Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.176
Filter
1.
J Hazard Mater ; 479: 135646, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39217938

ABSTRACT

Vibrio parahaemolyticus and microplastics are prevalent in the ocean. Bacteria attach onto plastic particles, forming harmful biofilms that collectively threaten bivalve health. This study investigates the interaction between polyamide microplastics (PA: particle size 38 ± 12 µm) and V. parahaemolyticus, as well as their combined impact on thick-shelled mussels (Mytilus coruscus). We introduced 1011 CFU/L of V. parahaemolyticus into varying PA concentrations (0, 5, 50, and 500 particles/L) to observe growth over 14 h and biofilm formation after 48 h. Our findings indicate that microplastics suppress biofilm formation and virulence gene expression. Four treatments were established to monitor mussel responses: a control group without PA or V. parahaemolyticus; a group with 50 particles/L PA; a group with 1011 CFU/L V. parahaemolyticus; and a co-exposure group with both 50 particles/L PA and 1011 CFU/L V. parahaemolyticus, over a 14-day experiment. However, combined stress from microplastics and Vibrio led to immune dysregulation in mussels, resulting in intestinal damage and microbiome disruption. Notably, V. parahaemolyticus had a more severe impact on mussels than microplastics alone, yet their coexistence reduced some harmful effects. This study is the first to explore the interaction between microplastics and V. parahaemolyticus, providing important insights for ecological risk assessments.

2.
Front Microbiol ; 15: 1436770, 2024.
Article in English | MEDLINE | ID: mdl-39144210

ABSTRACT

Vibrio parahaemolyticus is a gram-negative halophilic bacterium widespread in temperate and tropical coastal waters; it is considered to be the most frequent cause of Vibrio-associated gastroenteritis in many countries. BolA-like proteins, which reportedly affect various growth and metabolic processes including flagellar synthesis in bacteria, are widely conserved from prokaryotes to eukaryotes. However, the effects exerted by BolA-like proteins on V. parahaemolyticus remain unclear, and thus require further investigation. In this study, our purpose was to investigate the role played by BolA-like protein (IbaG) in the pathogenicity of V. parahaemolyticus. We used homologous recombination to obtain the deletion strain ΔibaG and investigated the biological role of BolA family protein IbaG in V. parahaemolyticus. Our results showed that IbaG is a bacterial transcription factor that negatively modulates swimming capacity. Furthermore, overexpressing IbaG enhanced the capabilities of V. parahaemolyticus for swarming and biofilm formation. In addition, inactivation of ibaG in V. parahaemolyticus SH112 impaired its capacity for colonizing the heart, liver, spleen, and kidneys, and reduced visceral tissue damage, thereby leading to diminished virulence, compared with the wild-type strain. Finally, RNA-sequencing revealed 53 upregulated and 71 downregulated genes in the deletion strain ΔibaG. KEGG enrichment analysis showed that the two-component system, quorum sensing, bacterial secretion system, and numerous amino acid metabolism pathways had been altered due to the inactivation of ibaG. The results of this study indicated that IbaG exerts a considerable effect on gene regulation, motility, biofilm formation, and pathogenicity of V. parahaemolyticus. To the best of our knowledge, this is the first systematic study on the role played by IbaG in V. parahaemolyticus infections. Thus, our findings may lead to a better understanding of the metabolic processes involved in bacterial infections and provide a basis for the prevention and control of such infections.

