Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Expert Opin Pharmacother ; 25(8): 1051-1069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935538

ABSTRACT

INTRODUCTION: The treatment landscape of non-small cell lung cancer (NSCLC) has seen significant advancements in recent years, marked by a shift toward target agents and immune checkpoint inhibitors (ICIs). However, chemotherapy remains a cornerstone of treatment, alone or in combination. Microtubule-targeting agents, such as taxanes and vinca alkaloids, play a crucial role in clinical practice in both early and advanced settings in NSCLC. AREA COVERED: This review outlines the mechanisms of action, present significance, and prospective advancements of microtubule-targeting agents (MTAs), with a special highlight on new combinations in phase 3 trials. The online databases PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched using the terms 'Microtubule-targeting agents' and 'non-small cell lung cancer' or synonyms, with a special focus over the last 5 years of publications. EXPERT OPINION: Despite the emergence of immunotherapy, MTA remains crucial, often used alongside or after immunotherapy, especially in squamous cell lung cancer. Next-generation sequencing expands treatment options, but reliable biomarkers for immunotherapy are lacking. While antibody-drug conjugates (ADCs) show promise, managing toxicities remain vital. In the early stages, MTAs, possibly with ICIs, are standard, while ADCs may replace traditional chemotherapy in the advanced stages. Nevertheless, MTAs remain essential in subsequent lines or for patients with contraindications.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tubulin Modulators , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Tubulin Modulators/therapeutic use , Antineoplastic Agents/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
2.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794179

ABSTRACT

Neurological injury is a crucial problem that interferes with the therapeutic use of vinca alkaloids as well as the quality of patient life. This study was conducted to assess the impact of using loratadine or diosmin/hesperidin on neuropathy induced by vinca alkaloids. Patients were randomized into one of three groups as follows: group 1 was the control group, group 2 received 450 mg diosmin and 50 mg hesperidin combination orally twice daily, and group 3 received loratadine 10 mg orally once daily. Subjective scores (numeric pain rating scale, douleur neuropathique 4, and functional assessment of cancer therapy/gynecologic oncology group-neurotoxicity (FACT/GOG-Ntx) scores), neuroinflammation biomarkers, adverse drug effects, quality of life, and response to chemotherapy were compared among the three groups. Both diosmin/hesperidin and loratadine improved the results of the neurotoxicity subscale in the FACT/GOG-Ntx score (p < 0.001, p < 0.01 respectively) and ameliorated the upsurge in neuroinflammation serum biomarkers. They also reduced the incidence and timing of paresthesia (p = 0.001 and p < 0.001, respectively) and dysuria occurrence (p = 0.042). Both loratadine and diosmin/hesperidin attenuated the intensity of acute neuropathy triggered by vinca alkaloids. Furthermore, they did not increase the frequency of adverse effects or interfere with the treatment response.

3.
Plant Dis ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568788

ABSTRACT

During summer 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. Highthroughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via RT-PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using RACE methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long and they shared 99.9-100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kDa) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3%/84.4% nt/aa polyproteins identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below species threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).

4.
BMC Complement Med Ther ; 24(1): 139, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575897

ABSTRACT

BACKGROUND: Catharanthus roseus, a Madagascar native flowering plant, is known for its glossy leaves and vibrant flowers, and its medicinal significance due to its alkaloid compounds. As a source of vinblastine and vincristine used in chemotherapy, Catharanthus roseus is also employed in traditional medicine with its flower and stalks in dried form. Its toxicity can lead to various adverse effects. We report a case of Catharanthus roseus juice toxicity presenting as acute cholangitis, emphasizing the importance of healthcare providers obtaining detailed herbal supplement histories. CASE PRESENTATION: A 65-year-old woman presented with abdominal pain, fever, anorexia, and lower limb numbness. Initial diagnosis of acute cholangitis was considered, but imaging excluded common bile duct stones. Further investigation revealed a history of ingesting Catharanthus roseus juice for neck pain. Laboratory findings showed leukocytosis, elevated liver enzymes, and hyperbilirubinemia. The patient developed gastric ulcers, possibly due to alkaloids in Catharanthus roseus. No bacterial growth was noted in blood cultures. The patient recovered after discontinuing the herbal extract. CONCLUSIONS: Catharanthus roseus toxicity can manifest as fever, hepatotoxicity with cholestatic jaundice, and gastric ulcers, mimicking acute cholangitis. Awareness of herbal supplement use and potential toxicities is crucial for healthcare providers to ensure prompt diagnosis and appropriate management. This case emphasizes the need for public awareness regarding the possible toxicity of therapeutic herbs and the importance of comprehensive patient histories in healthcare settings.


