Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.135
Filter
1.
Microbiol Spectr ; : e0017524, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832768

ABSTRACT

Vibrio parahaemolyticus is a threat to human health and one of the leading bacterial causes of seafood-borne infection worldwide. This pathogen is autochtonous in the marine environment and is able to acquire antimicrobial resistance (AMR) mechanisms, which is a global concern. However, the emergence of AMR V. parahaemolyticus strains in seafood is still understudied, as interpretation criteria for this species for antimicrobial susceptibility tests are limited in the literature. In this study, we investigated the susceptibility profiles to clinically important antibiotics and the associated genetic determinants of V. parahaemolyticus isolates cultured from imported shrimps. Based on the analysis of the resistance phenotypes of 304 V. parahaemolyticus isolates, we have defined experimental epidemiological cutoff values (COWT) for 14/15 antibiotics tested. We observed that 19.1% of the bacterial isolates had acquired resistance to at least one antibiotic class. The highest number of resistance was associated with tetracycline (14.5% of the strains) and trimethoprim-sulfamethoxazole (3.6%). Moreover, seven strains were multidrug-resistant (MDR, resistant to at least three antibiotic classes). The most frequently identified genes in these strains were aph(3″)-Ib/aph(6)-Id (aminoglycoside resistance), sul2 (sulfonamide), tet(59) (tetracycline), and floR (chloramphenicol). The SXT/R391 family ICE and class 1 integron-integrase genes were detected by PCR in three and one MDR V. parahaemolyticus strains, respectively. Consequently, V. parahaemolyticus in seafood can act as a reservoir of AMR, constituting a health risk for the consumer.IMPORTANCEOur study on "Antimicrobial Resistance Profiles and Genetic Determinants of Vibrio parahaemolyticus Isolates from Imported Shrimps" addresses a critical gap in understanding the emergence of antimicrobial resistance (AMR) in this seafood-associated pathogen. Vibrio parahaemolyticus is a major cause of global seafood-borne infections, and our research reveals that 19.1% of isolates from imported shrimps display resistance to at least one antibiotic class, with multidrug resistance observed in seven strains. Importantly, we establish experimental epidemiological cutoff values for antibiotic susceptibility, providing valuable criteria specific to V. parahaemolyticus. Our findings underscore the potential risk to consumers, emphasizing the need for vigilant monitoring and intervention strategies. This study significantly contributes to the comprehension of AMR dynamics in V. parahaemolyticus, offering crucial insights for global public health. The dissemination of our research through Microbiology Spectrum ensures broad accessibility and impact within the scientific community and beyond.

2.
Fish Shellfish Immunol ; 151: 109680, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849108

ABSTRACT

This study investigated the effects of Cinnamomum osmophloeum leaf hot-water extract (CLWE) on nonspecific immune responses and resistance to Vibrio parahaemolyticus in white shrimp (Penaeus vannamei). Firstly, a cell viability assay demonstrated that the CLWE is safe to white shrimp heamocytes in the concentration of 0-500 mg L-1. Haemocytes incubated in vitro with 10 and 50 mg L-1 of CLWE showed significantly higher response in superoxide anion production, PO activity, and phagocytic activity. In the in vivo trials, white shrimp were fed with 0, 0.5, 1, 5, and 10 g kg-1 CLWE supplemented feeds (designated as CLWE 0, CLWE 0.5, CLWE 1, CLWE 5, and CLWE 10, respectively) over a period of 28 days. In vivo experiments demonstrated that CLWE 0.5 feeding group resulted in the highest total haemocyte count, superoxide anion production, phenoloxidase activity, and phagocytic activity. Moreover, CLWE 0.5 supplemented feed significantly upregulated the clotting system, antimicrobial peptides, pattern recognition receptors, pattern recognition proteins, and antioxidant defences in white shrimp. Furthermore, the shrimp were infected with V. parahaemolyticus injections after 14 days of feeding as challenge test. Based on the challenge test result, both CLWE 0.5 and CLWE 5 demonstrated a strong resistance to V. parahaemolyticus. These two dosages effectively reduced the number of nonviable cells and activated different haemocyte subpopulations. These findings indicated that treatment with CLWE 0.5 could promote nonspecific immune responses, immune-related gene expression, and resistance to V. parahaemolyticus in white shrimp.

