Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.018
Filter
1.
Arch Microbiol ; 206(8): 344, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967798

ABSTRACT

Uropathogenic Escherichia coli, the most common cause for urinary tract infections, forms biofilm enhancing its antibiotic resistance. To assess the effects of compounds on biofilm formation of uropathogenic Escherichia coli UMN026 strain, a high-throughput combination assay using resazurin followed by crystal violet staining was optimized for 384-well microplate. Optimized assay parameters included, for example, resazurin and crystal violet concentrations, and incubation time for readouts. For the assay validation, quality parameters Z' factor, coefficient of variation, signal-to-noise, and signal-to-background were calculated. Microplate uniformity, signal variability, edge well effects, and fold shift were also assessed. Finally, a screening with known antibacterial compounds was conducted to evaluate the assay performance. The best conditions found were achieved by using 12 µg/mL resazurin for 150 min and 0.023% crystal violet. This assay was able to detect compounds displaying antibiofilm activity against UMN026 strain at sub-inhibitory concentrations, in terms of metabolic activity and/or biomass.


Subject(s)
Anti-Bacterial Agents , Biofilms , Gentian Violet , High-Throughput Screening Assays , Oxazines , Uropathogenic Escherichia coli , Xanthenes , Biofilms/drug effects , Biofilms/growth & development , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/physiology , High-Throughput Screening Assays/methods , Xanthenes/chemistry , Anti-Bacterial Agents/pharmacology , Gentian Violet/metabolism , Oxazines/pharmacology , Oxazines/metabolism , Oxazines/chemistry , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology , Humans
2.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000688

ABSTRACT

Microplastics' spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To further improve the biodegradability of PCL, we selected a completely new protein that has not been used before as a functional filler to incorporate it into PCL, aiming to develop an environmentally friendly biocomposite material. This novel protein is derived from the mucus bubbles of the violet sea snail (VSS, Janthina globosa), which is a strong bio-derived material that is 100% degradable in the sea environment by microorganisms. Two types of PCL/bubble composites, PCL/b1 and PCL/b5, were prepared with mass ratios of PCL to bubble powder of 99:1 and 95:5, respectively. We investigated the thermal properties, mechanical properties, biodegradability, surface structure, and crystal structure of the developed PCL/bubble composites. The maximum biochemical oxygen demand (BOD) degradation for PCL/b5 reached 96%, 1.74 times that of pure PCL (≈55%), clearly indicating that the addition of protein fillers significantly enhanced the biodegradability of PCL. The surface morphology observation results through scanning electron microscopy (SEM) definitely confirmed the occurrence of degradation, and it was found that PCL/b5 underwent more significant degradation compared to pure PCL. The water contact angle measurement results exhibited that all sheets were hydrophobic (water contact angle > 90°) before the BOD test and showed the changes in surface structure after the BOD test due to the newly generated indentations on the surface, which led to an increase in surface toughness and, consequently, an increase in surface hydrophobility. A crystal structure analysis by wide-angle X-ray scattering (WAXS) discovered that the amorphous regions were decomposed first during the BOD test, and more amorphous regions were decomposed in PCL/b5 than in PCL, owing to the addition of the bubble protein fillers from the VSS. The differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) results suggested that the addition of mucus bubble protein fillers had only a slight impact on the thermal properties of PCL. In terms of mechanical properties, compared to pure PCL, the mucus-bubble-filler-added composites PCL/b1 and PCL/b5 exhibited slightly decreased values. Although the biodegradability of PCL was significantly improved by adding the protein fillers from mucus bubbles of the VSS, enhancing the mechanical properties at the same time poses the next challenging issue.

3.
Methods Mol Biol ; 2826: 167-187, 2024.
Article in English | MEDLINE | ID: mdl-39017893

ABSTRACT

Division tracking dyes like Cell Trace Violet (CTV) enable the quantification of cell proliferation, division, and survival kinetics of human naïve B cell responses in vitro. Human naïve B cells exhibit distinct responses to different stimuli, with CpG and anti-Ig inducing a T cell-independent (TI) response, while CD40L and IL-21 promote a T cell-dependent (TD) response that induces isotype switching and differentiation into antibody-secreting cells (ASCs). Both stimulation methods yield valuable insights into the intrinsic programming of B cell health within individuals, making them useful for clinical investigations. For instance, quantitative analysis from these B cell populations could reveal biologically meaningful measurements such as the average number of division rounds and the time to cells' fate. Here, we describe a novel in vitro culture setup for CTV-labelled human naïve B cells and a method for obtaining precise time-based data on proliferation, division-linked isotype switching, and differentiation.