Subject(s)
Alkaloids , Catharanthus , Cholangitis , Stomach Ulcer , Aged , Humans , Plant Leaves , Female
5.
J Pharm Sci ; 113(7): 1960-1974, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38527618

ABSTRACT

The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios. ATPase activity and binding affinity studies show at least two binding sites for the VAs: high- and low-affinity sites that stimulate and inhibit the ATPase activity rate, respectively. The affinity for ATP from the ATPase kinetics curve for vinblastine (VBL) at the high-affinity site was 2- and 9-fold higher than vinorelbine (VRL) and vincristine (VCR), respectively. Conversely, VBL had the highest Km (ATP) for the low-affinity site. The dissociation constants (KDs) determined by protein fluorescence quenching were in the order VBL < VRL< VCR. The order of the KDs was reversed at higher substrate concentrations. Acrylamide quenching of protein fluorescence indicate that the VAs, either at 10 µM or 150 µM, predominantly maintain Pgp in an open-outward conformation. When 3.2 mM AMPPNP was present, 10 µM of either VBL, VRL, or VCR cause Pgp to shift to an open-outward conformation, while 150 µM of the VAs shifted the conformation of Pgp to an intermediate orientation, between opened inward and open-outward. However, the conformational shift induced by saturating AMPPNP and VCR condition was less than either VBL or VRL in the presence of AMPPNP. At 150 µM, atomic force microscopy (AFM) revealed that the VAs shift Pgp population to a predominantly open-inward conformation. Additionally, STDD NMR studies revealed comparable groups in VBL, VRL, and VCR are in contact with the protein during binding. Our results, when coupled with VAs-microtubule structure-activity relationship studies, could lay the foundation for developing next-generation VAs that are effective as anti-tumor agents. A model that illustrates the intricate process of Pgp-mediated transport of the VAs is presented.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Vinca Alkaloids , Vinca Alkaloids/metabolism , Vinca Alkaloids/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Humans , Vinblastine/metabolism , Vinblastine/chemistry , Binding Sites , Vincristine/metabolism , Vincristine/chemistry , Vincristine/pharmacology , Biological Transport , Adenosine Triphosphatases/metabolism , Kinetics
6.
Drug Resist Updat ; 73: 101062, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330827

ABSTRACT

Multidrug resistance protein 7 (MRP7), also known as ATP-binding cassette (ABC) transporter subfamily C10 (ABCC10), is an ABC transporter that was first identified in 2001. ABCC10/MRP7 is a 171 kDa protein located on the basolateral membrane of cells. ABCC10/MRP7 consists of three transmembrane domains and two nucleotide binding domains. It mediates multidrug resistance of tumor cells to a variety of anticancer drugs by increasing drug efflux and results in reducing intracellular drug accumulation. The transport substrates of ABCC10/MRP7 include antineoplastic drugs such as taxanes, vinca alkaloids, and epothilone B, as well as endobiotics such as leukotriene C4 (LTC4) and estradiol 17 ß-D-glucuronide. A variety of ABCC10/MRP7 inhibitors, including cepharanthine, imatinib, erlotinib, tariquidar, and sildenafil, can reverse ABCC10/MRP7-mediated MDR. Additionally, the presence or absence of ABCC10/MRP7 is also closely related to renal tubular dysfunction, obesity, and other diseases. In this review, we discuss: 1) Structure and functions of ABCC10/MRP7; 2) Known substrates and inhibitors of ABCC10/MRP7 and their potential therapeutic applications in cancer; and 3) Role of ABCC10/MRP7 in non-cancerous diseases.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Multiple/genetics , Imatinib Mesylate/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics
7.
ChemMedChem ; 19(8): e202300656, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38277231