3.
Food Chem ; 456: 139915, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38852451

ABSTRACT

Vibrio parahaemolyticus is a food-borne pathogen that poses a serious threat to seafood safety and human health. An efficient, nontoxic, and sustainable disinfection material with a stable structure is urgently needed. Herein, silver (Ag)-hydroxyapatite (HAP) composite catalysts were prepared using HAP derived from waste fish bones. The Ag2.50%-HAP showed a 100% disinfection rate against V. parahaemolyticus, disinfecting nearly 7.0 lg CFU mL-1 within 15 min at a low concentration of 300 µg mL-1. This efficient disinfection activity could be attributed to the double-synergistic effect of Ag and superoxide radicals, which resulted in the destruction of bacterial cell structures and the leakage of intracellular proteins. Importantly, the composite also exhibited high activity in controlling the growth of pathogens during the storage process of Penaeus vannamei. These findings provided sustainable composite catalysts for disinfecting V. parahaemolyticus in seafood and a high-value utilization strategy for waste fish bones.

4.
Microbiol Resour Announc ; : e0035224, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864604

ABSTRACT

A Pacific native lineage of Vibrio parahaemolyticus ST36 serotype O4:K12 was introduced into the Atlantic, which increased local source illnesses. To identify genetic determinants of virulence and ecological resiliency and track their transfer into endemic populations, we constructed a complete genome of a 2013 Atlantic-traced clinical isolate by hybrid assembly.

5.
Front Microbiol ; 15: 1340429, 2024.
Article in English | MEDLINE | ID: mdl-38881663

ABSTRACT

Calcium (Ca2+) can regulate the swarming motility and virulence of Vibrio parahaemolyticus BB22. However, the effects of Ca2+ on the physiology of V. parahaemolyticus RIMD2210633, whose genomic composition is quite different with that of BB22, have not been investigated. In this study, the results of phenotypic assays showed that the biofilm formation, c-di-GMP production, swimming motility, zebrafish survival rate, cytoxicity against HeLa cells, and adherence activity to HeLa cells of V. parahaemolyticus RIMD2210633 were significantly enhanced by Ca2+. However, Ca2+ had no effect on the growth, swarming motility, capsular polysaccharide (CPS) phase variation and hemolytic activity. The RNA sequencing (RNA-seq) assay disclosed 459 significantly differentially expressed genes (DEGs) in response to Ca2+, including biofilm formation-associated genes and those encode virulence factors and putative regulators. DEGs involved in polar flagellum and T3SS1 were upregulated, whereas majority of those involved in regulatory functions and c-di-GMP metabolism were downregulated. The work helps us understand how Ca2+ affects the behavior and gene expression of V. parahaemolyticus RIMD2210633.

6.
Appl Environ Microbiol ; 90(6): e0006524, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38775491

ABSTRACT

CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.


Subject(s)
Vibrio vulnificus , Vibrio , Vibrio/genetics , Vibrio vulnificus/genetics , Vibrio parahaemolyticus/genetics , Gene Expression Regulation, Bacterial , CRISPR-Cas Systems , Vibrio cholerae/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockdown Techniques , Aliivibrio fischeri/genetics
7.
Appl Environ Microbiol ; 90(6): e0053924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38809043

ABSTRACT

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Subject(s)
Anti-Bacterial Agents , Bays , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/isolation & purification , Vibrio vulnificus/drug effects , Vibrio vulnificus/isolation & purification , Vibrio vulnificus/growth & development , Bays/microbiology , Anti-Bacterial Agents/pharmacology , Longitudinal Studies , Maryland , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Vibrio Infections/microbiology , Humans
8.
J Invertebr Pathol ; 205: 108142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788921