Subject(s)
B-Lymphocytes , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Humans , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Culture Techniques/methods , Kinetics , Lymphocyte Activation , Cells, Cultured , Immunoglobulin Class Switching
4.
J Fluoresc ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002052

ABSTRACT

This research explores the synthesis, characterization, and application of Vanadium Pentoxide nanoparticles (V2O5 NPs), focusing on their efficacy in the photocatalytic degradation of organic dyes under visible light. Utilizing a co-precipitation method, we synthesized V2O5 NPs characterized by an orthorhombic crystal structure with a consistent average particle size of 28 nm. The optical properties of V2O5 NPs, including their band gap, were thoroughly investigated to understand their light absorption capabilities, which are crucial for photocatalytic activity. In our study, Methyl Violet (MV) dye was employed as a model organic pollutant to assess the photocatalytic performance of the nanoparticles. Under visible light irradiation, the V2O5 nanoparticles demonstrated an exceptional photocatalytic degradation efficiency, achieving up to 85% degradation of the MV dye within 100 min. This high level of efficiency is attributed to the nanoparticles' ability to effectively absorb visible light and generate electron-hole pairs, thereby facilitating a robust degradation process. Further analysis revealed that the photocatalytic activity led to the generation of reactive oxygen species (ROS) such as superoxide and hydroxyl radicals, which are integral to the dye degradation mechanism. These ROS play a critical role in breaking down the dye molecules, significantly contributing to the overall effectiveness of the photocatalytic process. The results of this study highlight the potential of V2O5 nanoparticles as a sustainable and effective photocatalytic material for environmental remediation applications, particularly in the treatment of wastewater containing organic dyes. This research not only advances our understanding of the photocatalytic properties of V2O5 nanoparticles but also demonstrates their practical application in addressing environmental pollution through innovative and efficient degradation of hazardous substances.

5.
Environ Monit Assess ; 196(8): 728, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997474

ABSTRACT

This study investigates the potential of using Ficus religiosa inflorescence (peepal tree) as an efficient solution for removing crystal violet from simulated and industrial wastewater. Various analyses were conducted to understand the adsorbent's structure, including particle morphology, BET surface area, FTIR, and pHZPC. The adsorption process was studied under different physicochemical factors such as temperature, concentration, contact time, and pH. Results revealed rapid adsorption, with 94.15% removal efficiency within the first 15 min at neutral pH. The highest observed adsorption capacity was 198.03 mg g-1, following pseudo-second-order kinetics (R2 = 0.99), indicating chemisorption. The Langmuir model accurately described the adsorption pathway (R2 = 0.99), showing monolayer adsorption. Thermodynamic analysis indicated an exothermic, feasible, and spontaneous process with increased entropy. The adsorbent could be easily regenerated using a 1:1 MeOH/H2O mixture for up to three cycles, yielding up to 73.86%. Real-time application with industrial effluent containing crystal violet showed up to 44.70% adsorption. The experiments demonstrated reliability with evaluated standard deviations (0.017935-0.000577) and relative standard deviations (0.439-0.673%), confirming statistical reliability. In conclusion, it presents a sustainable and eco-friendly approach for removing crystal violet dye from diverse wastewater sources.


Subject(s)
Ficus , Gentian Violet , Water Pollutants, Chemical , Ficus/chemistry , Gentian Violet/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Wastewater/chemistry , Inflorescence/chemistry , Waste Disposal, Fluid/methods , Kinetics , Powders , Thermodynamics
6.
Int J Biol Macromol ; : 133909, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025186

