Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Article in English | MEDLINE | ID: mdl-38803175

ABSTRACT

BACKGROUND: Distillery vinasse is one of the promising bio-fertilizers, as it contains significant amounts of essential chemical elements, allied with sorghum that is widely used in the diet of ruminant animals and has been considered as an alternative to the production of other cereals or forages. This study aimed to evaluate saccharin sorghum silage from fertilization with vinasse. METHODS: The research was conducted using the BRS-511, CR-1339, and CR-1342 geno-types. The silage was held for 170 days after sowing, with experimental design in blocks with triple factorial (genotypes x fertilization x inoculation) totaling 54 installments. At 95 days, the silos were opened for sample collection and analysis bromatological analysis. RESULTS: The results indicate the primary source of variation was genotype, characterizing them with different potentials in productivity and better results for BRS-511, CR-1339, and CR-1342. The bromatological results indicate good quality for CR-1339 and CR-1342 hybrids, however, better digestability for BRS-511. There was no observable difference between the factors of fertilization. The inoculation additive assists in the reduction of lignin appears to be high. PCA analysis showed differences between cultivars (BRS-511, CR-1339, and CR-1342) and fertili-zation. However, the PCAs showed the genotypes show similar results with conventional ferti-lization and sugarcane vinasse. CONCLUSION: The study reflected the possibility of producing sweet sorghum silage with soil sugarcane vinasse fertilization as fertilizer.

2.
Sci Rep ; 14(1): 11248, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755228

ABSTRACT

An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.


Subject(s)
Capsicum , Fruit , Silicates , Capsicum/growth & development , Capsicum/drug effects , Capsicum/metabolism , Fruit/growth & development , Fruit/drug effects , Fruit/metabolism , Biomass , Potassium/metabolism , Potassium/analysis , Seasons , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Biometry , Potassium Compounds/pharmacology
3.
MethodsX ; 12: 102699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660030

ABSTRACT

In this study, we adopt an interdisciplinary approach, integrating agronomic field experiments with soil chemistry, molecular biology techniques, and statistics to investigate the impact of organic residue amendments, such as vinasse (a by-product of sugarcane ethanol production), on soil microbiome and greenhouse gas (GHG) production. The research investigates the effects of distinct disturbances, including organic residue application alone or combined with inorganic N fertilizer on the environment. The methods assess soil microbiome dynamics (composition and function), GHG emissions, and plant productivity. Detailed steps for field experimental setup, soil sampling, soil chemical analyses, determination of bacterial and fungal community diversity, quantification of genes related to nitrification and denitrification pathways, measurement and analysis of gas fluxes (N2O, CH4, and CO2), and determination of plant productivity are provided. The outcomes of the methods are detailed in our publications (Lourenço et al., 2018a; Lourenço et al., 2018b; Lourenço et al., 2019; Lourenço et al., 2020). Additionally, the statistical methods and scripts used for analyzing large datasets are outlined. The aim is to assist researchers by addressing common challenges in large-scale field experiments, offering practical recommendations to avoid common pitfalls, and proposing potential analyses, thereby encouraging collaboration among diverse research groups.•Interdisciplinary methods and scientific questions allow for exploring broader interconnected environmental problems.•The proposed method can serve as a model and protocol for evaluating the impact of soil amendments on soil microbiome, GHG emissions, and plant productivity, promoting more sustainable management practices.•Time-series data can offer detailed insights into specific ecosystems, particularly concerning soil microbiota (taxonomy and functions).