ABSTRACT

This study aims to investigate the use of pond apple (Annona glabra) compounds as a novel strategy to prevent and treat acute hepatopancreatic necrosis disease (AHPND) as well as to better understand the mechanism of health improvement in shrimp. The A. glabra leaf extracts were extracted using various solvents and examined for in vitro and in vivo activity against Vibrio parahaemolyticus strains. In comparison with ethanol and water extracts, methanol extract showed the strongest bactericidal effect (MBC/MIC ratio of 2.50 ± 1.00), with minimal inhibitory concentration (MIC) of 0.023 ± 0.012 mg ml-1 and minimum bactericidal concentration (MBC) of 0.065 ± 0.062 mg ml-1. White leg shrimp (P. vannamei, body weight 10.37 ± 0.27 g) fed A. glabra methanol extracts-containing diets (AMEDs) at 1 %, 1.5 %, and 2.0 % demonstrated no deleterious effects on survival and were significantly increased in length and weight after 30 days of feeding. The level of total haemocyte, hyaline haemocyte on day 15 and granulocyte on day 30 remarkably increased (p < 0.05) in shrimps fed AMEDs groups compared to those in the control group. The finding demonstrates that granulocyte was induced time dependently. In particular, the survival rate of V. parahaemolyticus challenged shrimps under medication with AMEDs at 1.5 % and 2.0 % was significantly higher (p < 0.05) than that of the control group. The decrease in bacterial load of Vibrio spp. and V. parahaemolyticus was obviously recorded in hepatopancreas shrimp given AMEDs 1.5 % and 2.0 % and may be linked to herb characteristics such as antibacterial activity, enhancing innate immunity, and its potential to maintain the integrity of hepatopancreatic tissue. Our findings suggest that A. glabra extract might be used as a health enhancer in commercial farmed shrimp.


Subject(s)
Annona , Hepatopancreas , Penaeidae , Plant Extracts , Vibrio parahaemolyticus , Animals , Penaeidae/microbiology , Penaeidae/drug effects , Plant Extracts/pharmacology , Vibrio parahaemolyticus/drug effects , Annona/chemistry , Hepatopancreas/drug effects , Hepatopancreas/pathology , Anti-Bacterial Agents/pharmacology
9.
Microbiol Res ; 285: 127744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735242

ABSTRACT

Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with seafood consumption worldwide. Not all members of the species are thought to be pathogenic, thus identification of virulent organisms is essential to protect public health and the seafood industry. Correlations of human disease and known genetic markers (e.g. thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH)) appear complex. Some isolates recovered from patients lack these factors, while their presence has become increasingly noted in isolates recovered from the environment. Here, we used whole-genome sequencing in combination with mammalian and insect models of infection to assess the pathogenic potential of V. parahaemolyticus isolated from European Atlantic shellfish production areas. We found environmental V. parahaemolyticus isolates harboured multiple virulence-associated genes, including TDH and/or TRH. However, carriage of these factors did not necessarily reflect virulence in the mammalian intestine, as an isolate containing TDH and the genes coding for a type 3 secretion system (T3SS) 2α virulence determinant, appeared avirulent. Moreover, environmental V. parahaemolyticus lacking TDH or TRH could be assigned to groups causing low and high levels of mortality in insect larvae, with experiments using defined bacterial mutants showing that a functional T3SS1 contributed to larval death. When taken together, our findings highlight the genetic diversity of V. parahaemolyticus isolates found in the environment, their potential to cause disease and the need for a more systematic evaluation of virulence in diverse V. parahaemolyticus to allow better genetic markers.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Vibrio Infections , Vibrio parahaemolyticus , Virulence Factors , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/classification , Vibrio parahaemolyticus/isolation & purification , Animals , Virulence/genetics , Europe , Hemolysin Proteins/genetics , Virulence Factors/genetics , Vibrio Infections/microbiology , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Humans , Whole Genome Sequencing , Phenotype , Shellfish/microbiology , Larva/microbiology , Type III Secretion Systems/genetics , Genome, Bacterial , Seafood/microbiology
10.
Aquat Toxicol ; 272: 106959, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768528