3.
Front Microbiol ; 15: 1437660, 2024.
Article in English | MEDLINE | ID: mdl-39144225

ABSTRACT

Objectives: The purpose of this study was to determine the structural features and transferability of the multidrug-resistance (MDR) plasmid, and resistance phenotypes for the tested antimicrobials in foodborne Vibrio parahaemolyticus. Methods: Plasmids were isolated from a V. parahaemolyticus strain of seafood origin, then sequenced using the Illumina NovaSeq 6000 and PacBio Sequel II sequencing platforms to obtain the complete genome data. Characterization of the MDR plasmid pVP52-1, including determination of antimicrobial resistance genes (ARGs), plasmid incompatibility groups, and transferability, was carried out. Results: V. parahaemolyticus strain NJIFDCVp52 contained two circular chromosomes and two circular plasmids (pVP52-1 and pVP52-2). Plasmid typing indicated that pVP52-1 belonged to the incompatibility group IncA/C2 and the sequence type pST3. pVP52-1 carried 12 different ARGs, an IS110-composite transposon consisting of aac(6')-Ib-cr, qnrVC1, aac(6')-Ib, dfrA14, and the IS26-mphA-IS6100 unit flanked by inverted sequences of IS5075 and IS4321. pVP52-2 carried no ARGs. A plasmid elimination assay showed that only pVP52-1 and its ARGs were lost, the loss of resistance to several antimicrobials, causing a change from the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-trimethoprim/sulfamethoxazole resistance pattern to the ampicillin resistance pattern. In accordance, a conjugation transfer assay showed that only pVP52-1 and its ARGs were horizontally transferred, leading to increased antimicrobial resistance in Escherichia coli strain EC600, causing a change from the ampicillin-nalidixic acid resistance pattern to the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-nalidixic acid-chloramphenicol-tetracycline-trimethoprim/sulfamethoxazole-azithromycin resistance pattern. Further transferability experiments revealed that pVP52-1 could be transferred to other enterobacterial strains of E. coli and Salmonella. Discussion: This study emphasizes the urgent need for continued surveillance of resistance plasmids and changes in antimicrobial resistance profiles among the V. parahaemolyticus population.

4.
Food Res Int ; 192: 114819, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147512

ABSTRACT

Vibrio parahaemolyticus, a prevalent foodborne pathogen found in both water and seafood, poses substantial risks to public health. The conventional countermeasure, antibiotics, has exacerbated the issue of antibiotic resistance, increasing the difficulty of controlling this bacterium. Phage lysins, as naturally occurring active proteins, offer a safe and reliable strategy to mitigate the impact of V. parahaemolyticus on public health. However, there is currently a research gap concerning bacteriophage lysins specific to Vibrio species. To address this, our study innovatively and systematically evaluates 37 phage lysins sourced from the NCBI database, revealing a diverse array of conserved domains and notable variations in similarity among Vibrio phage lysins. Three lysins, including Lyz_V_pgrp, Lyz_V_prgp60, and Lyz_V_zlis, were successfully expressed and purified. Optimal enzymatic activity was observed at 45℃, 800 mM NaCl, and pH 8-10, with significant enhancements noted in the presence of 1 mM membrane permeabilizers such as EDTA or organic acids. These lysins demonstrated effective inhibition against 63 V. parahaemolyticus isolates from clinical, food, and environmental sources, including the reversal of partial resistance, synergistic interactions with antibiotics, and disruption of biofilms. Flow cytometry analyses revealed that the combination of Lyz_V_pgp60 and gentamicin markedly increased bacterial killing rates. Notably, Lyz_V_pgrp, Lyz_V_pgp60, and Lyz_V_zlis exhibited highly efficient biofilm hydrolysis, clearing over 90 % of preformed V. parahaemolyticus biofilms within 48 h. Moreover, these lysins significantly reduced bacterial loads in various food samples and environmental sources, with reductions averaging between 1.06 and 1.29 Log CFU/cm2 on surfaces such as stainless-steel and bamboo cutting boards and approximately 0.87 CFU/mL in lake water and sediment samples. These findings underscore the exceptional efficacy and versatile application potential of phage lysins, offering a promising avenue for controlling V. parahaemolyticus contamination in both food and environmental contexts.


Subject(s)
Bacteriophages , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virology , Vibrio parahaemolyticus/drug effects , Viral Proteins/metabolism , Viral Proteins/genetics , Food Microbiology , Seafood/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development
5.
Microbiol Spectr ; : e0118124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162543

ABSTRACT

The marine bacterium Vibrio parahaemolyticus is a major cause of seafood-borne gastroenteritis in humans and of acute hepatopancreatic necrosis disease in shrimp. Bile acids, produced by the host and modified into secondary bile acids by commensal bacteria in the gastrointestinal tract, induce the virulence factors leading to disease in humans and shrimp. Here, we show that secondary bile acids also activate this pathogen's type VI secretion system 1, a toxin delivery apparatus mediating interbacterial competition. This finding implies that Vibrio parahaemolyticus exploits secondary bile acids to activate its virulence factors and identify the presence of commensal bacteria that it needs to outcompete in order to colonize the host.IMPORTANCEBacterial pathogens often manipulate their host and cause disease by secreting toxic proteins. However, to successfully colonize a host, they must also remove commensal bacteria that reside in it and may compete with them over resources. Here, we find that the same host-derived molecules that activate the secreted virulence toxins in a gut bacterial pathogen, Vibrio parahaemolyticus, also activate an antibacterial toxin delivery system that targets such commensal bacteria. These findings suggest that a pathogen can use one cue to launch a coordinated, trans-kingdom attack that enables it to colonize a host.

