Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Food Chem X ; 22: 101446, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38846795

ABSTRACT

The bitter and astringent taste and miscellaneous smell of vine tea prevent its further development. In this study, we used a processing technology that mimics yellow tea to improve the flavor of vine tea and revealed its internal reasons through metabolomics. Sensory evaluation showed the yellowing process for 6-12 h reduced the bitterness and astringency significantly, and enriched the aroma. The improvement of taste was mainly related to the down-regulation of anthocyanins (54.83-97.38%), the hydrolysis of gallated catechins (34.80-47.81%) and flavonol glycosides (18.56-44.96%), and the subsequent accumulation of d-glucose (33.68-78.04%) and gallic acid (220.96-252.09%). For aroma, increase of total volatile metabolite content (23.88-25.44%) and key compounds like geraniol (239.32-275.21%) induced the changes. These results identified the positive effects of yellowing process on improvements in vine tea flavor and the key compounds that contribute to these changes.

2.
J Food Sci ; 89(5): 3019-3036, 2024 May.
Article in English | MEDLINE | ID: mdl-38517018

ABSTRACT

Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, is rich in flavonoids with various biological activities. Our study found that Vine tea total flavonoids (TFs) treatment reduced the body mass and blood lipid levels and improved the hepatic tissue morphology in mice fed the high-fat diet (HFD). In vivo, TF treatment activated the hepatic adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, initiated autophagy, and regulated the expression levels of proteins for lipid metabolism in those HFD-fed mice. In vitro, TF treatment dramatically reduced the lipid droplets and triacylglycerol content in HepG2 and L02 cells treated with oleic acid (OA). These were associated with the activation of the AMPK/mTOR pathway and autophagy initiation in OA-treated hepatocytes. This phenotype was abolished in the presence of 3-methyladenine, an autophagy inhibitor. Our results indicated that the TF activation of AMPK/mTOR leads to the stimulation of autophagy and a decrease in the buildup of intracellular lipids in hepatocytes, showing the potential of TF as a therapeutic agent for nonalcoholic fatty liver disease. PRACTICAL APPLICATION: Vine tea, a tea drink, has been consumed by Chinese folk for over a thousand years. The result of this study will provide evidence that vine tea total flavonoids have potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Flavonoids , Mice, Inbred C57BL , TOR Serine-Threonine Kinases , Animals , Flavonoids/pharmacology , TOR Serine-Threonine Kinases/metabolism , Mice , Diet, High-Fat/adverse effects , AMP-Activated Protein Kinases/metabolism , Male , Humans , Hep G2 Cells , Ampelopsis/chemistry , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Autophagy/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Tea/chemistry , Triglycerides/metabolism , Plant Extracts/pharmacology
3.
J Ethnopharmacol ; 325: 117810, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38266948

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vine Tea (VT, Ampelopsis grossedentata), boasts a venerable tradition in China, with a recorded consumption history exceeding 1200 years. Predominantly utilized by ethnic groups in southwest China, this herbal tea is celebrated for its multifaceted therapeutic attributes. Traditionally, VT has been employed to alleviate heat and remove toxins, exhibit anti-inflammatory properties, soothe sore throats, lower blood pressure, and fortify bones and muscles. In the realm of functional foods derived from plant resources, VT has garnered attention for its potential in crafting anti-fatigue beverages or foods, attributed to its promising efficacy and minimal side effects. Currently, in accordance with the Food Safety Standards set forth by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China, VT serves as a raw material in various beverages. AIM OF THE STUDY: VT has an anti-fatigue or similar effect in folk. However, the underlying molecular mechanisms contributing to VT's anti-fatigue effects remain elusive. This study endeavors to investigate the influence of Vine Tea Aqueous Extract (VTE) on fatigue mitigation and to elucidate its operative mechanisms, with the objective of developing VTE as a functional beverage. MATERIALS AND METHODS: The preparation of VTE involved heat extraction and freeze-drying processes, followed by the identification of its metabolites using UPLC-QTOF-MS to ascertain the chemical composition of VTE. A fatigue model was established using a forced swimming test in mice. Potential molecular targets were identified through network pharmacology, transcriptome analysis, and molecular docking. Furthermore, RT-PCR and Western blot techniques were employed to assess mRNA and protein expressions related to the AMPK and FoxO pathways. RESULTS: VTE significantly prolonged the duration of swimming time in an exhaustive swimming test in a dose-dependent manner, while simultaneously reducing the concentrations of blood lactic acid (LA), lactate dehydrogenase (LDH), serum urea nitrogen (SUN), and creatine kinase (CK). Notably, the performance of the high-dose VTE group surpassed that of the well-recognized ginsenoside. VTE demonstrated a regulatory effect akin to ginsenoside on the AMPK energy metabolism pathway and induced downregulation in the expression of Gadd45α, Cdkn1a, FOXO1, and Fbxo32 genes, suggesting an enhancement in skeletal muscle mass. These findings indicate that VTE can improve energy metabolism and muscle mass concurrently. CONCLUSIONS: VTE exhibits significant anti-fatigue effects, and its mechanism is intricately linked to the modulation of the AMPK and FoxO pathways. Crucially, no caffeine or other addictive substances with known side effects were detected in VTE. Consequently, vine tea shows substantial promise as a natural resource for the development of anti-fatigue beverages within the food industry.