ABSTRACT

As one of the main components of marine pollution, microplastics (MPs) inevitably enter the mussel aquaculture environment. At the same time, pathogenic bacteria, especially pathogens such as Vibrio, can cause illness outbreaks, leading to large-scale death of mussels. The potential harm of MPs and pathogenic bacteria to bivalve remains unclear. This study designed two experiments (1) mussels (Mytilus galloprovincialis) were exposed to 100 particles/L or 1,000 particles/L polymethyl methacrylate (PMMA, 17.01 ± 6.74 µm) MPs and 1 × 107 CFU/mL Vibrio parahaemolyticus at the same time (14 days), and (2) mussels were exposed to 100 particles/L or 1,000 particles/L MPs for a long time (30 days) and then exposed to 1 × 107 CFU/mL V. parahaemolyticus to explore the effects of these two stresses on the mussel immune system. The results showed that after the combined exposure of V. parahaemolyticus and MPs, the lysosomal membrane stability of hemocytes decreased, lysozyme activity was inhibited, and hemocytes were induced to produce more lectins and defensins to fight pathogenic invasion. Long-term exposure to MPs caused a large amount of energy consumption in mussels, inhibited most of the functions of humoral immunity, increased the risk of mussel infection with pathogenic bacteria, and negatively affected mussel condition factor, the number of hemocytes, and the number of byssuses. Mussels may allocate more energy to deal with MPs and pathogenic bacterial infections rather than for growth. Above all, MPs exposure can affect mussel immune function or reduce its stress resistance, which in turn has an impact on mollusk farming.


Subject(s)
Hemocytes , Microplastics , Mytilus , Vibrio parahaemolyticus , Water Pollutants, Chemical , Animals , Mytilus/microbiology , Mytilus/drug effects , Mytilus/immunology , Microplastics/toxicity , Vibrio parahaemolyticus/physiology , Vibrio parahaemolyticus/drug effects , Water Pollutants, Chemical/toxicity , Hemocytes/drug effects , Hemocytes/immunology , Muramidase/metabolism , Immune System/drug effects
11.
Biology (Basel) ; 13(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785782

ABSTRACT

Vibrio parahaemolyticus is one of the main causative agents leading to acute hepatopancreatic necrosis disease, the severe bacterial disease that occurs during shrimp aquaculture. Hemocytes play important roles during Vibrio infection. Previously, we found that there were few differentially expressed genes (DEGs) between hemocytes from V. parahaemolyticus-resistant and -susceptible shrimp before infection. We considered that there should be different immune responses between them after a pathogen infection. Here, the transcriptome data of hemocytes from V. parahaemolyticus-resistant and -susceptible shrimp before and after a pathogen infection were compared. The results showed that there were 157 DEGs responsive to infection in V. parahaemolyticus-resistant shrimp, while 33 DEGs in V. parahaemolyticus-susceptible shrimp. DEGs in V. parahaemolyticus-resistant shrimp were mainly related to immune and glycolytic processes, while those in V. parahaemolyticus-susceptible shrimp were mainly related to metabolism, with only two DEGs in common. A further analysis of genes involved in glucose metabolism revealed that GLUT2, HK, FBP, and PCK1 were lowly expressed while PC were highly expressed in hemocytes of the V. parahaemolyticus-resistant shrimp, indicating that glucose metabolism in shrimp hemocytes was related to a V. parahaemolyticus infection. After the knockdown of PC, the expression of genes in Toll and IMD signaling pathways were down-regulated, indicating that glucose metabolism might function through regulating host immunity during V. parahaemolyticus infection. The results suggest that the immune responses between V. parahaemolyticus-resistant and -susceptible shrimp were apparently different, which probably contribute to their different V. parahaemolyticus resistance abilities.

12.
Int J Food Microbiol ; 418: 110737, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38749264

ABSTRACT

Prevalent in marine, estuarine and coastal environments, Vibrio parahaemolyticus is one of the major foodborne pathogens which can cause acute gastroenteritis through consumption of contaminated food. This study encompassed antimicrobial resistance, molecular characteristics and phylogenetic relationships of 163 V. parahaemolyticus isolated from aquatic foods across 15 provinces in China. The isolates showed high resistance rates against ampicillin (90.80 %, 148/163) and cefazolin (72.39 %, 118/163). Only 5 isolates demonstrated multi-drug resistance (MDR) phenotypes. A total of 37 different antibiotic resistance genes (ARGs) in correlation with seven antimicrobial categories were identified. tet(34) and tet(35) were present in all 163 isolates. Other most prevalent ARGs were those conferring resistance to ß-lactams, with prevalence rate around 18.40 % (30/163). The virulence genes tdh and trh were found in 17 (10.43 %) and 9 (5.52 %) isolates, respectively. Totally 121 sequence types (STs) were identified through whole genome analysis, among which 60 were novel. The most prevalent sequence type was ST3 (9.20 %, 15/163), which shared the same genotype profile of trh_, tdh+ and blaCARB-22+. Most of the tdh+V. parahaemolyticus isolates was clustered into a distinctive clade by the phylogenetic analysis. Our study showed that the antimicrobial resistance of V. parahaemolyticus in aquatic foods in China was moderate. However, the emerging of MDR isolates implicate strengthened monitoring is needed for the better treatment of human V. parahaemolyticus infections. High genetic diversity and virulence potential of the isolates analyzed in this study help better understanding and evaluating the risk of V. parahaemolyticus posed to public health.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Phylogeny , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/classification , China/epidemiology , Anti-Bacterial Agents/pharmacology , Food Microbiology , Seafood/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Virulence Factors/genetics , Humans , Genotype
13.
Fish Shellfish Immunol ; 149: 109609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705549