4.
J Environ Manage ; 356: 120634, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518490

ABSTRACT

Vinasse and ash from sugarcane bagasse (SCB) are key byproducts in the sugar-energy industry. Vinasse is nutrient-rich but environmentally challenging, while sugarcane bagasse ash (SCBA) offers excellent adsorbent for treating effluents. This work aims to assess the effectiveness of SCBA in removing nitrogen (N) and potassium (K) nutrients from Vinasse. Simulated standard solutions of K2SO4 and (NH4)2HPO4 were used to mimic the nutrient concentrations in Vinasse and optimize experimental parameters such as adsorbent mass and contact time. Kinetic and isotherm models were also applied to elucidate the underlying adsorption mechanisms. Structural, morphological, and thermal analyses revealed the micro-mesoporous and heterogeneous nature of SCBA, primarily composed of SiO2 (quartz and cristobalite). The sorption assessment indicated the ideal conditions involved lower SCBA masses (2.5 g) and 6 h of contact time for the simulated standard solutions. The replicated conditions for Vinasse (at an adjusted sorption time of 24 h) demonstrated nutrient sorption and pH correction of the Vinasse, attributed to the alkaline nature of SCBA. Analysis of the sorption kinetic models for K+ and NH4+ revealed that SCBA interacts diffusively with the environment, not necessarily controlled by adsorption on active sites, indicating non-uniform characteristics. The sorption isotherms for K+ and NH4+ showed the non-linearized Freundlich model was the most suitable, indicating the adsorption sites with varying energy levels and a multilayer sorption process. In conclusion, we successfully demonstrated the sorption of nutrients from Vinasse by SCBA, enhancing the value of these residues and mitigating their environmental impact when used in agricultural applications.


Subject(s)
Industrial Waste , Saccharum , Cellulose/chemistry , Sugars , Silicon Dioxide , Saccharum/chemistry , Adsorption
5.
Sci Total Environ ; 922: 171425, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432384

ABSTRACT

Conventional soil management in agricultural areas may expose non-target organisms living nearby to several types of contaminants. In this study, the effects of soil management in extensive pasture (EP), intensive pasture (IP), and sugarcane crops (C) were evaluated in a realistic-field-scale study. Thirteen aquatic mesocosms embedded in EP, IP, and C treatments were monitored over 392 days. The recommended management for each of the areas was simulated, such as tillage, fertilizer, pesticides (i.e. 2,4-D, fipronil) and vinasse application, and cattle pasture. To access the potential toxic effects that the different steps of soil management in these areas may cause, the cladoceran Ceriophania silvestrii was used as aquatic bioindicator, the dicot Eruca sativa as phytotoxicity bioindicator in water, and the dipteran Chironomus sancticaroli as sediment bioindicator. Generalized linear mixed models were used to identify differences between the treatments. Low concentrations of 2,4-D (<97 µg L-1) and fipronil (<0.21 µg L-1) in water were able to alter fecundity, female survival, and the intrinsic rate of population increase of C. silvestrii in IP and C treatments. Similarly, the dicot E. sativa had germination, shoot and root growth affected mainly by 2,4-D concentrations in the water. For C. sancticarolli, larval development was affected by the presence of fipronil (<402.6 ng g-1). The acidic pH (below 5) reduced the fecundity and female survival of C. silvestrii and affected the germination and growth of E. sativa. Fecundity and female survival of C. silvestrii decrease in the presence of phosphorus-containing elements. The outcomes of this study may improve our understanding of the consequences of exposure of freshwater biota to complex stressors in an environment that is rapidly and constantly changing.


Subject(s)
Pesticides , Saccharum , Water Pollutants, Chemical , Female , Animals , Cattle , Pesticides/toxicity , Environmental Biomarkers , Soil , Water/chemistry , 2,4-Dichlorophenoxyacetic Acid/toxicity , Water Pollutants, Chemical/toxicity
6.
Sci Rep ; 14(1): 4233, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378751