Subject(s)
Ampelopsis , Ginsenosides , Mice , Animals , Ampelopsis/chemistry , Ampelopsis/metabolism , AMP-Activated Protein Kinases/metabolism , Ginsenosides/therapeutic use , Molecular Docking Simulation , Fatigue/drug therapy , Tea , Muscles
4.
Heliyon ; 9(9): e20145, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809393

ABSTRACT

Gut microbiota disturbance, autophagy dysregulation, and accumulation of hepatic bile acids (BAs) are essential features of liver injury. Therefore, regulating autophagy and BA metabolism are potential strategies for treating liver diseases. Vine tea has been seen beyond a pleasant tea in food science. Our previous study found that vine tea extract (VTE) intervention alleviated acute liver injury (ALI) by restoring gut microbiota dysbiosis. In this study, we aim to investigate the effect of VTE on carbon tetrachloride (CCl4)-induced hepatic autophagy and BA metabolism disorder in mice. The results showed that VTE effectively suppressed CCl4-induced liver fibrosis and hepatic autophagy. LC-MS/MS assay suggested that VTE affected fecal BA production by reducing the fecal BA levels and improving cholestasis in ALI mice. Besides, VTE inhibited BA synthesis, promoted BA transport in the liver, and enhanced BA reabsorption in the ileum through the farnesoid X receptor (FXR)-related signaling pathway. The hepatic expressions of Fxr and Abca1 were elevated by VTE. Finally, the depletion of gut microbiota in ALI mice had a negative impact on abnormal autophagy and BA metabolism. It was also noted that the administration of VTE did not provide any additional improvement in this regard. Overall, VTE ameliorated ALI by reversing hepatic autophagy and abnormal BA metabolism, and the beneficial effects of VTE on liver injury depended on the existence of gut microbiota.

5.
Metabolites ; 13(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37367863

ABSTRACT

Ganpu vine tea is a new type of health care citrus fruit tea made from citrus shell, Pu-er tea, and vine tea baked as raw materials. In this study, the in vitro uric acid synthase inhibition system and hyperuric acid cell model were constructed to appraise the uric acid lowering efficacy of Ganpu vine tea, traditional Ganpu tea, and vine tea. Results showed that in the uric acid synthase inhibition system, the aqueous extract can inhibite the puric metabolically related enzymes, such as adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and xanthine oxidase (XOD). The ability of the aqueous extract to inhibit the above enzyme was as follows: vine tea > Ganpu vine tea > Ganpu tea; all teas had a strong effect on XOD inhibition. The hyperuric acid cell model test showed that the aqueous extract inhibited uric acid production through accumulating inosine and hypoxanthine and hindering xanthine synthesis. The uric acid reductive ability was as follows: Vine tea > Ganpu vine tea > Ganpu tea. The inhibition of enzymes related to uric acid synthesis and the inhibition of uric acid production were significantly enhanced through adding vine tea to Ganpu tea. It also shows that flavonoids are the main factor driving this ability because they are the main active ingredients in these botanical drinks.