ABSTRACT

In this research, aluminum metal-organic framework encapsulated with poly (itaconic acid) grafted crosslinked chitosan composite sponge (Al-MOF@PIC) was prepared. SEM, FTIR, XPS, XRD, and BET techniques were employed to thoroughly characterize the synthesized material and establish its structure and characteristics. The study discovered that the Al-MOF@PIC is an efficient way to remove dyes, which constitute a significant number of contaminants in industrial wastewater. Subsequently the adsorption of methyl violet 2B (MV-2B) dye, the surface area, pore size, and pore volume of the adsorbent decreased from 1860.68 m2/g, 1.62 nm, and 1.52 cc/g to 1426.45 m2/g, 1.11 nm, and 0.92 cc/g, individually. This modification suggested that a portion of the MV-2B dye had been removed by adsorption over the adsorbent's pores. The excellent adsorption capacity of the material was further confirmed by batch adsorption tests, which displayed a maximum adsorption capability of 646.76 mg/g for the elimination of MV-2B dye. The high adsorption energy of 26.8 kJ/mol designates that chemisorption is primarily responsible for MV-2B dye adsorption against the sponge adsorbent. The Al-MOF@PIC composite sponge demonstrated exceptional reusability over six cycles, demonstrating its strength and durability. The Al-MOF@PIC composite sponge successfully removes MV-2B from water by pore filling, π-π stacking, hydrogen bonding, and electrostatic interactions, which are the key mechanisms behind the adsorption of the dye pollutant. Its potential for practical applications is further demonstrated using Box Behnken-design (BBD) to optimize the adsorption consequences.

7.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998240

ABSTRACT

Sodium citrate (SC) is sensitive to violet light illumination (VLI) and acts as a weak reductant. Conversely, gold (III) chloride trihydrate (GC) often acts as an oxidant in a redox reaction. In this study, the influences of colored light on the production of gold nanoparticles (AuNPs) in a mixture of gold (III) ions and citrate via VLI and the antibacterial photodynamic inactivation (aPDI) of Escherichia coli (E. coli) are determined under alkaline conditions. The diameter of AuNPs is within the range of 3-15 nm, i.e., their mean diameter is 9 nm; when citrate is mixed with gold (III) ions under VLI, AuNPs are formed via an electron transfer process. Additionally, GC mixed with SC (GCSC) inhibits E. coli more effectively under VLI than it does under blue, green, or red light. GCSC and SC are shown to inhibit E. coli populations by 4.67 and 1.12 logs, respectively, via VLI at 10 W/m2 for 60 min under alkaline conditions. GCSC-treated E. coli has a more significant photolytic effect on anionic superoxide radical (O2•-) formation under VLI, as more O2•- is formed within E. coli if the GCSC-treated samples are subjected to VLI. The O2•- exhibits a greater effect in a solution of GCSC than that shown by SC alone under VLI treatment. Gold (III) ions in a GCSC system appear to act as an oxidant by facilitating the electron transfer from citrate under VLI and the formation of AuNPs and O2•- via GCSC photolysis under alkaline conditions. As such, the photolysis of GCSC under VLI is a useful process that can be applied to aPDI.

8.
Sci Total Environ ; 948: 174784, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009150

ABSTRACT

This study investigates the presence and impact of UV filters in Posidonia oceanica meadows in Formentera, a Mediterranean tourist hotspot. It highlights the distribution of inorganic (TiO2 and ZnO) and organic UV filters (UVFs) in different environmental matrices, their accumulation in seagrass tissues and their impact on the seagrass health. In the overlying and canopy waters of P. oceanica, Zn concentrations surpassed Ti, with three organic UVFs (benzophenone-3 [BP-3], avobenzone and homosalate [HMS]) consistently detected. Ti concentrations were generally higher than Zn in rhizosphere sediments, along with recurrent presence of octocrylene, HMS, 2-ethylhexyl methoxycinnamate (EHMC), and 4-methylbenzylidene camphor (4-MBC). Maximum Zn concentrations were found in canopy waters (3052.9 ng L-1). Both Ti and Zn were found in all P. oceanica tissues and leaf epiphytes across all study sites. Additional UVFs like octocrylene, avobenzone, and BP-8 were also detected in P. oceanica tissues and epiphytes. Elevated levels of octocrylene in leaf epiphytes (2112.1 ng g-1 dw) and avobenzone in leaves (364.2 ng g-1 dw) and leaf epiphytes (199.6 ng g-1 dw) were observed in the Port of La Savina, the island's main entry port. Octocrylene concentrations (up to 2575 ng g-1 dw) in rhizosphere sediments near sewage discharge points exceeded reported maxima, highlighting wastewater treatment plants as significant sources of organic UVFs. Correlational analyses suggested that the accumulation of octocrylene, avobenzone, and BP-3 negatively impacted P. oceanica's conservation status, affecting global density, density at 100 % cover, and leaf morphometry. Positive correlations were observed between leaf polyphenols (antioxidants) and concentrations of avobenzone, benzophenone-8 (BP-8), and BP-3, indicating potential oxidative stress induced by UVFs in P. oceanica. Our study underscores the pervasive presence of UV filters in P. oceanica habitats, with implications for seagrass health and conservation, especially in areas of high tourism and sewage discharge.