6.
J Fish Biol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175254

ABSTRACT

This study aims to develop an alternative aquafeed derived from insect meal for Lates calcarifer juveniles, with the objectives of exploring the physiological performance, biological parameters, and economic analysis of substituting fishmeal (FM) with defatted black soldier fly (Hermetia illucens) larvae (BSFL) as part of the diet of L. calcarifer juveniles. Five practical diets were formulated to include 0% (BSFL0, serves as control group), 5% (BSFL5), 10% (BSFL10), 15% (BSFL15), and 20% (BSFL20) of BSFL meal, partially or fully replacing FM, respectively. Each diet was randomly assigned to triplicate groups of 30 fish (10.70 ± 0.07 g) per tank (300 L). The fish were fed twice daily to apparent satiation. A 56-day feeding trial was conducted to evaluate the impacts of defatted BSFL meal replacing FM on the growth performance, feed efficiency, composition analysis of fish muscle, cumulative mortality rate challenged with Vibrio parahaemolyticus, and economic returns of L. calcarifer. These results show that differences in weight gain and specific growth rate among the different treatments were statistically significant (p < 0.05), except for the absence of significant variation (p < 0.05) between BSFL0 and BSFL5, and followed by BSFL10 > BSFL0 > BSFL5 > BSFL15 > BSFL20. However, the feed conversion ratio and protein efficiency ratio showed the opposite trend as above. Although the diets experienced a decline in crude protein content and an increase in crude fat content with the increasing proportion of BSFL substituting FM, the crude protein and fat content of fish muscle were only slightly influenced. It is worth mentioning that levels of nonessential amino acids, delicious amino acids, saturated fatty acids, omega-6, omega-9 in BSFL10 group all showed an increase compared with the control group. After a 7-day challenge test with V. parahaemolyticus, the cumulative mortality rates of the BSFL5 and BSFL10 groups, respectively, dropped to 5.20%, 5.28% compared to the control group's 16.88%; however, the mortality rates of BSFL15 (34.67%) and BSFL20 (41.77%) groups were found to be significantly (p < 0.05) increased. From an economic perspective, the incidence cost for each experimental group showed a trend as BSFL10 < BSFL0 < BSFL5 < BSFL15 < BSFL20, whereas the profit index in each treatment exhibited the opposite trend as above. It was concluded that low (5%) or moderate (10%) levels of BSFL substituting FM in aquaculture feed could improve the physiological performances, disease resistance, and economic returns of L. calcarifer. However, excessive substitution (>15%) leads to a negative effect. From an economic point of view, 10% inclusion of BSFL in practical diets is recommended for L. calcarifer juveniles.

7.
Microorganisms ; 12(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39203465

ABSTRACT

Acute hepatopancreatic necrosis disease, caused by Vibrio parahaemolyticus strains carrying the pirA and pirB toxin genes (VpAHPND), has been causing great economic losses in Asia and America in the shrimp farming industry. Numerous strains are resistant to antibiotics. However, supplementation with probiotic antagonists has become a more desirable treatment alternative. Fourteen strains of microorganisms were assessed for their potential to inhibit VpAHPND in vitro activity. The bacteria with the highest activity were challenged with VpAHPND-infected Pacific white shrimp Litopenaeus vannamei. Furthermore, the genomic characteristics of probiotic bacteria were explored by whole-genome sequencing. We identified the Sonora strain as Bacillus pumilus, which possesses positive proteolytic and cellulolytic activities that may improve shrimp nutrient uptake and digestion. Challenge trials showed a low cumulative mortality (11.1%). B. pumilus Son has a genome of 3,512,470 bp and 3734 coding sequences contained in 327 subsystems. Some of these genes are related to the biosynthesis of antimicrobial peptides (surfactins, fengycin, schizokinen, bacilibactin, and bacilysin), nitrogen and phosphorus metabolism, and stress response. Our in vitro and in vivo findings suggest that B. pumilus Sonora has potential as a functional probiotic.