ABSTRACT

The access of vinasse leachates to water bodies and groundwater exacerbates environmental problems, especially eutrophication. Therefore, a column experiment was performed to examine the effect of adding zeolite (ZL), bone char (BC), and wood chips biochar (WCB) in the presence of vinasse on carbon dioxide (CO2) emission, leaching dissolved organic carbon (DOC) and ammonium (NH4+) in calcareous sandy soil, as well as studying the kinetics of leaching dissolved organic carbon and ammonium. This column experiment contains four treatments: soil alone (CK), soil + zeolite (SZL), soil + bone char (SBC), and soil + wood chips biochar (SWCB). These amendments were applied to the soil at a level of 4%. Vinasse was added to all treatments at a level of 13 mL per column. The leached total cumulative DOC and total cumulative soluble ammonium amounts decreased significantly with applying ZL, BC, and WCB compared with the soil alone. The effectiveness of these amendments in lowering the total cumulative DOC leaching is in the order of SBC > SWCB > SZL > CK. However, the effectiveness of these amendments in decreasing the total cumulative NH4+ leaching is in the order of SZL > SWCB > SBC > CK. The rate constant (k) of DOC leaching decreased significantly with the application of bone char compared to soil alone treatment. In the presence of vinasse, the apparent half-life of leached DOC from the soil was 8.1, 12.9, 36.7, and 15.5 days for soil CK, SZL, SBC, and SWCB treatments, respectively. Half-life values of leached soluble ammonium from the soil in the presence of vinasse addition were 10.1, 39.5, 28.5, and 37.9 days for CK, SZL, SBC, and SWCB treatments, respectively. Amending soil with BC increased significantly the phosphorus availability, however, applying ZL and BC caused a significant increase in the available potassium in calcareous sandy soil compared to the control treatment. According to these results, it is recommended not to add vinasse alone to sandy soils, but it is preferred to be co-applied with BC amendment at the level of 4% better than ZL and WCB. This would decrease leaching DOC and ammonium to the water table and groundwater as well as enhance nutrient retention in the soil, which in turn, plays a vital role in reducing the harmful effect of vinasse and improving soil fertility.

7.
J Environ Manage ; 355: 120350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422846

ABSTRACT

The difficulty of the microbial conversion process for the degradation of sotol vinasse due to its high acidity and organic load makes it an effluent with high potential for environmental contamination, therefore its treatment is of special interest. Calcium carbonate is found in great abundance and has the ability to act as a neutralizing agent, maintaining the alkalinity of the fermentation medium as well as, through its dissociation, releasing CO2 molecules that can be used by phototrophic CO2-fixing bacteria. This study evaluated the use of Rhodopseudomonas telluris (OR069658) for the degradation of vinasse in different concentrations of calcium carbonate (0, 2, 4, 6, 8 and 10% m/v). The results showed that calcium carbonate concentration influenced volatile fatty acids (VFA), alkalinity and pH, which in turn influenced changes in the degradation of chemical oxygen demand (COD), phenol and sulfate. Maximum COD and phenol degradation values of 83.16 ± 0.15% and 90.16 ± 0.30%, respectively, were obtained at a calcium carbonate concentration of 4%. At the same time, the lowest COD and phenol degradation values of 52.01 ± 0.38% and 68.21 ± 0.81%, respectively, were obtained at a calcium carbonate concentration of 0%. The data obtained also revealed to us that at high calcium carbonate concentrations of 6-10%, sotol vinasse can be biosynthesized by Rhodopseudomonas telluris (OR069658) to VFA, facilitating the degradation of sulfates. The findings of this study confirmed the potential for using Rhodopseudomonas telluris (OR069658) at a calcium carbonate concentration of 4% as an appropriate alternative treatment for sotol vinasse degradation.


Subject(s)
Carbon , Rhodopseudomonas , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Carbon Dioxide , Industrial Waste/analysis , Calcium Carbonate , Phenols , Bioreactors
8.
Anim Sci J ; 94(1): e13899, 2023.
Article in English | MEDLINE | ID: mdl-38088515

ABSTRACT

The increase in poultry production and the high cost of soybean led to the search for alternative protein sources. One of these sources is vinasse, a by-product of the baker's yeast industry. Modified dried vinasse (MDV) can be produced for use in poultry nutrition by making some improvements in vinasse. Therefore, the present study aimed to examine the effect of the usage of MDV in broiler diets. A total of 192 daily male Ross 308 chicks were randomly assigned to four groups. MDV was included at the levels of 0%, 2%, 4%, and 6% in the diets for 42-day trial. Linear significant improvements in the final weight, body weight gain, feed efficiency, and digestibility were seen with increasing MDV levels. The use of MDV caused a significant reduction in feed consumption. The relative weight percentages of abdominal fat and serum cholesterol concentration were reduced linearly with increases in MDV levels. MDV inclusion linearly decreased the malondialdehyde concentration, but increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity in breast meat significantly. The protein content in breast meat was increased with MDV. Cecal beneficial microorganisms and serum IgG levels were increased linearly with MDV. In conclusion, results suggested that MDV could be a feasible option for alternative protein sources for broilers.