9.
Biomolecules ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927020

ABSTRACT

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain , Gentian Violet , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Mice , Gentian Violet/chemistry , Amyloid/metabolism , Amyloid/chemistry , Positron-Emission Tomography , Female
10.
Heliyon ; 10(11): e31795, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832280

ABSTRACT

Exploring the chemical processes and factors influencing the stability of the blue color derived from anthocyanins is a crucial objective in agricultural and food chemistry research. The ability of these compounds to bind with metals could potentially stabilize anthocyanins extracted from plant-based foods or enable modifying their hues for application as natural food colorants. This study had two core objectives - first, to extract and identify the major anthocyanin pigments responsible for iris flower coloration. Second, to selectively complex purified iris anthocyanins with aluminum (Al3+) and copper (Cu2+) ions, probing the coordination chemistry underlying synthetic metalloanthocyanin formation. Fresh iris flowers were collected and anthocyanins extracted using an optimized acidic solution. After separation, anthocyanins were complexed with metals Al3+ and Cu2+ at pH 5-6 to understand better the evolution of blue and green colors in anthocyanin-metal chelates. Characterization of anthocyanins and their metal complexes utilized UV-visible spectrometry, colorimetry (L\* a\*b\* values), FTIR spectroscopy, and LC-MS. Metal complexation of anthocyanins exhibited bathochromic shifts of visible absorption maxima from 538 to 584 nm for Al-complex and 538-700 nm for Cu-complex. Color changes were accompanied by decreased lightness (L\*, from 87 to 81) and color coefficients a\* (+5.4 to -6.8) and b\* (-12.2 to -4.8). LC-MS analysis identified five major anthocyanin aglycones: cyanidin (Cyd, m/z 289), delphinidin (Dpd, m/z 305), petunidin (Ptd, m/z 229), malvidin (Mv, m/z 329) and pelargonidin (m/z 273), along with various glycosylated derivatives. This work successfully isolated key iris anthocyanin pigments and elucidated their metal chelation interactions underlying expanded floral color production, bridging knowledge gaps about this underexplored genus.

11.
Biotech Histochem ; : 1-5, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836746

ABSTRACT

In histological processing, the loss of a small biopsies can prevent diagnosis by the pathologist. Appropriate specimen marking dyes are helpful, but those sold for the purpose have trade-secret components. The purpose of this study is to find suitable dyes with known chemistry to improve the visibility of small specimens. Samples of various organs, including stomach, lung, nasopharynx, small intestine and sentinel lymph nodes, were labeled with Rose red D-FR (CI 282855, Direct red 227), Blue 2RL (CI 24315, Direct blue 80), and Purple D-5BL (CI 29120, Direct violet 66). Clinical pathologists evaluated the dyeing capability and determined any interference of the marking dyes with diagnosis of stained sections. Direct red 227, Direct blue 80, and Direct violet 66 all increased the visibility of small specimens, without interfering with hematoxylin & eosin (HE) staining or immunohistochemistry. All three dyes can therefore be recommended for marking small specimens such as biopsies.

12.
AMB Express ; 14(1): 66, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842656

ABSTRACT

Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.

13.
ACS Appl Mater Interfaces ; 16(23): 30176-30184, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38826007

ABSTRACT

Single-component white-light luminescent materials are considered an economical and facile choice for phosphor-converted white light-emitting diodes (pc-WLEDs). Here, a new single-component white-light-emitting material Cs2MnCl4:Eu2+ based on the combination of a lead-free halide structure and a rare-earth ion is first reported. Benefiting from the smart dilution-sensitization design strategy, white light composed of dual broad emission originating from Eu2+ (blue light, 444 nm, 4f65d1 → 4f7) and Mn2+ (yellow light, 566 nm, 4T1g → 6A1g) was successfully realized under near-ultraviolet light (404 nm) radiation with a high photoluminescence quantum yield of 66%. Based on the single-source Cs2MnCl4:Eu2+ phosphor, a pc-WLEDs device with "eye-friendly" white light production was successfully fabricated. The pc-WLEDs exhibit suitable color coordinates of (0.3294, 0.2746) and a high color rendering index of 82.3, demonstrating the potential in the future health-conscious illumination application by reducing the risk of eye strain and high-energy blue-light damage. This work achieves a new single-component white-light-emitting Mn-based halide phosphor and provides a new path for the design of single-component white light sources in Mn-based halides.