8.
Fish Shellfish Immunol ; 153: 109828, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134231

ABSTRACT

Vibrio parahaemolyticus (VP-AHPND) is regarded as one of the main pathogens that caused acute hepatopancreatic necrosis disease (AHPND) in the Pacific white shrimp Litopenaeus vannamei. PirAvp and PirBvp toxin proteins are the main pathogenic proteins of AHPND in shrimp. Knowledge about the mechanism of shrimp response to PirAvp or PirBvp toxin is very helpful for developing new prevention and control strategy of AHPND in shrimp. In this study, the pathological sections showed that after 4 h treatment, significant pathological changes were observed in the PirBvp treated group, and no obvious pathological changes was found in PirAvp treated group. In order to learn the mechanism of shrimp response to PirAvp and PirBvp, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp after treatment with PirAvp or PirBvp. A total of 9978 differentially expressed genes (DEGs) were identified between PirAvp or PirBvp-treated and PBS control shrimp, including 6616 DEGs in the PirAvp treated group and 3362 DEGs in the PirBvp treated group. There were 2263 DEGs that were commonly expressed, 4353 DEGs were only expressed in PirAvp VS PBS group and 1099 DEGs were uniquely expressed in PirBvp VS PBS group. Among these DEGs, the anti-apoptosis related pathways and immune response related genes significantly expressed in the commonly expressed DEGs of PirAvp VS PBS group and PirBvp VS PBS group, and small GTPase-mediated signaling and DNA metabolic process might relate to the host special reaction towards PirAvp and PirBvp exposure. The data suggested that the differential expression of these immune and metabolic-related genes in hepatopancreas might contribute to the pathogenicity variations of shrimp to VP-AHPND. The identified genes in this study will be useful for clarifying the response mechanism of shrimp toward different toxins of VP-AHPND and will further provide molecular basis for understanding the pathogenic mechanism of VP-AHPND.


Subject(s)
Gene Expression Profiling , Hepatopancreas , Penaeidae , Transcriptome , Vibrio parahaemolyticus , Vibrio parahaemolyticus/physiology , Animals , Hepatopancreas/immunology , Penaeidae/immunology , Penaeidae/genetics , Penaeidae/microbiology , Gene Expression Profiling/veterinary , Immunity, Innate/genetics , Bacterial Toxins
9.
Fish Shellfish Immunol ; 153: 109827, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134232

ABSTRACT

MicroRNAs (miRNAs) are a category of small non-coding RNAs regarded as vital regulatory factors in various biological processes, especially immune regulation. The differently expressed miRNAs in Macrobrachium rosenbergii after the challenge of Vibrio parahaemolyticus were identified using high-throughput sequencing. A total of 18 known as well as 12 novel miRNAs were markedly differently expressed during the bacterial infection. The results of the target gene prediction and enrichment analysis indicated that a total of 230 target genes involved in a large variety of signaling pathways and biological processes were mediated by the miRNAs identified in the current research. Additionally, the effects of novel-miR-56, a representative differentially expressed miRNA identified in the previous infection experiment, on the immune-related gene expression in M. rosenbergii were explored. The expression of the immune-related genes including Spätzle1(Spz1), Spz4, Toll-like receptor 1 (TLR1), TLR2, TLR3, immune deficiency (IMD), myeloid differentiation factor 88 (MyD88), anti-lipopolysaccharide factor 1 (ALF1), crustin1, as well as prophenoloxidase (proPO) was significantly repressed in the novel-miR-56-overexpressed prawns. The expression of these genes tested in the novel-miR-56-overexpressed M. rosenbergii was still signally lower than the control in the subsequent V. parahaemolyticus challenge, despite the gene expression in each treatment increased significantly after the infection. Additionally, the cumulative mortality of the agomiR-56-treated prawns was significantly higher than the other treatments post the bacterial challenge. These results suggested that novel-miR-56 might function as a negative regulator of the immune-related gene expression of M. rosenbergii in the innate immune defense against V. parahaemolyticus.