Subject(s)
Chickens , Dietary Supplements , Animals , Male , Chickens/metabolism , Animal Feed/analysis , Diet/veterinary , Dietary Proteins/metabolism , Meat/analysis
9.
Microorganisms ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38138049

ABSTRACT

Inputs of carbon (C) and nutrients from organic residues may select specific microbes and shape the soil microbial community. However, little is known about the abiotic filtering of the same residues with different nutrient concentrations applied to the soil. In our study, we explored how applying organic residue, vinasse, as fertilizer in its natural state (V) versus its concentrated form (CV) impacts soil microbiota. We conducted two field experiments, evaluating soil prokaryotic and fungal communities over 24 and 45 days with vinasse (V or CV) plus N fertilizer. We used 16S rRNA gene and ITS amplicon sequencing. Inorganic N had no significant impact on bacterial and fungal diversity compared to the control. However, the varying concentrations of organic C and nutrients in vinasse significantly influenced the soil microbiome structure, with smaller effects observed for V compared to CV. Prokaryotic and fungal communities were not correlated (co-inertia: RV coefficient = 0.1517, p = 0.9708). Vinasse did not change the total bacterial but increased the total fungal abundance. A higher C input enhanced the prokaryotic but reduced the fungal diversity. Our findings highlight vinasse's role as an abiotic filter shaping soil microbial communities, with distinct effects on prokaryotic and fungal communities. Vinasse primarily selects fast-growing microorganisms, shedding light on the intricate dynamics between organic residues, nutrient concentrations, and soil microbes.

10.
Molecules ; 28(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38005339

ABSTRACT

In this study, vinasse shell biochar (VS) was easily modified with phosphogypsum to produce a low-cost and novel adsorbent (MVS) with excellent fluoride adsorption performance. The physicochemical features of the fabricated materials were studied in detail using SEM, EDS, BET, XRD, FTIR, and XPS techniques. The adsorption experiments demonstrated that the adsorption capacity of fluoride by MVS was greatly enhanced compared with VS, and the adsorption capacity increased with the pyrolysis temperature, dosage, and contact time. In comparison to chloride and nitrate ions, sulfate ions significantly affected adsorption capacity. The fluoride adsorption capacity increased first and then decreased with increasing pH in the range of 3-12. The fluoride adsorption could be perfectly fitted to the pseudo-second-order model. Adsorption isotherms matched Freundlich and Sips isotherm models well, giving 290.9 mg/g as the maximum adsorption capacity. Additionally, a thermodynamic analysis was indicative of spontaneous and endothermic processes. Based on characterization and experiment results, the plausible mechanism of fluoride adsorption onto MVS was proposed, mainly including electrostatic interactions, ion exchange, precipitation, and hydrogen bonds. This study showed that MVS could be used for the highly efficient removal of fluoride and was compatible with practical applications.

11.
Microorganisms ; 11(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37894174

ABSTRACT

In this research, six strains of oleaginous yeasts native to southern Chile were analyzed for their biotechnological potential in lipid accumulation. For this purpose, the six strains, named PP1, PP4, PR4, PR10, PR27 and PR29, were cultivated in a nitrogen-deficient synthetic mineral medium (SMM). Then, two strains were selected and cultivated in an industrial residual "vinasse", under different conditions of temperature (°C), pH and carbon/nitrogen (C/N) ratio. Finally, under optimized conditions, the growth kinetics and determination of the lipid profile were evaluated. The results of growth in the SMM indicate that yeasts PP1 and PR27 presented biomass concentrations and lipid accumulation percentages of 2.73 and 4.3 g/L of biomass and 36.6% and 45.3% lipids, respectively. Subsequently, for both strains, when cultured in the residual vinasse under optimized environmental conditions, biomass concentrations of 14.8 ± 1.51 g/L (C/N 80) and 15.83 ± 0.57 g/L (C/N 50) and lipid accumulations of 28% and 30% were obtained for PP1 and PR27, respectively. The composition of the triglycerides (TGs), obtained in the culture of the yeasts in a 2 L reactor, presented 64.25% of saturated fatty acids for strain PR27 and 47.18% for strain PP1. The saturated fatty acid compositions in both strains are mainly constituted of fatty acids, myristic C 14:0, heptadecanoic C 17:0, palmitic C 16:0 and stearic C 18:0, and the monounsaturated fatty acids constituted of oleic acid C 18:1 (cis 9) (28-46%), and in smaller amounts, palmitoleic acid and heptadecenoic acid. This work demonstrates that the native yeast strains PP1 and PR27 are promising strains for the production of microbial oils similar to conventional vegetable oils. The potential applications in the energy or food industries, such as aquaculture, are conceivable.

