/metabolism , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Superoxide Dismutase/metabolism , Tissue Distribution
14.
Chemosphere ; 252: 126513, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32203784

ABSTRACT

Plants are known to remediate dyes, metals and emerging contaminants from wastewaters. Vetiveria zizanioides, a perennial bunchgrass showed removal of Remazol Red (RR, 100 mg/L) up to 93% within 40 h. Root and shoot tissues of V. zizanioides revealed induction in dye degrading enzymes viz. lignin peroxidase by 2.28 and 1.43, veratryl alcohol oxidase 2.72 and 1.60, laccase 6.15 and 3.55, and azo reductase 2.17 and 2.65-fold, respectively, during RR decolorization. Substantial increase was observed in the contents of chlorophyll a, chlorophyll b, and carotenoids in the plant leaves during treatment. Anatomical studies of roots, HPLC and GC-MS analysis of metabolites, and phytotoxicity assessment confirmed phytotransformation of RR into nontoxic metabolites. Floating phytobed with V. zizanioides treated textile wastewater (400 L) effectively and reduced ADMI, COD, BOD, TDS, and TSS by 74, 74, 81, 66 and 47%, respectively within 72 h. In-situ treatment of textile wastewater for 5 days in constructed furrows planted with semiaquatic plants, V. zizanioides, Ipomoea aquatica and its consortium-VI decreased ADMI by 68, 61 and 76%, COD by 75, 74 and 79%, BOD by 73, 71 and 84%, TDS by 77, 75 and 83%, and TSS by 34, 31 and 51%, respectively. This treatment was also useful to remove arsenic, cadmium, chromium and lead from wastewater. Overall observation suggests wise strategy to use this plantation in the furrows of high rate transpiration system and phytobeds in deep water for textile wastewater treatment.


Subject(s)
Waste Disposal, Fluid/methods , Biodegradation, Environmental , Chlorophyll A , Coloring Agents/metabolism , Gas Chromatography-Mass Spectrometry , Laccase , Peroxidases , Textile Industry , Textiles , Wastewater
15.
Environ Technol ; 41(17): 2196-2209, 2020 Jul.
Article in English | MEDLINE | ID: mdl-30526391

ABSTRACT

The aim of the study was to evaluate the nitrogen removal and its effects on the plant's growth and leaves morphology. using two subsurface vertical flow (VF bed), with different depths (0.24 m2 × 0.70 m; 0.24 m2 × 0.35 m) and nitrogen load increments. The VF bed were planted with Vetiveria zizanioides, filled with light expanded clay aggregates (Leca®NR 10/20) and fed in parallel mode with synthetic wastewater. High ammonium nitrogen concentration ([NH4 +-N] from 68 ± 3 to 290 ± 8 mg L-1) was used without toxicity symptoms in plants, although the effects of ammonium nitrogen load were stopped the growth of the plants. Significant differences between ammonium nitrogen removed in each VF bed obtained for total nitrogen (TNinfl.) ≥ 27 ± 0.8 g m-2 d-1. The nitrification was contributed to ammonium nitrogen removal because was found higher values of nitrate and nitrite in the effluent. These values were more higher in VF bed 1 than in the VF bed 2, since ammonium nitrogen removal were also more higher in VF bed 1 than in the VF bed 2. Total nitrogen mass balance was carried out and the results show that the nitrification/denitrification process occurred with nitrogen plants uptake. It was observed that the VF bed depth has an influence on all nitrogen removal processes. As higher the depth root system it is seemed to favour the creation of zones with different oxidations conditions that allow the nitrogen compounds to be removed intensively.


Subject(s)
Nitrogen , Wetlands , Denitrification , Waste Disposal, Fluid , Wastewater
16.
Regul Toxicol Pharmacol ; 107: 104389, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31176744

ABSTRACT

On the basis of the safety assessment carried out using a conservative approach, the SCCS considers the use of Acetylated Vetiver Oil (AVO) with 1% alpha-tocopherol as a fragrance ingredient in cosmetic leave-on and rinse-off type products safe at the concentrations proposed by IFRA. Acetylated Vetiver Oil (AVO) contains some constituents that belong to the chemical group of aldehydes and ketones that are known to be reactive towards biological entities, such as DNA and proteins. However, the overall health risk of such components is likely to be negligible at the concentrations intended to be used in cosmetics products. The SCCS has noted that Acetylated Vetiver Oil (AVO) is a moderate skin sensitiser in test animals. Considering the results of the HRIPT study and the fact that AVO has been used for years in cosmetics without evidence of sensitising potential, it is unlikely that AVO would be causing contact allergy in humans. Inhalation toxicity of Acetylated Vetiver Oil (AVO) was not assessed in this Opinion because no data were provided. Assessment of the inhalation risk would be needed if Acetylated Vetiver Oil (AVO) was intended to be used in sprayable products.