ABSTRACT

Studies have shown that depending on the substitution pattern, microtubule (MT)-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) can produce different cellular responses in mammalian cells that may be due to these compounds interacting with distinct binding sites within the MT structure. Selected TPDs are also potently bioactive against the causative agent of human African trypanosomiasis, Trypanosoma brucei, both in vitro and in vivo. So far, however, there has been no direct evidence of tubulin engagement by these TPDs in T. brucei. Therefore, to enable further investigation of anti-trypanosomal TPDs, a TPD derivative amenable to photoaffinity labeling (PAL) was designed, synthesized, and evaluated in PAL experiments using HEK293 cells and T. brucei. The data arising confirmed specific labeling of T. brucei tubulin. In addition, proteomic data revealed differences in the labeling profiles of tubulin between HEK293 and T. brucei, suggesting structural differences between the TPD binding site(s) in mammalian and trypanosomal tubulin.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Tubulin/metabolism , HEK293 Cells , Proteomics , Trypanosomiasis, African/drug therapy , Trypanosoma brucei brucei/metabolism , Pyrimidines/chemistry , Trypanocidal Agents/chemistry , Mammals/metabolism
8.
Nanomedicine (Lond) ; 18(26): 1941-1959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37991203

ABSTRACT

Aim: This work aims to synthesize the gold nanoparticles (GNPs) using a dual extract of tulsi and Vinca (T+V-Gold) for breast cancer tumor regression. Methods: The GNPs were synthesized and characterized for their microscopic, spectroscopic and crystalline properties. Further, the GNPs were investigated for in vitro and in vivo studies for the treatment of the 4T1-induced triple-negative breast cancer murine model. Results: The GNPs for 4T1 tumor-challenged mice resulted in delayed tumor development and lower tumor burden, with T+V-Gold demonstrating the highest prevention of tumor spread. The antitumor effect of T+V-Gold is highly significant in the glutathione family antioxidants glutathione S-transferase and glutathione in tumor tissue samples. Conclusion: The bioefficacy and anticancer outcomes of T+V-Gold nanoformulation can be used as therapeutic agents and drug-delivery vehicles.


Subject(s)
Metal Nanoparticles , Neoplasms , Vinca , Mice , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Glutathione/chemistry
9.
J Int Med Res ; 51(8): 3000605231193823, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37622457

ABSTRACT

Vinca alkaloid (VA)-induced ileus, a rare but severe autonomic neuropathy, can be enhanced by concomitant use of antifungal triazole agents. We herein present a case of VA-induced ileus in a 17-year-old girl who was diagnosed with B-cell acute lymphoblastic leukemia. On day 1, the patient received cyclophosphamide, vincristine, and methylprednisolone. On day 2, she began treatment with posaconazole oral suspension at 200 mg three times daily for prophylaxis against invasive fungal infection. On day 5, she began induction therapy consisting of vindesine, methylprednisolone, daunorubicin, and cyclophosphamide. The patient developed severe abdominal pain with marked constipation on day 11 and was diagnosed with incomplete ileus. After switching the antifungal agent to micafungin, performing gastrointestinal decompression, administering parenteral nutrition, and omitting the fourth dose of vindesine, the ileus symptoms were relieved. This case emphasizes the potential interaction between VAs and posaconazole. We also herein present a review of the literature on ileus caused by the combination of VAs and antifungal triazole agents. In clinical practice, physicians and pharmacists should be aware of the possibility of ileus caused by the use of VAs in combination with posaconazole. It is important to reduce complications during chemotherapy to improve patients' prognosis.