6.
Food Chem ; 417: 135920, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36933427

ABSTRACT

Highly photoluminescent N-doped carbon quantum dots (N-CDs) which the quantum yield reached 63% were prepared through hydrothermal treatment. The obtained N-CDs displayed a uniform distribution of particle size, superior stability in high-salt conditions, and excellent sensitivity. A green fluorescence probe based on N-CDs was constructed for ultrasensitive determination of myricetin in vine tea on account of the static quenching. The N-CDs presented excellent linear fluorescence response in the concentration range of 0.2-40 µM and 56-112 µM and with a low detection limit of 56 nM. Additionally, the practicability of the probe was verified in spiked vine tea sample, and the satisfactory recoveries of myricetin varied from 98.8% to 101.2%, with relative standard deviations in the range of 1.52%-3.48%. It is the first time to employ N-CDs without any material modification as a fluorescence sensor to detect myricetin, which is a promising approach to expand the path for myricetin screening.


Subject(s)
Quantum Dots , Carbon , Nitrogen , Fluorescent Dyes , Spectrometry, Fluorescence , Tea
7.
Front Bioeng Biotechnol ; 10: 1006316, 2022.
Article in English | MEDLINE | ID: mdl-36185429

ABSTRACT

Vine tea (Ampelopsis grossedentata) is a plant resource with good nutritional and medicinal, and is widely consumed in China. This study aimed to develop a functional vine tea fermentation broth using microbial fermentation and cellulase degradation. First, the most suitable probiotics for vine tea fermentation were screened, and the fermentation conditions were optimized. Then, a new cellulase (Cel 906, MW076177) was added to evaluate the changes in the contents of effective substances and to study its efficacy. The results show that saccharomyces cerevisiae Y-401 was identified as the best strain, the optimal fermentation conditions were a time of 94.60 h, feeding concentration of 115.21 g/L, and temperature of about 34.97°C. The vine tea fermentation broth has a strong inhibitory ability on 2,2'-azinobis3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (99.73%), peroxyl (53.15%), superoxide anion radicals (84.13%), and 1,1-Diphenyl-2-trinitrophenylhydrazine (DPPH) (92.48%). It has a decent inhibitory impact on the cell viability, tyrosinase activity (32.25%), and melanin synthesis (63.52%) of B16-F10 melanoma cells induced by α-MSH. Inflammatory cell recruitment was reduced in a zebrafish inflammation model. Therefore, this vine tea fermented broth has strong antioxidant, anti-melanoma, and anti-inflammatory effects, and has healthcare potential as a probiotic tea.

8.
Front Nutr ; 9: 993133, 2022.
Article in English | MEDLINE | ID: mdl-36185647

ABSTRACT

Aim of the study: Although vine tea has demonstrated broad-spectrum anti-cancer properties, its main active compounds, dihydromyricetin (DMY) and myricitrin (MYT), exert weaker effects than the tea extracts. This study aimed to investigate the synergistic inhibitory effects of DMY and MYT on B16F10 cell proliferation and their synergistic inhibitory effects. Methods: The effect of vine tea extracts (VTEs) and their active compounds on B16F10 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence staining, and flow cytometry. The synergistic effects were calculated by the combination index (CI), and its mechanism was discussed by network pharmacology. Results: Different VTEs varied in their inhibition of B16F10 cell growth, with IC50 values ranging from 4.45 to 12.95 µg/mL, Among these, Guangzhou Qingyuan (Level 2), appeared to have the most potent inhibitory effect. The IC50 value of mix-use of DMY and MYT was 19.94∼64.4 µM, of which DMY: MYT = 8:1 had the minimum IC50 value of 19.94 µM. Combinations in the 1:1∼8:1 range had stronger effects than the isolated active compound. When they were mixed at the ratio of 1:4∼8:1, CI < 1, showing a synergistic effect. The combination of DMY and MYT also significantly inhibited the tyrosinase activity in B16F10 cells, consistent with its impact on cell proliferation. The eight potential targets were identified by network pharmacology regulating melanin metabolism, tyrosine metabolism, and melanogenesis signaling. According to the analysis of protein-protein interactions, TP53, TNF, and TYR might be critical targets for preventing and treating melanoma. Conclusion: We found that DMY and MYT induced apoptosis of B16F10 cells, and their combined application had a significant synergistic effect. The present findings indicated that vine tea had a multi-pathway and multi-target impact on the prevention and treatment of melanoma.