ABSTRACT

As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.


Subject(s)
Arthropod Proteins , Brachyura , Immunity, Innate , Phylogeny , Toll-Like Receptors , Vibrio parahaemolyticus , Animals , Brachyura/immunology , Brachyura/genetics , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Vibrio parahaemolyticus/physiology , Gene Expression Regulation/immunology , Amino Acid Sequence , Sequence Alignment , Gene Expression Profiling , Poly I-C/pharmacology
14.
Foods ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731737

ABSTRACT

This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.

15.
Foodborne Pathog Dis ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757692

ABSTRACT

Vibrio parahaemolyticus is a common foodborne pathogenic bacterium. With the overuse of antibiotics, an increasing proportion of drug-resistant strains are emerging, which puts enormous pressure on public health. In this study, a V. parahaemolyticus-specific phage, VP41s3, was isolated. The head length, width, and tail length of the phage were 77.7 nm, 72.2 nm, and 17.5 nm, respectively. It remained active in the temperature range of 30-50°C and pH range of 4-11. The lytic curve of phage VP41s3 showed that the host bacteria did not grow until 11 h under phage treatment at MOI of 1000, indicating that the phage had good bacteriostatic ability. When it was added to shellfish contaminated with V. parahaemolyticus (15°C, 48 h), the number of bacteria in the experimental group was 2.11 log10 CFU/mL lower than that in the control group at 24 h. Furthermore, genomic characterization and phylogenetic analysis indicated that phage VP41s3 was a new member of the Podoviridae family. The genome contained 50 open reading frames (ORFs), in which the ORF19 (thymidine kinase) was an enzyme involved in the pyrimidine salvage pathway, which might lead to the accelerated DNA synthesis efficiency after phage entered into host cells. This study not only contributed to the improvement of phage database and the development of beneficial phage resources but also revealed the potential application of phage VP41s3 in food hygiene and safety.

16.
Int J Food Microbiol ; 418: 110714, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38677238

ABSTRACT

Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.


Subject(s)
Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Vibrio Infections , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Biofilms/growth & development , Animals , Virulence/genetics , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Vibrio Infections/microbiology , Female
17.
Int J Food Microbiol ; 417: 110691, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38631283

ABSTRACT

The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.


Subject(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/growth & development , Vibrio parahaemolyticus/metabolism , Seafood/microbiology , Proteomics , Virulence , Food Microbiology , Humans , Transcriptome , Animals
18.
Mar Biotechnol (NY) ; 26(3): 550-561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647908

ABSTRACT

This study assessed the effects of dietary supplementation of poly-ß-hydroxybutyrate (PHB) on growth performance, feed efficiency, non-specific immunity, digestive enzyme capacity, phagocytic activity, hemocyte count, intestinal morphology, and disease resistance against Vibrio parahaemolyticus of Pacific white shrimp (Penaeus vannamei). Six diets were prepared by supplementing graded levels of PHB at 0.00, 0.25, 0.50, 1.00, 2.00, and 4.00% (Con, P0.25, P0.5, P1.0, P2.0, and P4.0, respectively). Triplicate groups of 90 shrimps (initial body weight 0.25 ± 0.01 g) per treatment were randomly assigned and fed an experimental diet for 56 days. The growth performance of shrimp was significantly improved by 1% dietary PHB supplementation. PHB-included diets fed shrimp showed significantly improved hepatopancreatic trypsin, chymotrypsin, and pepsin activities. Villus height was significantly increased with dietary PHB supplementation, and villus width was increased at a 1% inclusion level. P0.25, P0.5, and P4.0 groups significantly increased phenoloxidase activity, and the P2.0 group significantly increased anti-protease activity compared to the Con group. The survival of shrimp challenged against V. parahaemolyticus was higher in P0.5, P1.0, and P2.0 groups than in the Con diet. Dietary PHB supplementation improved weight gain, digestive enzyme activity, intestinal morphology, non-specific immunity, and disease resistance against V. parahaemolyticus of shrimp. According to the above observations, the optimal dietary PHB supplementation level for maximum weight gain would be 1% for Pacific white shrimp.