Subject(s)
Ileus , Intestinal Obstruction , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Vinca Alkaloids , Female , Humans , Adolescent , Vindesine , Antifungal Agents/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Triazoles/adverse effects , Cyclophosphamide/adverse effects
10.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570609

ABSTRACT

Vinca sardoa (Stearn) Pignatti, known as Sardinian periwinkle, is widely diffused in Sardinia (Italy). This species contains indole alkaloids, which are known to have a great variety of biological activities. This study investigated the antileukemic activity against a B lymphoblast cell line (SUP-B15) of V. sardoa alkaloid-rich extracts obtained from plants grown in Italy, in Iglesias (Sardinia) and Rome (Latium). All the extracts showed a good capacity to induce reductions in cell proliferation of up to 50% at the tested concentrations (1-15 µg/mL). Moreover, none of the extracts showed cytotoxicity on normal cells at all the studied concentrations.


Subject(s)
Alkaloids , Antineoplastic Agents , Vinca , Alkaloids/pharmacology , Indole Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Plant Extracts/pharmacology
11.
Molecules ; 28(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570636

ABSTRACT

In recent decades, new alternative therapies using drugs containing active ingredients of natural origin have been a hot topic for medical research. Based on the confirmed therapeutic potential of the Vinca minor plant, considered in the specialized literature to be of pharmaceutical interest, the purpose of this study is to determine the chemical and mineral composition of the Vinca minor plant grown in the Dobrogea area, with a view to its use in the formulation of dermal preparations. For this purpose, plant materials were collected from the mentioned area and hydroalcoholic macerates of different concentrations were obtained: 40%, 70% and 96% from leaves (F40, F70, F96) and stems (T40, T70, T96) of Vinca minor plant to determine the optimal extraction solvent. The hydroalcoholic macerates were analyzed via the HPLC method for the identification and quantification of the main bioactive compounds, and two methods were used to evaluate their antioxidant properties: the DPPH radical scavenging test and the photochemiluminescence method. HPLC analysis showed the presence of four indole alkaloids: vincamine, 1,2-dehydroaspidospermidine, vincaminoreine and eburnamonine. Vincamine was the alkaloid found in the highest concentration in Vinca leaves (2.459 ± 0.035 mg/100 g d.w.). The antioxidant activity of Vinca minor hydroalcoholic macerates showed values between 737.626-1123.500 mg GAE/100 g d.w (DPPH test) and 77.439-187.817 mg TE/100 g d.w (photochemiluminescence method). The concentrations of toxic metals Cd, Cu, Ni, Pb in dried leaves and stems of Vinca minor, determined by AAS, were below detection limits.


Subject(s)
Alkaloids , Vinca , Vincamine , Antioxidants/pharmacology , Antioxidants/analysis , Vinca/chemistry , Alkaloids/analysis , Plants , Minerals/analysis , Plant Leaves/chemistry , Plant Extracts/analysis
12.
Case Rep Oncol ; 16(1): 363-371, 2023.
Article in English | MEDLINE | ID: mdl-37384200

ABSTRACT

Vincristine (VCR) as a key drug for the treatment of acute lymphoblastic leukemia (ALL) is associated with neurotoxicity. We present a young man with a history of controlled childhood seizures who was diagnosed with pre-B-cell ALL and developed generalized tonic-clonic seizures following the Cancer and Leukemia Group B (CALGB) 8811 regimen. The patient also received oral itraconazole to prevent fungal infection initiated by chemotherapy. Possible causes of seizure, including electrolyte abnormalities, hypoglycemia, central nervous system infection or inflammation, were ruled out. According to the Naranjo Adverse Drug Reaction Scale, the patient's seizure had been attributed to VCR, possibly secondary to concomitant use of itraconazole and doxorubicin. The patient successfully recovered after discontinuation of VCR and supportive care. Clinicians should be aware of the possibility of vincristine-induced seizure in adult patients, especially with the concomitant use of drugs known to have potential drug-drug interactions.