12.
Trop Anim Health Prod ; 55(5): 298, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37723324

ABSTRACT

Dairy sector has recently focused a lot of attention on the addition of agricultural by-products as functional feed additives as an environmentally friendly and sustainable technology. Depotash vinasse (DPV) serves as a cheap source of nutrients and a binder for animal feed in dairy sector. However, there is little information available on the usage of depotash vinasse on animals. Therefore, the aim of the present study was to assess the role of depotash vinasse as pellet binder on nutrient digestibility, blood parameters and milk production in early lactating Murrah buffaloes. Fifteen Murrah buffaloes (daily milk yield 8.5 to 9.0 kg/day) were randomly assigned to three groups, viz., control, group 1 (G1) and group 2 (G2) on the basis of milk yield and days in milk. The control group animals received a basal diet of concentrate mix, oat greens and wheat straw, G1 animals received molasses as a binder (8%), while G2 received DPV as binder (8%). Results revealed that there was no significant effect on nutrient digestibility. Blood parameters and hepatic enzymes were statistically similar (P > 0.05). Supplementation of depotash vinasse as binder had no effect on plasma minerals and was comparable to control group. There were no changes in milk production and 6% fat-corrected milk yield in treated groups as compared to control. It was concluded that depotash vinasse (8%) may be used for pellet production with no negative impact on milk yield and composition, nutrient digestibility and blood biochemical parameters in early lactating buffaloes.


Subject(s)
Bison , Buffaloes , Animals , Female , Molasses , Lactation , Agriculture
13.
J Fungi (Basel) ; 9(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504703

ABSTRACT

Fungal pigments, including melanin, are recognized as promising materials for biomedical, environmental, and technological applications. In previous studies, we have demonstrated that the DOPA-melanin produced by the MEL1 mutant of Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities without any cytotoxic or mutagenic effects, suggesting its potential use in pharmaceuticals. In order to increase the yield of this pigment and reduce the costs of its large-scale production, the present study aimed to evaluate agro-industrial by-products, sugarcane molasses, vinasse, and corn steep liquor as inexpensive substrates for fungal growth using experimental design methodology. According to the results obtained, the optimal composition of the culture medium was 0.81% (v/v) vinasse and 1.62% (w/v) glucose, which promoted a greater production of melanin (225.39 ± 4.52 mg g-1 of biomass), representing a 2.25-fold increase compared with the condition before optimization (100.32 mg.g-1 of biomass). Considering the amount of biomass obtained in the optimized condition, it was possible to obtain a total melanin production of 1 g L-1. Therefore, this formulation of a less complex and low-cost culture medium composition makes the large-scale process economically viable for future biotechnological applications of melanin produced by A. nidulans.

14.
Environ Technol ; : 1-11, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37440597

ABSTRACT

ABSTRACTAnaerobic digestion (AD) relies on the cooperation of specific microbial communities, making it susceptible to process disruptions that could impact biogas production. In this regard, this study presents a technological solution based on the Arduino platform, in the form of a simple online monitoring system that can track the produced biogas profile, named as biogas analyzer module (BAM). The applicability of the BAM focused on monitoring the biogas produced from sugarcane vinasse inoculated with sewage sludge biodigestion processed in mesophilic conditions (38 oC), in a pH range of 6.5-7.5, and following a three-stage operational model: (i) an adaptation (168 h), (ii) complete mixing (168 h), and (iii) bio-stimulation with glycerol (192 h). Then, the lab-made BAM was used to trace the produced biogas profile, which registered a total biogas volume of 8,719.86 cm3 and biomethane concentration of 95.79% (vol.), removing 90.8% (vol) of carbon dioxide (CO2) and 65.2% (vol) of hydrogen sulfide (H2S). In conclusion, the results ensured good accuracy and efficiency to the device created by comparisons with established standards (chromatographic and colorimetric methods), as well as the cost reduction. The developed device would likely be six times cheaper than what is available in the market.