14.
Adv Sci (Weinh) ; 11(26): e2401346, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689504

ABSTRACT

Aberrant aggregates of amyloid-ß (Aß) and tau protein (tau), called amyloid, are related to the etiology of Alzheimer disease (AD). Reducing amyloid levels in AD patients is a potentially effective approach to the treatment of AD. The selective degradation of amyloids via small molecule-catalyzed photooxygenation in vivo is a leading approach; however, moderate catalyst activity and the side effects of scalp injury are problematic in prior studies using AD model mice. Here, leuco ethyl violet (LEV) is identified as a highly active, amyloid-selective, and blood-brain barrier (BBB)-permeable photooxygenation catalyst that circumvents all of these problems. LEV is a redox-sensitive, self-activating prodrug catalyst; self-oxidation of LEV through a hydrogen atom transfer process under photoirradiation produces catalytically active ethyl violet (EV) in the presence of amyloid. LEV effectively oxygenates human Aß and tau, suggesting the feasibility for applications in humans. Furthermore, a concept of using a hydrogen atom as a caging group of a reactive catalyst functional in vivo is postulated. The minimal size of the hydrogen caging group is especially useful for catalyst delivery to the brain through BBB.


Subject(s)
Alzheimer Disease , Prodrugs , Animals , Prodrugs/pharmacology , Mice , Alzheimer Disease/metabolism , Catalysis , Disease Models, Animal , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Humans , tau Proteins/metabolism , tau Proteins/chemistry
15.
Environ Monit Assess ; 196(6): 569, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777943

ABSTRACT

Nanomaterials are widely employed in wastewater treatment, among which nanoferrites and their composites hold significant prominence. This study adopts a green approach to synthesize zinc ferrite nanoparticles, subsequently integrating them with polyaniline (PANI) to fabricate the ZnFe2O4-PANI nanocomposite. Characterization of the prepared ZnFe2O4-PANI nanocomposite was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. Using Scherrer's equation, the crystallite size of the synthesized zinc ferrite nanoparticles was found to be 17.67 nm. SEM micrographs of the ZnFe2O4-PANI nanocomposite revealed that in situ polymerization of ZnFe2O4 with polyaniline transforms the amorphous surface morphology of the polymer into a homogeneous nanoparticle structure. The adsorption of crystal violet (CV) dye onto the surface of the ZnFe2O4-PANI nanocomposite depends on pH, adsorbent dosage, temperature, concentration levels and duration. The Langmuir adsorption model fitted the data well, indicating adherence to a pseudo-second-order kinetic pattern. Thermodynamic values ΔG°, ΔH° and ΔS° indicated that the adsorption process occurred spontaneously. Advantages and disadvantages of the technique have also been highlighted. Mechanism of adsorption is discussed. From the obtained results, it is evident that the ZnFe2O4-PANI nanocomposite holds promise as a sorbent for the removal of dye from wastewater.


Subject(s)
Aniline Compounds , Ferric Compounds , Gentian Violet , Nanocomposites , Water Pollutants, Chemical , Zinc , Aniline Compounds/chemistry , Gentian Violet/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Ferric Compounds/chemistry , Zinc/chemistry , Adsorption , Waste Disposal, Fluid/methods , Kinetics , Water Purification/methods
16.
Arch Microbiol ; 206(6): 276, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777923