9.
Antioxidants (Basel) ; 11(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36139729

ABSTRACT

Kombucha beverage is commonly prepared by black tea infusion fermentation without tea residues, and possesses various health benefits. In this paper, kombucha beverages of two non-Camellia sinensis teas, including vine tea (Ampelopsisgrossedentata) and sweet tea (Rubus suavissimus), were studied for the first time. The antioxidant activities and polyphenol contents of kombucha beverages were evaluated by ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, and Folin-Ciocalteu method, respectively. In addition, effects of tea residues on antioxidant capacities of kombucha beverages were evaluated. The results showed that kombucha beverages from vine tea and sweet tea possessed strong antioxidant activities (especially vine tea kombucha), and fermentation with tea residues could significantly increase antioxidant capacities (maximum increase of 38%) and total phenolic content (maximum increase of 55%) of two kombucha beverages compared with those without tea residues. Moreover, the sensory evaluations showed that the sensory evaluation scores of kombucha with tea residues could be improved compared with those without tea residues. Furthermore, the concentrations of several bioactive components in the kombucha beverages were detected by high-performance liquid chromatography. These kombucha beverages could be used for prevention of several diseases with related of oxidative stress.

10.
Front Pharmacol ; 13: 855926, 2022.
Article in English | MEDLINE | ID: mdl-35392562

ABSTRACT

Objective: This study focuses on whether vine tea contains potentially toxic components that trigger hepatotoxicity as a mechanism of action, which further provides some reference for the consumption and guides future product development of vine tea. Methods: The chemical components of vine tea were collected from the reported literature and the toxicological information matched with the CTD database was collected, and the dataset of potential toxic components was established. The toxic components were submitted to the PharmMapper server to obtain potential targets. At the same time, the relevant targets were searched in the CTD database and GeneCards database with keywords such as "Hepatic Toxicity," "Liver Damage," and "Drug-induced liver injury." After intersection, the potential hepatotoxic targets of vine tea were obtained. The protein interactions of potential hepatotoxic targets of vine tea were analyzed by the STRING database. Protein-protein interaction (PPI) networks were constructed by Cytoscape3.6.1 software. The GO molecular function and KEGG pathway of hepatotoxic targets were enriched by the R package to screen the key targets. The role of the components and key targets was analyzed by the LEDOCK program. The data from GEO database were mined for the functional correlation characterized by cell transcriptional expression caused by vine tea as a disturbance factor. Results: This study has searched 34 potential toxic components and 57 potential hepatotoxic targets of vine tea, and the result showed that these targets were mainly involved in oxidative stress, cell metabolism, and apoptosis to affect the liver. Conclusion: Vine tea has the interrelationship of multi-components, multi-targets, and multi-pathways. At the cellular level, the toxic components of vine tea, mainly flavonoids, may promote oxidative stress, promote oxidation to produce free radicals, guide apoptosis, and affect cell metabolism and other cytotoxic mechanisms. However, this hepatotoxicity is related to the dose, duration of vine tea, and individual differences. This study revealed the potential hepatotoxic components of vine tea and provides a reference for further research and development of related functional products.