15.
J Environ Manage ; 342: 118233, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37276616

ABSTRACT

Recycling nutrients helps to reduce the environmental impact of agriculture and contributes to alleviating the effects of global climate change. A recent trend in sugarcane cultivation is the application of concentrated vinasse (CV) combined with fertilizers into an organo-mineral formulation to improve logistics, reduce costs and foster the circular economy. However, the implications of the application of such organo-mineral formulation in sugarcane fields are unclear. In this study, we evaluated the effects of the organo-mineral formulation containing granular urea (UR), and a nitrification inhibitor (NI) on crop yields, NH3 volatilization, and N2O emissions. Field experiments were conducted during two fertilization seasons, dry and wet, and the treatments were: control; UR; UR + NI; CV; CV + UR; and CV + UR + NI. CV was applied at 7 m3 ha-1. The treatments (except control and CV) were balanced to receive the same amount of N and K. Compared with UR, the organo-mineral formulation of CV + UR decreased NH3 volatilization losses from 7% to 4% in the dry season and from 3.5% to 0.5% in the wet season. Conversely, compared with UR, N2O emissions increased significantly (p ≤ 0.05) in CV + UR in the wet season from 1% to 2% of applied N. In the dry season, no differences were observed. The addition of NI was effective in mitigating N2O emissions in both seasons. Emission reductions ranged from 43 to 48% in the dry season and from 71 to 84%, in the wet season. Fertilization with UR or the organo-mineral formulation influenced sugarcane yield only in the dry season, with the highest yield in CV + UR. NI did not affect crop yield. In general, emission intensities (kg CO2eq Mg-1 of stalk) were highest in CV + UR. We conclude that the organo-mineral formulation reduced NH3 losses and increased N2O emissions compared with regular solid fertilizer and that NI was effective for mitigating N2O emissions.


Subject(s)
Agriculture , Fertilizers , Saccharum , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen , Nitrous Oxide/analysis , Soil , Urea , Volatilization
16.
Sci Total Environ ; 887: 164014, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37182775

ABSTRACT

Vinasse is a by-product with a key role in circular economy. In this work, we analyze sugarcane vinasse as culture medium for obtaining single and mixed inoculants. Trichoderma harzianum MT2 was cultured in single and sequential co-culture with Pseudomonas capeferrum WCS358 or Rhizobium sp. N21.2. Fungal biomass in single culture was more than three folds higher in vinasse than in a standard medium, and was higher in co-culture with Rhizobium sp. N21.2 than with P. capeferrum WCS358. Bacterial growths in vinasse, in particular P. capeferrum WCS358, were improved in co-culture with T. harzianum MT2. Residual vinasses, obtained after microbial growth, presented almost neutral pH and lower conductivities and toxicity than raw vinasse. Fertigation with residual vinasses modifies characteristics of soil evidenced in the total N, cation exchange capacity, urease and acid phosphatase, and microbial metabolic diversity, in comparison to raw vinasse. In general, soil fertigation with residual vinasse from co-culture with P. capeferrum WCS358 is more similar to irrigation with water. Treatment evaluation indicates that vinasse is suitable for the production of mixed inoculants containing T. harzianum. The co-culture with P. capeferrum WCS358 improves the characteristics of the residual vinasse allowing a fertigation with less detrimental effect in soil in comparison to Rhizobium sp. N21.2. Obtaining valuable biomass of single or mixed inoculants in vinasse with lower ecological impact is relevant for the circular and green economy.


Subject(s)
Rhizobium , Saccharum , Soil , Conservation of Energy Resources
17.
N Biotechnol ; 76: 63-71, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37169331

ABSTRACT

Unspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source. Optimized UPO production of 331 U/L was achieved in 50% (v:v) vinasse with an inoculum grown for 14 days. These conditions were scaled-up to a 4 L reactor, achieving a UPO activity of 265 U/L. Fungal proteome expression was analyzed before and after UPO activity appeared by shotgun mass spectrometry proteomics. Laccase, dye-decolorizing peroxidases (DyP), lectins and proteins involved in reactive oxygen species (ROS) production and control were detected (in addition to UPO). Interestingly, the metabolism of complex sugars and nitrogen sources had a different activity at the beginning and end of the submerged fermentation.