ABSTRACT

Due to its increased safety over ultraviolet light, there is interest in the development of antimicrobial violet-blue light technologies for infection control applications. To ensure compatibility with exposed materials and tissue, the light irradiances and dose regimes used must be suitable for the target application. This study investigates the antimicrobial dose responses and germicidal efficiency of 405 nm violet-blue light when applied at a range of irradiance levels, for inactivation of surface-seeded and suspended bacteria. Bacteria were seeded onto agar surfaces (101-108 CFUplate-1) or suspended in PBS (103-109 CFUmL-1) and exposed to increasing doses of 405-nm light (≤ 288 Jcm-2) using various irradiances (0.5-150 mWcm-2), with susceptibility at equivalent light doses compared. Bacterial reductions ≥ 96% were demonstrated in all cases for lower irradiance (≤ 5 mWcm-2) exposures. Comparisons indicated, on a per unit dose basis, that significantly lower doses were required for significant reductions of all species when exposed at lower irradiances: 3-30 Jcm-2/0.5 mWcm-2 compared to 9-75 Jcm-2/50 mWcm-2 for low cell density (102 CFUplate-1) surface exposures and 22.5 Jcm-2/5 mWcm-2 compared to 67.5 Jcm-2/150 mWcm-2 for low density (103 CFUmL-1) liquid exposures (P ≤ 0.05). Similar patterns were observed at higher densities, excluding S. aureus exposed at 109 CFUmL-1, suggesting bacterial density at predictable levels has minimal influence on decontamination efficacy. This study provides fundamental evidence of the greater energy efficacy of 405-nm light for inactivation of clinically-significant pathogens when lower irradiances are employed, further supporting its relevance for practical decontamination applications.


Subject(s)
Decontamination , Light , Decontamination/methods , Bacteria/radiation effects , Bacteria/drug effects , Disinfection/methods , Microbial Viability/radiation effects , Staphylococcus aureus/radiation effects , Staphylococcus aureus/drug effects
17.
Int J Biol Macromol ; 271(Pt 2): 132638, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797296

ABSTRACT

In the study, a novel chitosan biopolymer and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (IL)-incorporated sulfonated poly (ether ether ketone) (SPEEK) composite (Ch-IL@SPEEK) was prepared for adsorption of cationic crystal violet (CV) dye. The proposed composite was well characterized by several techniques. CV adsorption performance was examined via batch studies by varying various variables involving adsorbent dosage, contact time pH and temperature. The isotherm results were demonstrated the adsorption characters of the processes were Langmuirian. The maximum adsorption capacity was determined as 77.66 mg g-1 for the composite which was significantly higher than SPEEK (qmax = 45.36 mg g-1). The determined equilibrium time of the operated system was 360 min and the kinetic model was assessed as Elovich. At low pHs the protonated surface groups repelled the positively charged CV and the adsorption rate increased with increasing pH. The process is spontaneous and favorable as it proceeds via endothermic interactions. Furthermore, even at the end of 5 successful adsorption cycles, 77.86 % CV removal was obtained. Remarkable efficiencies were also achieved in the removal performance of different organic pollutants. Based on the reported results, Ch-IL@SPEEK composite were exhibited as an impressive adsorbent material for adsorption processes.


Subject(s)
Chitosan , Gentian Violet , Ionic Liquids , Water Pollutants, Chemical , Chitosan/chemistry , Ionic Liquids/chemistry , Gentian Violet/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Temperature , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Water Purification/methods , Polymers/chemistry , Polyethylene Glycols/chemistry
18.
Glob Chang Biol ; 30(5): e17346, 2024 May.
Article in English | MEDLINE | ID: mdl-38798167

ABSTRACT

Photosynthetically active radiation (PAR) is typically defined as light with a wavelength within 400-700 nm. However, ultra-violet (UV) radiation within 280-400 nm and far-red (FR) radiation within 700-750 nm can also excite photosystems, though not as efficiently as PAR. Vegetation and land surface models (LSMs) typically do not explicitly account for UV's contribution to energy budgets or photosynthesis, nor FR's contribution to photosynthesis. However, whether neglecting UV and FR has significant impacts remains unknown. We explored how canopy radiative transfer (RT) and photosynthesis are impacted when explicitly implementing UV in the canopy RT model and accounting for UV and FR in the photosynthesis models within a next-generation LSM that can simulate hyperspectral canopy RT. We validated our improvements using photosynthesis measurements from plants under different light sources and intensities and surface reflection from an eddy-covariance tower. Our model simulations suggested that at the whole plant level, after accounting for UV and FR explicitly, chlorophyll content, leaf area index (LAI), clumping index, and solar radiation all impact the modeling of gross primary productivity (GPP). At the global scale, mean annual GPP within a grid would increase by up to 7.3% and the increase is proportional to LAI; globally integrated GPP increases by 4.6 PgC year-1 (3.8% of the GPP without accounting for UV + FR). Further, using PAR to proxy UV could overestimate surface albedo by more than 0.1, particularly in the boreal forests. Our results highlight the importance of improving UV and FR in canopy RT and photosynthesis modeling and the necessity to implement hyperspectral or multispectral canopy RT schemes in future vegetation and LSMs.