11.
Mol Nutr Food Res ; 66(9): e2100892, 2022 05.
Article in English | MEDLINE | ID: mdl-35188709

ABSTRACT

SCOPE: Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, has displayed various biological activities. The authors aim to investigate the effect of Vine Tea (Ampelopsis grossedentata) extract (VTE) on carbon tetrachlorid (CCl4 )induced acute liver injury (ALI) in mice and to explore the underlying role of gut microbiota during the treatment. METHODS AND RESULTS: C57BL/6J mice injected with CCl4 are treated with VTE for 6 weeks. By using H&E staining, immunofluorescence staining, quantitative real-time (qRT)-PCR, and western blot, it is shown that VTE treatment significantly ameliorates hepatocyte necrosis, alleviates the mRNA levels of toll-like receptor 4 (Tlr4), interleukin (Il)-6, inducible nitric oxide synthase (iNOS), acetyl-CoA carboxylase 1 (Acc1), and increases the mRNA levels of peroxisome proliferator-activated receptor gamma (Ppar-γ) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmg-coar) compared to the CCl4 group. Also, VTE abrogates the decreased mRNA expressions of zonula occludens-1 (Zo-1), Occludin, and Mucin1 in colon tissues. Using microbial 16S rDNA sequencing, VTE treatment significantly downregulates the abundances of some harmful intestinal bacteria like Helicobacter and Oscillibacter. In contrast, VTE upregulates the contents of several beneficial bacteria, such as Ruminococcaceae_UCG-014 and Eubacterium_fissicatena_group. Further, VTE fails to improve ALI in the mice with gut microbiota depletion using antibiotic treatment. CONCLUSIONS: The studies suggest that VTE exhibits a protective effect against CCl4 -induced ALI in mice by alleviating hepatic inflammation, suppressing intestinal epithelial barrier injury, and restoring gut microbiota dysbiosis.


Subject(s)
Ampelopsis , Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Plant Extracts , Ampelopsis/chemistry , Animals , Dysbiosis/drug therapy , Mice , Mice, Inbred C57BL , Plant Extracts/pharmacology , RNA, Messenger/genetics , Teas, Herbal
12.
Food Sci Nutr ; 10(2): 422-435, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35154679

ABSTRACT

Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.

13.
Molecules ; 27(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35163881

ABSTRACT

Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the anti-obesity effects of AG extract in diet-induced obese mice and rats. To verify these findings, we herein investigated the effects of AG extract and its principal compound, ampelopsin, in high-fat diet (HFD)- and alcohol diet-fed mice, olive oil-loaded mice, and differentiated 3T3-L1 cells. The results obtained showed that AG extract and ampelopsin significantly suppressed increases in the weights of body, livers and abdominal fat and also up-regulated the expression of carnitine palmitoyltransferase 1A in HFD-fed mice. In olive oil-loaded mice, AG extract and ampelopsin significantly attenuated increases in serum triglyceride (TG) levels. In differentiated 3T3-L1 cells, AG extract and ampelopsin promoted TG decomposition, which appeared to be attributed to the expression of hormone-sensitive lipase. In alcohol diet-fed mice, AG extract and ampelopsin reduced serum levels of ethanol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) and liver TG. An examination of metabolic enzyme expression patterns revealed that AG extract and ampelopsin mainly enhanced the expression of aldehyde dehydrogenase and suppressed that of cytochrome P450, family 2, subfamily e1. In conclusion, AG extract and ampelopsin suppressed diet-induced intestinal fat accumulation and reduced the risk of fatty liver associated with HFD and alcohol consumption.


Subject(s)
Anti-Obesity Agents/pharmacology , Diet, High-Fat , Fatty Liver, Alcoholic/drug therapy , Flavonoids/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/pharmacology , Tea/chemistry , 3T3-L1 Cells , Adiposity , Animals , Antioxidants/pharmacology , Fatty Liver, Alcoholic/etiology , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/pathology , Lipid Metabolism , Lipogenesis , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Phytotherapy , Rats , Rats, Sprague-Dawley
14.
J Pharm Anal ; 11(5): 555-563, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34765268

ABSTRACT

Vine tea has been used as an herbal tea by several ethnic minorities for hundreds of years in China. Flavonoids, a kind of indispensable component in a variety of nutraceutical, pharmaceutical and cosmetic applications, are identified to be the major metabolites and bioactive ingredients in vine tea. Interestingly, vine tea exhibits a wide range of significant bioactivities including anti-oxidant, anti-inflammatory, anti-tumor, antidiabetic, neuroprotective and other activities, but no toxicity. These bioactivities, to some extent, enrich the understanding about the role of vine tea in disease prevention and therapy. The health benefits of vine tea, particularly dihydromyricetin and myricetin, are widely investigated. However, there is currently no comprehensive review available on vine tea. Therefore, this report summarizes the most recent studies investigating bioactive constituents, pharmacological effects and possible mechanisms of vine tea, which will provide a better understanding about the health benefits and preclinical assessment of novel application of vine tea.