13.
Curr Pharm Des ; 29(16): 1245-1265, 2023.
Article in English | MEDLINE | ID: mdl-37190803

ABSTRACT

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition, experienced by patients undergoing chemotherapy with some specific drugs, such as platinum-based agents, taxanes, and vinca alkaloids. Painful CIPN may lead to dose interruptions and discontinuation of chemotherapy and can negatively impact on the quality of life and clinical outcome of these patients. Due to a lack of a practical medical therapy for CIPN, it is necessary to further explore and identify novel therapeutic options. METHODS: We have reviewed PubMed and EMBASE libraries to gather data on the mechanism-based pharmacological management of chemotherapy-induced neuropathic pain. RESULTS: This review has focused on the potential mechanisms by which these chemotherapeutic agents may be involved in the development of CIPN, and explains how this may be translated into clinical management. Additionally, we have presented an overview of emerging candidates for the prevention and treatment of CIPN in preclinical and clinical studies. CONCLUSION: Taken together, due to the debilitating consequences of CIPN for the quality of life and clinical outcome of cancer survivors, future studies should focus on identifying underlying mechanisms contributing to CIPN as well as developing effective pharmacological interventions based on these mechanistic insights.


Subject(s)
Antineoplastic Agents , Neuralgia , Radiation-Sensitizing Agents , Vinca Alkaloids , Humans , Vinca Alkaloids/adverse effects , Taxoids/adverse effects , Quality of Life , Prospective Studies , Antineoplastic Agents/adverse effects , Neuralgia/chemically induced , Neuralgia/drug therapy , Antineoplastic Agents, Alkylating
14.
3 Biotech ; 13(6): 211, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37251731

ABSTRACT

Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.

15.
Protoplasma ; 260(2): 349-369, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35697946

ABSTRACT

Since the discovery of the anticancer drugs vinblastine and vincristine, Catharanthus roseus has been intensively studied for biosynthesis of several terpene indole alkaloids (TIAs). Due to their low abundance in plant tissues at a simultaneously high demand, modes of production alternative to conventional extraction are mandatory. Plant cell fermentation might become one of these alternatives, yet decades of research have shown limited success to certain product classes, leading to the question: how to preserve the intrinsic ability to produce TIAs (metabolic competence) in cell culture? We used the strategy to use the developmental potency of mature embryos to generate such strains. Two cell strains (C1and C4) from seed embryos of Catharanthus roseus were found to differ not only morphologically, but also in their metabolic competence. This differential competence became manifest not only under phytohormone elicitation, but also upon feeding with alkaloid pathway precursors. The more active strain C4 formed larger cell aggregates and was endowed with longer mitochondria. These cellular features were accompanied by higher alkaloid accumulation in response to methyl jasmonate (MeJA) elicitation. The levels of catharanthine could be increased significantly, while the concurrent vindoline branch of the pathway was blocked, such that no bisindole alkaloids were detectable. By feeding vindoline to MeJA-elicited C4 cells, vincristine became detectable; however, only to marginal amounts. In conclusion, these results show that cultured cells are not "de-differentiated", but can differ in metabolic competence. In addition to elicitation and precursor feeding, the cellular properties of the "biomatter" are highly relevant for the success of plant cell fermentation.


Subject(s)
Catharanthus , Secologanin Tryptamine Alkaloids , Vincristine/pharmacology , Vincristine/metabolism , Catharanthus/metabolism , Secologanin Tryptamine Alkaloids/metabolism , Cells, Cultured , Seeds/metabolism
16.
J Biomol Struct Dyn ; 41(17): 8605-8628, 2023.
Article in English | MEDLINE | ID: mdl-36255181

ABSTRACT

Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.