Subject(s)
Immunity, Innate , MicroRNAs , Palaemonidae , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Palaemonidae/immunology , Palaemonidae/genetics , MicroRNAs/genetics , MicroRNAs/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary
10.
Article in English | MEDLINE | ID: mdl-39191144

ABSTRACT

Procambarus clarkii is an economically important species in China; however, its high mortality rate due to pathogenic bacteria, particularly Vibrio parahaemolyticus, results in significant economic loss. This study aimed to understand the immune response of crayfish to bacterial infection by comparing and analyzing transcriptome data of hepatopancreatic tissue from P. clarkii challenged with V. parahaemolyticus or treated with PBS. Physiological indices (TP, Alb, ACP, and AKP) were analyzed, and tissue sections were prepared. After assembling and annotating the data, 18,756 unigenes were identified. A comparison of the expression levels of these unigenes between the control and V. parahaemolyticus groups revealed 4037 DEGs, with 2278 unigenes upregulated and 1759 downregulated in the V. parahaemolyticus group. GO (Gene Ontology) enrichment analysis shows that the DGEs are mainly enriched in cellular anatomical activity, bindinga and cellular process, enrichment analysis of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways showed that DGEs were mainly enriched in Base excision repair, Phagosome and Longevity regulating pathway. At the same time, lysosome was also enriched. The phagosome and lysosome pathways play a crucial role in the immune defense of crayfish against V. parahaemolyticus injection that will be highlighted. In addition, the expression levels of six selected immune-related DEGs were measured using qRT-PCR, which validated the results of RNA-seq analysis. This study provides a new perspective on the immune system and defense mechanisms of P. clarkii and a valuable foundation for further investigation of the molecular immune mechanisms of this species.

11.
Protein Expr Purif ; 224: 106579, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39151766

ABSTRACT

V. parahaemolyticus is a Gram-negative bacterium that causes gastroenteritis. Within the realm of bacterial interactions with the gut, the outer membrane protein MAM7 plays a key role. However, the precise function of MAM7 in intestinal inflammation, particularly its interactions with macrophages, remains unclear. In this study, we successfully expressed and purified recombinant MAM7. After optimization of the MAM7 expression condition, it was found that the optimal concentration and temperature were 0.75 mM and 15 °C, respectively, resulting in a 27-fold increase in its yield. Furthermore, RAW264.7 cytotoxicity assay was conducted. The CCK-8 results revealed that MAM7 substantially stimulated the proliferation of RAW264.7 cells, with its optimal concentration determined to be 7.5 µg/mL. Following this, the NO concentration of MAM7 was tested, revealing a significant increase (p < 0.05) in NO levels. Additionally, the relative mRNA levels of IL-1ß, IL-6, and TNF-α in RAW264.7 cells were measured by qRT-PCR, showing a remarkable elevation (p < 0.05). Moreover, ELISA results demonstrated that MAM7 effectively stimulated the secretion of IL-6 and TNF-α by RAW264.7 cells. In summary, these findings strongly suggest that MAM7 serves as a proinflammatory adhesion factor with the capacity to modulate immune responses.


Subject(s)
Macrophages , Recombinant Proteins , Vibrio parahaemolyticus , Animals , RAW 264.7 Cells , Mice , Vibrio parahaemolyticus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Macrophages/metabolism , Macrophages/drug effects , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Gene Expression
12.
Microb Pathog ; : 106882, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197692

ABSTRACT

Cyclic di-GMP (c-di-GMP), a ubiquitous secondary messenger in bacteria, affects multiple bacterial behaviors including motility and biofilm formation. c-di-GMP is synthesized by diguanylate cyclase harboring a GGDEF domain and degraded by phosphodiesterase harboring an either EAL or HD-GYP domain. Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, harbors more than 60 genes involved in c-di-GMP metabolism. However, roles of most of these genes including vpa0198, which encodes a GGDEF-domain containing protein, are still completely unknown. AphA and OpaR are the master quorum sensing (QS) regulators operating at low (LCD) and high cell density (HCD), respectively. QsvR integrates into QS to control gene expression via direct regulation of AphA and OpaR. In this study, we showed that deletion of vpa0198 remarkably reduced c-di-GMP production and biofilm formation, whereas promoted the swimming motility of V. parahaemolyticus. Overexpression of VPA0198 in the vpa0198 mutant strain significantly reduced the swimming and swarming motility and enhanced the biofilm formation ability of V. parahaemolyticus. In addition, transcription of vpa0198 was under the collective regulation of AphA, OpaR and QsvR. AphA activated the transcription of vpa0198 at LCD, whereas QsvR and OpaR coordinately and directly repressed vpa0198 transcription at HCD, thereby leading to a cell density-dependent expression of vpa0198. Therefore, this work expanded the knowledge of synthetic regulatory mechanism of c-di-GMP in V. parahaemolyticus.