15.
Front Pharmacol ; 12: 711763, 2021.
Article in English | MEDLINE | ID: mdl-34393793

ABSTRACT

Chinese vine tea can improve glucose and lipid metabolic disorders. However, its protective effects in non-alcoholic steatohepatitis (NASH) and its underlying molecular mechanisms remain unclear. Liver X receptor α (LXRα) inhibition and adenosine monophosphate-(AMP)-activated protein kinase (AMPK) activation can enhance control of NASH. AMPK activators have also been shown to inactivate LXRα. Here, the anti-NASH effects of vine tea extract (VTE) dosed at 1 g.100 g-1 diet were investigated using NASH mice challenged with a methionine and choline-deficient l-amino acid diet (MCDD) and a high-fat diet (HFD). Pharmacological mechanisms of VTE were explored using TUNEL staining, AMPK inhibition, Western blot, reporter assays, qRT-PCR analyses, and immunofluorescence. VTE treatment improved fatty liver in HFD-induced mice, while it alleviated the progression of NASH including protecting against liver lipid accumulation, steatosis, endoplasmic reticulum stress, apoptosis, inflammation, and functional injury in MCDD-fed mice. VTE reduced the action of hepatic lipogenic genes, F4/80, pro-inflammatory cytokines, CHOP, and cleaved Caspase-3 expression, while promoting expression of fatty acid oxidation genes CPT1α, ß. VTE also enhanced AMPK and blocked LXRα signaling in mouse livers. In vitro results indicated that VTE increased AMPK phosphorylation and reduced LXRα activity in HepG2 cells. Conversely, the antagonistic effect of VTE on LXRα was decreased through AMPK inhibition. Our data suggests that VTE may improve diet-induced NASH, which involves the pharmacological modulation of the AMPK-LXRα signaling pathway.

16.
Fitoterapia ; 152: 104913, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33932529

ABSTRACT

Vine tea has been used as a traditionally functional herbal tea in China for centuries, which exhibits paramount potential for chronic metabolic diseases. Herein, the inhibitory potential of vine tea toward human catechol-O-methyltransferase (hCOMT) was investigated. A practical bioactivity-guided fractionation combined with chemical profiling strategy was developed to identify the naturally occurring hCOMT inhibitors. Five flavonoids in vine tea displayed moderate to strong inhibition on hCOMT with IC50 values ranging from 0.96 µM to 42.47 µM, in which myricetin was the critically potent constituent against hCOMT. Inhibition kinetics assays and molecular docking simulations showed that myricetin could bind to the active site of COMT and inhibited COMT-catalyzed 3-BTD methylation in a mixed manner. Collectively, our findings not only suggested that the strong hCOMT inhibition of vine tea has guiding significance in the drug exposure of catechol drugs, but also identified a promising lead compound for developing more efficacious hCOMT inhibitors.


Subject(s)
Catechol O-Methyltransferase Inhibitors/pharmacology , Flavonoids/pharmacology , Teas, Herbal , Catechol O-Methyltransferase Inhibitors/isolation & purification , Flavonoids/isolation & purification , Molecular Docking Simulation , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-908775

ABSTRACT

Vine tea has been used as an herbal tea by several ethnic minorities for hundreds of years in China.Flavonoids,a kind of indispensable component in a variety of nutraceutical,pharmaceutical and cosmetic applications,are identified to be the major metabolites and bioactive ingredients in vine tea.Interest-ingly,vine tea exhibits a wide range of significant bioactivities including anti-oxidant,anti-inflammatory,anti-tumor,antidiabetic,neuroprotective and other activities,but no toxicity.These bioactivities,to some extent,enrich the understanding about the role of vine tea in disease prevention and therapy.The health benefits of vine tea,particularly dihydromyricetin and myricetin,are widely investigated.However,there is currently no comprehensive review available on vine tea.Therefore,this report summarizes the most recent studies investigating bioactive constituents,pharmacological effects and possible mechanisms of vine tea,which will provide a better understanding about the health benefits and preclinical assessment of novel application of vine tea.