Subject(s)
Chrysopogon , Perfume/toxicity , Plant Extracts/toxicity , Plant Oils/toxicity , Acetylation , Consumer Product Safety , Humans , Plant Roots
17.
J Nematol ; 50(2): 147-162, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30451435

ABSTRACT

Vetiver, a nonhost grass for certain nematodes, was studied for the production of compounds active against the southern root-knot nematode, Meloidogyne incognita . In laboratory assays studying the effects on second-stage juvenile (J2) activity and viability, crude vetiver root and shoot extracts were nematotoxic, resulting in 40% to 70% J2 mortality, and were also repellent to J2. Vetiver oil did not exhibit activity against J2 in these assays. Gas chromatography-mass spectrometry analyses of three crude vetiver root ethanol extracts and a commercial vetiver oil determined that two of the major components in each sample were the sesquiterpene acid 3,3,8,8-tetramethyltricyclo[5.1.0.0(2,4)]oct-5-ene-5-propanoic acid and the sesquiterpene alcohol 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-ol. The acid was present in higher amounts in the extracts than in the oil. These studies demonstrating nematotoxicity and repellency of vetiver-derived compounds to M. incognita suggest that plant chemistry plays a role in the nonhost status of vetiver to root-knot nematodes, and that the chemical constituents of vetiver may be useful for suppressing nematode populations in the soil.

18.
J Appl Microbiol ; 124(6): 1425-1440, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29431875

ABSTRACT

AIM: Serratia marcescens is an important multidrug-resistant human pathogen. The pathogenicity of S. marcescens mainly depends on the quorum sensing (QS) mechanism, which regulates the virulence factors production and biofilm formation. Hence, targeting QS mechanism in S. marcescens will ultimately pave the way to combat its pathogenicity. Thus, the present study is intended to evaluate the efficacy of Vetiveria zizanioides root extract-mediated silver nanoparticles (AgNPs) as a potent anti-QS and antibiofilm agent against S. marcescens. METHODS AND RESULTS: The AgNPs were synthesized using V. zizanioides aqueous root extract and the physiochemical properties of V. zizanioides-based AgNPs (VzAgNPs) were evaluated using analytical techniques such as ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering and scanning and transmission electron microscopic techniques. VzAgNPs were found to attenuate the QS-dependent virulence factors, namely prodigiosin, protease, lipase, exopolysaccharide productions and biofilm formation of S. marcescens, without inhibiting its growth. Further, the transcriptomic analysis confirmed the down-regulation of QS-dependent genes, which encode for the production of virulence factors and biofilm formation. CONCLUSION: The current study confirms VzAgNPs as an ideal anti-QS and antibiofilm agent against S. marcescens. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first approach that validates the anti-QS and antibiofilm potential of phytosynthesized VzAgNPs against the nosocomial pathogen, S. marcescens. As VzAgNPs exhibits potent antivirulent activities, it could be used to treat hospital-acquired S. marcescens infections.


Subject(s)
Anti-Bacterial Agents/metabolism , Biofilms/drug effects , Chrysopogon/chemistry , Cross Infection/microbiology , Metal Nanoparticles/chemistry , Serratia marcescens/drug effects , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Chrysopogon/metabolism , Humans , Quorum Sensing/drug effects , Serratia marcescens/genetics , Serratia marcescens/physiology , Silver/chemistry , Silver/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
19.
J Environ Manage ; 211: 247-255, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29408073

ABSTRACT

Soil pollution in Israel, due to diesel contamination, is a major concern, with gas stations, factories and refineries being the main polluters (>60%). Vetiver grass (Vetiveria zizanioides L.) is a perennial grass belonging to the Poaceae family, and is recognized world-wide for its potential as a plant with phytoremediation traits to contaminated soils. It is demonstrated here to decrease diesel contamination in field and court-yard trials. Chemical soil analysis indicated up to a 79% decrease (P < .05) in diesel pollution of contaminated soil planted with Vetiver; and at high soil contamination levels of 10 L/m2, a significant (P < .05) reduction of 96, 96 and 87% was recorded at soil depths of 0-20, 20-40 and 40-60 cm, respectively. Furthermore, in field plots contaminated with diesel and planted with Vetiver, weeds' biomass recovered to non-polluted levels following 8 to 9 months of Vetiver treatment. An economic evaluation conducted based on the cost-benefit analysis (CBA) principles, utilizing the Net Present Value (NPV) compared phytoremediation to other currently used decontamination procedures. The economic comparison showed that phytoremediation cleanup costs are lower and more beneficial to society at large, primarily from an ecosystem services perspective. Combining the results of the agronomic examination with the economic valuation, this research pointed out that phytoremediation with Vetiver has a non-negligible potential, making it a good solution for cleansing diesel from soils on a state-wide scale in Israel and worthy of further research and development.


Subject(s)
Biodegradation, Environmental , Chrysopogon , Cost-Benefit Analysis , Israel , Soil , Soil Pollutants
20.
Medicines (Basel) ; 4(2)2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28930256

ABSTRACT

Background: Vetiver is a key ingredient for the perfume industry nowadays. However, with the constant and rapid changes of personal tastes, this appeal could vanish and this sector could decline quite quickly. New dissemination paths need to be found to tap this valuable resource. Methods: In this way, its potential use in cosmetics either as an active ingredient per se (with cosmeceutical significance or presenting antimicrobial activity) has hence been explored in vitro. Results: In this contribution, we demonstrated that vetiver essential oil displays no particularly significant and innovative cosmetic potential value in formulations apart from its scent already largely exploited. However, evaluated against twenty bacterial strains and two Candida species using the in vitro microbroth dilution method, vetiver oil demonstrated notably some outstanding activities against Gram-positive strains and against one Candida glabrata strain. Conclusions: Based on these findings, vetiver essential oil appears to be an appropriate aspirant for the development of an antimicrobial agent for medicinal purposes and for the development of a cosmetic ingredient used for its scent and displaying antimicrobial activity as an added value.

SELECTION OF CITATIONS
SEARCH DETAIL
...