Subject(s)
Agrocybe , Proteomics , Laccase
18.
Bioprocess Biosyst Eng ; 46(7): 995-1009, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37160769

ABSTRACT

Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (µmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.


Subject(s)
Eichhornia , Industrial Waste , Plant Oils/chemistry , Anaerobiosis , Palm Oil , Bioreactors , Methane/metabolism , Digestion , Waste Disposal, Fluid
19.
Environ Sci Pollut Res Int ; 30(24): 65990-66001, 2023 May.
Article in English | MEDLINE | ID: mdl-37093374

ABSTRACT

In recent years, the use of probiotic bacteria has attracted the interest of the marine shrimp farming industry. However, there are certain limitations pertaining to the practical application of many commercially available probiotics. Here, a thoroughly screened optimal consortium of three indigenous sulfur probiotics was tested for antibiotic susceptibility and was found to be safe, with each culture being sensitive to all the tested antibiotics. Further, de-potash vinasse (DPV), an environmental hazard, was tested for its prebiotic potential, and its 1% (w/v) concentration was found to be effective for long-term viability (> 66 days) of the probiotic cultures and safe for Artemia. The synbiotic formulation was tested first in a lab-scale microcosm setup successfully and subsequently tried on a shrimp farm; it was observed that the product was congruent to the efficiency of a commercial probiotic regarding almost all physicochemical parameters, sulfide, nitrate-N, nitrite-N, phytoplankton sustenance, Pseudomonas count, coliform count, and heterotrophic count. In addition, it was significantly efficient in maintaining pH, reducing ammonia-N and phosphate-P, Vibrio and Aeromonas count, and a net increase in the yield of shrimp biomass by 625 kg, thus proving to be a better alternative than one of the already available remediation methods.


Subject(s)
Penaeidae , Probiotics , Synbiotics , Vibrio , Animals , Water , Ponds , Penaeidae/microbiology
20.
Chemosphere ; 328: 138616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028718

ABSTRACT

The development of cost-effective and energy-efficient technologies for the stabilization of organic wastewater by microalgae has been essential and sought after. In the current study, GXU-A4 was isolated from an aerobic tank treating molasses vinasse (MV) and identified as Desmodesmus sp. based on its morphology, rbcL, and ITS sequences. It exhibited good growth with a high lipid content and chemical oxygen demand (COD) when grown using MV and the anaerobic digestate of MV (ADMV) as the growth medium. Three distinct COD concentrations for wastewater were established. Accordingly, GXU-A4 removed more than 90% of the COD from molasses vinasse (MV1, MV2, and MV3) with initial COD concentrations of 1193 mgL-1, 2100 mgL-1, and 3180 mgL-1, respectively. MV1 attained the highest COD and color removal rates of 92.48% and 64.63%, respectively, and accumulated 47.32% DW (dry weight) of lipids and 32.62% DW of carbohydrates, respectively. Moreover, GXU-A4 grew rapidly in anaerobic digestate of MV (ADMV1, ADMV2, and ADMV3) with initial COD concentrations of 1433 mgL-1, 2567 mgL-1, and 3293 mgL-1, respectively. Under ADMV3 conditions, the highest biomass reached 13.81 g L-1 and accumulated 27.43% DW of lipids and 38.70% DW of carbohydrates, respectively. Meanwhile, the removal rates of NH4-N and chroma in ADMV3 reached 91.10% and 47.89%, respectively, significantly reducing the concentration of ammonia nitrogen and color in ADMV. Thus, the results demonstrate that GXU-A4 has a high fouling tolerance, a rapid growth rate in MV and ADMV, the ability to achieve biomass accumulation and nutrient removal from wastewater, and a high potential for MV recycling.


Subject(s)
Microalgae , Wastewater , Molasses , Carbohydrates , Biomass , Nitrogen , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...