Subject(s)
Animal Feed , Dietary Supplements , Hydroxybutyrates , Intestines , Penaeidae , Polyesters , Vibrio parahaemolyticus , Animals , Penaeidae/microbiology , Penaeidae/growth & development , Penaeidae/immunology , Hydroxybutyrates/pharmacology , Disease Resistance/drug effects , Phagocytosis/drug effects , Diet/veterinary , Immunity, Innate/drug effects , Hemocytes/drug effects , Polyhydroxybutyrates
19.
Front Microbiol ; 15: 1379341, 2024.
Article in English | MEDLINE | ID: mdl-38596374

ABSTRACT

The objective of this study is to optimize the ultrasonic-assisted extraction process of Ku Shen (Sophorae Flavescentis Radix) extracts (KSE) against Vibrio parahaemolyticus and explore their anti-biofilm activity and mechanism of action. The ultrasonic-assisted extraction process of KSE optimized by single factor experiment, Box-Behnken design and response surface methodology was as follows: 93% ethanol as solvent, liquid/material ratio of 30 mL/g, ultrasonic power of 500 W, extraction temperature of 80°C and time of 30 min. Under these conditions, the diameter of inhibition circle of KSE was 15.60 ± 0.17 mm, which had no significant difference with the predicted value. The yield of dried KSE is 32.32 ± 0.57% and the content of total flavonoids in KSE was 57.02 ± 5.54%. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of KSE against V. parahaemolyticus were 0.25 and 0.5 mg/mL, respectively. Crystal violet staining, Congo red plate, spectrophotometry, CCK-8 and scanning electron microscopy were used to investigate the activity and mechanism of action of KSE against V. parahaemolyticus biofilm. The results showed that the sub-MIC of KSE could significantly inhibit biofilm formation, reduce the synthesis of polysaccharide intercellular adhesin (PIA) and the secretion of extracellular DNA. In addition, the inhibition rate of biofilm formation and clearance rate of mature biofilm of 1.0 mg/mL KSE were 85.32 and 74.04%, and the reduction rate of metabolic activity of developing and mature biofilm were 77.98 and 74.46%, respectively. These results were confirmed by visual images obtained by scanning electron microscopy. Therefore, KSE has the potential to further isolate the anti-biofilm agent and evaluate it for the preservation process of aquatic products.

20.
Biofilm ; 7: 100194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577556

ABSTRACT

Vibrio parahaemolyticus is widely distributed in marine ecosystems. Magnesium ion (Mg2+) is the second most abundant metal cation in seawater, and plays important roles in the growth and gene expression of V. parahaemolyticus, but lacks the detailed mechanisms. In this study, the RNA sequencing data demonstrated that a total of 1494 genes was significantly regulated by Mg2+. The majority of the genes associated with lateral flagella, exopolysaccharide, type III secretion system 2, type VI secretion system (T6SS) 1, T6SS2, and thermostable direct hemolysin were downregulated. A total of 18 genes that may be involved in c-di-GMP metabolism and more than 80 genes encoding putative regulators were also significantly and differentially expressed in response to Mg2+, indicating that the adaptation process to Mg2+ stress may be strictly regulated by complex regulatory networks. In addition, Mg2+ promoted the proliferative speed, swimming motility and cell adhesion of V. parahaemolyticus, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg2+ had no effect on the production of capsular polysaccharide and cytoxicity against HeLa cells. Therefore, Mg2+ had a comprehensive impact on the physiology and gene expression of V. parahaemolyticus.

SELECTION OF CITATIONS
SEARCH DETAIL
...