13.
Mar Environ Res ; 201: 106695, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39205359

ABSTRACT

Mitogen-activated protein kinase kinase (MKK), the key element of the Mitogen-activated protein kinase (MAPK) signaling pathway, is crucial for the immune response to adverse environments in aquatic animals. Nevertheless, there is limited information regarding the role of the MKK gene family in mollusks. In our study, genome data and transcriptome were used to identify four MKK genes (CnMKK4, CnMKK5, CnMKK6, and CnMKK7) in the noble scallop. The result of the gene structure, motif analysis, and phylogenetic tree revealed that MKK genes are relatively conserved in bivalves. Moreover, four CnMKK genes were significantly highly expressed in immune-related tissues, suggesting that CnMKKs may related to bivalve immunity. Furthermore, CnMKK6 and CgMKK4 were significantly differentially expressed (P < 0.05) under 24 h of temperature stress, and all CnMKKs were significantly differentially expressed (P < 0.05) under 24 h of Vibrio parahaemolyticus infection. These results showed that the CnMKKs may have a significant impact under biotic and abiotic stresses. In conclusion, the result of the CnMKKs provides valuable insights into comprehending the function of MKK genes in mollusks.


Subject(s)
Pectinidae , Phylogeny , Stress, Physiological , Vibrio parahaemolyticus , Animals , Pectinidae/genetics , Pectinidae/microbiology , Pectinidae/immunology , Pectinidae/physiology , Vibrio parahaemolyticus/physiology , Stress, Physiological/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Temperature
14.
Front Microbiol ; 15: 1388658, 2024.
Article in English | MEDLINE | ID: mdl-39206361

ABSTRACT

Crayfish (Procambarus clarkii) are economically important freshwater crustaceans. With the growth of the crayfish industry, the associated food-safety risks should be seriously considered. Although Vibrio parahaemolyticus is commonly recognized as a halophilic foodborne pathogen associated with seafood, it has been found to be a major pathogen in crayfish-associated food poisoning cases. In this study, the V. parahaemolyticus contamination level in crayfish production-sale chain was investigated using crayfish and environmental samples collected from crayfish farms and markets. Serious V. parahaemolyticus contamination (detection rate of 66%) was found in the entire crayfish production-sale chain, while the V. parahaemolyticus contamination level of the market samples was extremely high (detection rate of 92%). The V. parahaemolyticus detection rate of crayfish surface was similar to that of whole crayfish, indicating that crayfish surface was important for V. parahaemolyticus contamination. The simulation experiments of crayfish for sale being contaminated by different V. parahaemolyticus sources were performed. All the contamination sources, containing V. parahaemolyticus-positive tank, water, and crayfish, were found to be efficient to contaminate crayfish. The crayfish tank displayed the most significant contaminating role, while the water seemed to inhibit the V. parahaemolyticus contamination. The contamination extent of the crayfish increased with the number of V. parahaemolyticus cells the tank carried and the contact time of the crayfish and the tank, but decreased with the time that the crayfish were maintained in the water. It was also confirmed that the crayfish surface was more susceptible to V. parahaemolyticus contamination than the crayfish intestine. Furthermore, the adsorption of V. parahaemolyticus onto the crayfish shell was analyzed. Over 90% of the V. parahaemolyticus cells were adsorbed onto the crayfish shell in 6 h, indicating a significant adsorption effect between V. parahaemolyticus and the crayfish shell. In conclusion, within a water-free sale style, the fresh crayfish for sale in aquatic products markets uses its shell to capture V. parahaemolyticus cells from the V. parahaemolyticus-abundant environments. The V. parahaemolyticus contamination in crayfish for sale exacerbates the crayfish-associated food-safety risk. This study sheds light on V. parahaemolyticus control and prevention in crayfish industry.