18.
Food Sci Nutr ; 8(9): 4843-4856, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32994946

ABSTRACT

The present study explores the effect of chirality of the biological macromolecules, its functional aspects, and its interaction with other food components. Dihydromyricetin (DHM) is a natural novel flavonol isolated from the vine tea (Ampelopsis grossedentata) leaves. However, limited progress in enantiopure separation methods of such compounds hinder in the development of enantiopure functional studies. This study is an attempt to develop a simple, accurate, and sensitive extraction method for the separation of the enantiopure DHM from vine tea leaves. In addition, the identification and purity of the extracted enantiopure (-)-DHM were further determined by the proton nuclear magnetic resonance (1H-NMR) and the carbon nuclear magnetic resonance (13C-NMR). The study further evaluates the antimicrobial activity of isolated (-)-DHM in comparison with racemate (+)-DHM, against selected foodborne pathogens, whereas the action mode of enantiopure (-)-DHM to increase the integrity and permeability of the bacterial cell membrane was visualized by confocal laser scanning microscopy using green fluorescence nucleic acid dye (SYTO-9) and propidium iodide (PI). Moreover, the morphological changes in the bacterial cell structure were observed through field emission scanning electron microscope. During analyzing the cell morphology of B. cereus (AS11846), it was confirmed that enantiopure (-)-DHM could increase the cell permeability that leads to the released of internal cell constituents and, thus, causes cell death. Therefore, the present study provides an insight into the advancement of enantiopure isolation along with its antimicrobial effect which could be served as an effective approach of biosafety.

19.
Food Sci Nutr ; 8(8): 4505-4511, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32884730

ABSTRACT

Vine tea (Ampelopsis grossedentata) is a tea traditionally used in Chinese herbal medicine that is rich in the natural antioxidant dihydromyricetin (ampelopsin). In addition to its multiple health benefits, vine tea extracts and dihydromyricetin have been suggested as potential natural antioxidants for food applications, such as soybean oil and meat products. However, there is still little information available on vine tea chemistry, and in particular the volatile profile and sensory characteristics, which can affect product acceptability and restrict its use as a natural antioxidant. The objective of this exploratory study was to identify potential volatile components present in vine tea in order to support further research and applications in the food industry. Vine tea infusions brewed from commercial samples were characterized by acidic pH values and a dark, reddish-yellow color. Twenty-one volatile compounds were identified as potential flavor components of vine tea, including aldehydes and ketones. Further studies are suggested to quantify the volatile compounds and understand their importance to vine tea's aroma profile. Sensory studies are also suggested to access consumer's acceptability of vine tea and products containing vine tea as an ingredient.

20.
BMC Plant Biol ; 20(1): 131, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228461

ABSTRACT

BACKGROUND: Leaves of the medicinal plant Ampelopsis grossedentata, which is commonly known as vine tea, are used widely in the traditional Chinese beverage in southwest China. The leaves contain a large amount of dihydromyricetin, a compound with various biological activities. However, the transcript profiles involved in its biosynthetic pathway in this plant are unknown. RESULTS: We conducted a transcriptome analysis of both young and old leaves of the vine tea plant using Illumina sequencing. Of the transcriptome datasets, a total of 52.47 million and 47.25 million clean reads were obtained from young and old leaves, respectively. Among 471,658 transcripts and 177,422 genes generated, 7768 differentially expressed genes were identified in leaves at these two stages of development. The phenylpropanoid biosynthetic pathway of vine tea was investigated according to the transcriptome profiling analysis. Most of the genes encoding phenylpropanoid biosynthesis enzymes were identified and found to be differentially expressed in different tissues and leaf stages of vine tea and also greatly contributed to the biosynthesis of dihydromyricetin in vine tea. CONCLUSIONS: To the best of our knowledge, this is the first formal study to explore the transcriptome of A. grossedentata. The study provides an insight into the expression patterns and differential distribution of genes related to dihydromyricetin biosynthesis in vine tea. The information may pave the way to metabolically engineering plants with higher flavonoid content.


Subject(s)
Ampelopsis/genetics , Flavonols/biosynthesis , Ampelopsis/metabolism , China , Flavonoids/biosynthesis , Flavonoids/genetics , Flavonols/genetics , Gene Expression , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...