Subject(s)
Photosynthesis , Ultraviolet Rays , Plant Leaves/radiation effects , Models, Theoretical , Chlorophyll/metabolism , Models, Biological , Plants/radiation effects , Plants/metabolism
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124423, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38759395

ABSTRACT

A simple and sensitive device for the detection of nitrite and nitrate in environmental waters was developed based on visible light gas-phase molecular absorption spectrometry. By integrating a detection cell (DC), semiconductor refrigeration temperature-controlling system (SRTCY), and nitrite reactor into a sequential injection analysis system, trace levels of nitrite and nitrate in complex matrices were successfully measured. A low energy-consuming light-emitting diode (violet, 400-405 nm) was coupled with a visible light-to-voltage converter (TSL257) to measure the gas-phase molecular absorption. To reduce the interference of water vapor, an SRTCY was used to condense the water vapor on-line before the gas-phase analyte entered the DC. The DC was radiatively heated by the SRTCY to avoid water vapor condensation in the light path. As a result, the obtained baseline noise reduced 3.75 times than that of without SRTCY. Under the optimized conditions, the device achieved limits of detection (3σ/k) of 0.055 and 0.36 mmol/L (0.77 and 5.04 mg N/L) for nitrite and nitrate, respectively, and the linear calibration ranges were 0.1-15 mmol/L (R2 = 0.9946) and 1-10 mmol/L (R2 = 0.9995), respectively. Precisions of 5.2 % and 9.0 % were achieved for ten successive determinations of 0.3 mmol/L nitrite and 1.0 mmol/L nitrate, and the analytical times for nitrite and nitrate determination were 5 and 13 min, respectively. This method was validated against standard methods and recovery tests, and it was applied to the measurement of nitrite and nitrate in environmental waters. Moreover, a device was designed to enable the field measurement of nitrite and nitrate in complex matrices.

20.
Int J Phytoremediation ; : 1-10, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725313

ABSTRACT

Synthetic dyes are prevalent in aquatic environments, they have high toxicities, are non-degradable, and accumulate in the water. The removal of Crystal violet (CV) is carried out using batch experiments on the Salsola Tetragona (ST) plant as a novel adsorbent. The prepared adsorbent was analyzed by various methods (MEB, EDX, IRTF and PZC), to support its applicability as adsorbent. The adsorption study of CV is performed by optimizing the parameters affecting the adsorption process. The adsorption kinetics study is represented by pseudo-second-order (R2 = 0.999) and the adsorption process is limited by external mass transport. In addition, the isotherm results demonstrate that the Langmuir model interprets better the adsorption isotherm. The thermodynamic parameters suggest that the adsorption phenomena are spontaneous and exothermic. Furthermore, the adsorption reactions involved are of physisorption type, which facilitates the desorption of pollutants from the surface of the adsorbent. The results show that ST adsorbent effectively removes CV in an aqueous solution, which is demonstrated by the maximum amount adsorption of 246.7 mg.g-1 at optimum adsorption conditions: pH = 6, adsorbent dose of 0.5 g.L-1, initial CV concentration of 10 mg.L-1, and adsorption time of 30 min at 298 K. Finally, these results can be considered as a useful reference for wastewater treatment using ST.


The novelty of our work, entitled "Salsola Tetragona as a New Low-Cost Adsorbent for Water Treatment: Highly Effective Adsorption of Crystal Violet", lies in the utilization of a new biomass abundant in the southwestern region of Morocco. This plant as a novel material is used in its raw state as an adsorbent for removing a cationic dye. According to the literature, this material has not been previously employed in water treatment. Hence, to fill the gap in the literature, we examined its in-batch adsorption to remove crystal violet from the aqueous solution. The results show a high adsorption capacity compared to other natural biomass.

SELECTION OF CITATIONS
SEARCH DETAIL
...