15.
Enzyme Microb Technol ; 180: 110504, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191067

ABSTRACT

The detection of pathogenicity and immunogenicity in Vibrio parahaemolyticus poses a significant challenge due to its threat to human health and food safety, which is strongly correlated with lipid A. Lipid A, a critical component found in most Gram-negative bacteria, functions as a hydrophobic anchor for lipopolysaccharide. V. parahaemolyticus synthesizes multiple lipid A species with various secondary acyl chains. In this study, a secondary acyltransferase of lipid A encoded by VP_RS08405 in V. parahaemolyticus was identified. Based on sequence alignment analysis, V. parahaemolyticus VP_RS08405 has high homology to E. coli lpxL, lpxM and lpxP which encode the three secondary acyltransferases of lipid A. Therefore, V. parahaemolyticus VP_RS08405 was cloned into pBAD33, and the resulting pB08405 was introduced in E. coli mutants WHL00 in which lpxL was deleted, WHM00 in which lpxM was deleted, WHP00 in which lpxP was deleted, and WH300 in which lpxL, lpxM and lpxP were deleted. The recombinant strains WHL00/pB08405, WHM00/pB08405, WHP00/pB08405, WH300/pB08405, as well as their vector controls, were grown at normal and low temperatures. Lipid A species were isolated from the above strains and analyzed by using high-performance liquid chromatography-tandem mass spectrometry and thin-layer chromatography. After comparing the secondary acyl alterations of lipid A from different recombinant strains, it is concluded that VP_RS08405 specifically catalyzed the addition of a palmitoleate to the 2'-position of lipid A and its activity is not temperature-sensitive. In addition, to determine the dependence of VP_RS08405 on Kdo, VP_RS08405 was overexpressed in E. coli mutants WH001 in which waaA was deleted, and WH400 in which waaA, lpxL, lpxM and lpxP were deleted. Lipid A species were isolated from WH001/pB08405 and WH400/pB08405, and analyzed. The results show that the function of VP_RS08405 is Kdo-dependent. These findings provide a better understanding of the structural diversity of lipid A in V. parahaemolyticus.


Subject(s)
Acyltransferases , Bacterial Proteins , Escherichia coli , Lipid A , Vibrio parahaemolyticus , Vibrio parahaemolyticus/enzymology , Vibrio parahaemolyticus/genetics , Lipid A/metabolism , Lipid A/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Acyltransferases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Amino Acid Sequence , Substrate Specificity , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Cloning, Molecular
16.
Fish Shellfish Immunol ; 153: 109830, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142374

ABSTRACT

Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.


Subject(s)
Amino Acid Sequence , Arthropod Proteins , Brachyura , Gene Expression Regulation , Phylogeny , Vibrio parahaemolyticus , Animals , Brachyura/genetics , Brachyura/immunology , Brachyura/microbiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Vibrio parahaemolyticus/physiology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/immunology , Sequence Alignment/veterinary , Base Sequence , DNA, Complementary/genetics , Gene Expression Profiling , Cloning, Molecular
17.
Arch Microbiol ; 206(9): 376, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141167

ABSTRACT

Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.


Subject(s)
Culture Media , Microbial Viability , Vibrio parahaemolyticus , Vibrio parahaemolyticus/growth & development , Animals , Culture Media/chemistry , Serogroup , Cold Temperature , Food Microbiology , Artemia/microbiology , Seafood/microbiology
18.
Anal Biochem ; 693: 115597, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38969155

ABSTRACT

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Subject(s)
Electrochemical Techniques , Iridium , Vibrio parahaemolyticus , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/genetics , Hydrogen-Ion Concentration , Electrochemical Techniques/methods , Iridium/chemistry , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , Limit of Detection , Electrodes
19.
Fish Shellfish Immunol ; 152: 109768, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013534

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.


Subject(s)
Hepatopancreas , Penaeidae , RNA, Long Noncoding , Vibrio parahaemolyticus , Animals , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/microbiology , Vibrio parahaemolyticus/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Hepatopancreas/immunology , Computer Simulation , Immunity, Innate/genetics , Gene Expression Profiling/veterinary
20.
Microbiol Resour Announc ; 13(8): e0004024, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38967463

ABSTRACT

Mobile clustered regularly interspaced palindromic repeats interference (Mobile-CRISPRi) is an established method for bacterial gene expression knockdown. The deactivated Cas9 protein and guide RNA are isopropyl ß-D-1-thiogalactopyranoside inducible, and all components are integrated into the chromosome via Tn7 transposition. Here, we optimized methods specific for applying Mobile-CRISPRi in multiple Vibrio species.

SELECTION OF CITATIONS
SEARCH DETAIL