17.
Plant Biotechnol (Tokyo) ; 40(4): 311-320, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38434110

ABSTRACT

The biosynthetic pathway of Catharanthus roseus vinca alkaloids has a long research history, including not only identification of metabolic intermediates but also the mechanisms of inter-cellular transport and accumulation of biosynthesized components. Vinca alkaloids pathway begins with strictosidine, which is biosynthesized by condensing tryptamine from the tryptophan pathway and secologanin from the isoprenoid pathway. Therefore, increasing the supply of precursor tryptophan may enhance vinca alkaloid content or their metabolic intermediates. Many reports on the genetic modification of C. roseus use cultured cells or hairy roots, but few reports cover the production of transgenic plants. In this study, we first investigated a method for stably producing transgenic plants of C. roseus, then, using this technique, we modified the tryptophan metabolism system to produce transgenic plants with increased tryptophan content. Transformed plants were obtained by infecting cotyledons two weeks after sowing with Agrobacterium strain A13 containing a plant expression vector, then selecting with 1/2 B5 medium supplemented with 50 mg l-1 kanamycin and 20 mg l-1 meropenem. Sixty-eight regenerated plants were obtained from 4,200 cotyledons infected with Agrobacterium, after which genomic PCR analysis using NPTII-specific primers confirmed gene presence in 24 plants with a transformation rate of 0.6%. Furthermore, we performed transformation into C. roseus using an expression vector to join trpE8 and aroG4 genes, which are feedback-resistant mutant genes derived from Escherichia coli. The resulting transformed plants showed exactly the same morphology as the wild-type, albeit with a marked increase in tryptophan and alkaloids content, especially catharanthine in leaves.

18.
Metabolites ; 12(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422259

ABSTRACT

Vincristine is an anti-cancer compound and one of the most crucial vinca alkaloids produced by the medicinal plant Catharanthus roseus (L.) G. Don. (Apocynaceae). This plant is home to hundreds of endophytic microbes, which produce a variety of bioactive secondary metabolites that are known for their medicinal properties. In this study, we focused on isolating an endophytic fungus that could increase the yield of vincristine under laboratory conditions as an alternative to plant-mediated extraction of vincristine. The endophytic fungus Nigrospora zimmermanii (Apiosporaceae) was isolated from Catharanthus roseus and it was found to be producing the anticancer compound vincristine. It was identified using high-performance thin-layer chromatography by matching the Rf value and spectral data with the vincristine standard and mass spectrometry data and the reference molecule from the PubChem database. The generation study of this microbe showed that the production of vincristine in the parent fungus was at its maximum, i.e., 5.344 µg/mL, while it was slightly reduced in subsequent generations. A colonization study was also performed and it showed that the fungus N. zimmermanii was able to re-infect the plant Catharanthus roseus after 20 days of inoculation. The colonization study showed that N. zimmernanii could infect the plant after isolation. This method is an efficient and easy way to obtain a high yield of vincristine, as compared to plant-mediated production.

19.
G3 (Bethesda) ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36200869

ABSTRACT

Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.


Subject(s)
Vinca , Monoterpenes , Phylogeny , Biological Evolution , Phenotype
20.
Cancer Cell Int ; 22(1): 206, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655306

ABSTRACT

Cancer, one of the leading illnesses, accounts for about 10 million deaths worldwide. The treatment of cancer includes surgery, chemotherapy, radiation therapy, and drug therapy, along with others, which not only put a tremendous economic effect on patients but also develop drug resistance in patients with time. A significant number of cancer cases can be prevented/treated by implementing evidence-based preventive strategies. Plant-based drugs have evolved as promising preventive chemo options both in developing and developed nations. The secondary plant metabolites such as alkaloids have proven efficacy and acceptability for cancer treatment. Apropos, this review deals with a spectrum of promising alkaloids such as colchicine, vinblastine, vincristine, vindesine, vinorelbine, and vincamine within different domains of comprehensive information on these molecules such as their medical applications (contemporary/traditional), mechanism of antitumor action, and potential scale-up biotechnological studies on an in-vitro scale. The comprehensive information provided in the review will be a valuable resource to develop an effective, affordable, and cost effective cancer management program using these alkaloids.

SELECTION OF CITATIONS
SEARCH DETAIL
...