Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
J Mol Evol ; 92(3): 329-337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777906

ABSTRACT

The spike protein determines the host-range specificity of coronaviruses. In particular, the Receptor-Binding Motif in the spike protein from SARS-CoV-2 contains the amino acids involved in molecular recognition of the host Angiotensin Converting Enzyme 2. Therefore, to understand how SARS-CoV-2 acquired its capacity to infect humans it is necessary to reconstruct the evolution of this important motif. Early during the pandemic, it was proposed that the SARS-CoV-2 Receptor-Binding Domain was acquired via recombination with a pangolin infecting coronavirus. This proposal was challenged by an alternative explanation that suggested that the Receptor-Binding Domain from SARS-CoV-2 did not originated via recombination with a coronavirus from a pangolin. Instead, this alternative hypothesis proposed that the Receptor-Binding Motif from the bat coronavirus RaTG13, was acquired via recombination with an unidentified coronavirus. And as a consequence of this event, the Receptor-Binding Domain from the pangolin coronavirus appeared as phylogenetically closer to SARS-CoV-2. Recently, the genomes from coronaviruses from Cambodia (bat_RShST182/200) and Laos (BANAL-20-52/103/247) which are closely related to SARS-CoV-2 were reported. However, no detailed analysis of the evolution of the Receptor-Binding Motif from these coronaviruses was reported. Here we revisit the evolution of the Receptor-Binding Domain and Motif in the light of the novel coronavirus genome sequences. Specifically, we wanted to test whether the above coronaviruses from Cambodia and Laos were the source of the Receptor-Binding Domain from RaTG13. We found that the Receptor-Binding Motif from these coronaviruses is phylogenetically closer to SARS-CoV-2 than to RaTG13. Therefore, the source of the Receptor-Binding Domain from RaTG13 is still unidentified. In accordance with previous studies, our results are consistent with the hypothesis that the Receptor-Binding Motif from SARS-CoV-2 evolved by vertical inheritance from a bat-infecting population of coronaviruses.


Subject(s)
Evolution, Molecular , Phylogeny , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , Animals , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Amino Acid Motifs , COVID-19/virology , Protein Binding , Betacoronavirus/genetics , Chiroptera/virology , Pangolins/virology , Binding Sites , Genome, Viral , Receptors, Virus/metabolism , Receptors, Virus/genetics , Receptors, Virus/chemistry
2.
J Mol Biol ; 436(11): 168577, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642883

ABSTRACT

The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.


Subject(s)
Cell Adhesion Molecules , Dengue Virus , Evolution, Molecular , Host-Pathogen Interactions , Receptors, Cell Surface , Viral Envelope Proteins , Viral Envelope , Humans , Brazil , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/chemistry , Dengue/virology , Dengue Virus/genetics , Dengue Virus/metabolism , Host-Pathogen Interactions/genetics , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/chemistry , Molecular Dynamics Simulation , Phylogeny , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/chemistry , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Receptors, Virus/genetics , Viral Envelope/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry
3.
Infect Genet Evol ; 120: 105590, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574833

ABSTRACT

The presence of different mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can be related to changes in coronavirus disease (COVID-19) infection. Besides, these viral alterations associated with factors such as massive number of positive cases, vaccination and reinfections can be important in the viral evolution process. As well as, mutations found at low frequencies may have a more neutral action and consequently be less inclined to negative selection, facilitating their spread through the population. Related to that, we aimed to present mutations that are possibly relevant in the process of viral evolution found in 115 SARS-CoV-2 sequences from samples of individuals residing in the metropolitan region of Porto Alegre in the state of Rio Grande do Sul, Brazil. The genome from clinical samples was sequenced using High-Throughput Sequencing (HTS) and analyzed using a workflow to map reads and find variations/SNPs. The samples were separated into 3 groups considering the sample lineage. Of the total number of analyzed sequences, 35 were from the Gamma lineage, 35 from Delta and 45 from Omicron. Amino acid changes present in frequencies lower than 80% of the reads in the sequences were evaluated. 11 common mutations among the samples were found in the Gamma lineage, 1 in the ORF1ab gene, 7 in the S gene, 2 in the ORF6 gene and 1 in the ORF7a gene. While in the Delta lineage, a total of 11 mutations distributed in the ORF1ab, S, ORF7a and N genes, 2, 7, 1 and 1 mutation were found in each gene, respectively. And finally, in the Omicron, 16 mutations were identified, 2 in the ORF1ab gene, 12 in the S gene and 2 in the M gene. In conclusion, we emphasize that genomic surveillance can be a useful tool to assess how mutations play a key role in virus adaptation, and its process of susceptibility to new hosts showing the possible signs of viral evolution.


Subject(s)
COVID-19 , Genome, Viral , Mutation , SARS-CoV-2 , SARS-CoV-2/genetics , Humans , COVID-19/virology , COVID-19/epidemiology , Brazil/epidemiology , Phylogeny , Evolution, Molecular
5.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685953

ABSTRACT

The innate immune system is the first line of defense against pathogens such as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The type I-interferon (IFN) response activation during the initial steps of infection is essential to prevent viral replication and tissue damage. SARS-CoV and SARS-CoV-2 can inhibit this activation, and individuals with a dysregulated IFN-I response are more likely to develop severe disease. Several mutations in different variants of SARS-CoV-2 have shown the potential to interfere with the immune system. Here, we evaluated the buffy coat transcriptome of individuals infected with Gamma or Delta variants of SARS-CoV-2. The Delta transcriptome presents more genes enriched in the innate immune response and Gamma in the adaptive immune response. Interactome and enriched promoter analysis showed that Delta could activate the INF-I response more effectively than Gamma. Two mutations in the N protein and one in the nsp6 protein found exclusively in Gamma have already been described as inhibitors of the interferon response pathway. This indicates that the Gamma variant evolved to evade the IFN-I response. Accordingly, in this work, we showed one of the mechanisms that variants of SARS-CoV-2 can use to avoid or interfere with the host Immune system.


Subject(s)
COVID-19 , Interferon Type I , Severe acute respiratory syndrome-related coronavirus , Humans , Interferon Type I/genetics , SARS-CoV-2 , Transcriptome , COVID-19/genetics
6.
Viruses ; 15(9)2023 09 15.
Article in English | MEDLINE | ID: mdl-37766330

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought about significant challenges worldwide. In this study, we present a comprehensive analysis of the genomic epidemiology and lineage dynamics of SARS-CoV-2 in Bulgaria over a three-year period. Through extensive genomic sequencing and data analysis, we investigated the evolution of the virus, the emergence of variants of concern (VOCs), and their impact on the country's pandemic trajectory. We also assessed the relationship between viral diversity and COVID-19 morbidity and mortality in Bulgaria. Our findings shed light on the temporal and spatial distribution of SARS-CoV-2 lineages and provide crucial insights into the dynamics of the pandemic in the country. The interplay between international travel and viral transmission plays a significant role in the emergence and dissemination of different SARS-CoV-2 variants. The observed proportions of exportation to various continents provide insights into the potential pathways through which these lineages spread globally. Understanding the genomic epidemiology of SARS-CoV-2 in Bulgaria is essential for formulating targeted public health strategies, enhancing vaccination efforts, and effectively managing future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Bulgaria/epidemiology , COVID-19/epidemiology , Genomics
7.
Viruses ; 15(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37112869

ABSTRACT

Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Brazil/epidemiology , Transportation , Vaccination
8.
Viruses ; 15(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36851799

ABSTRACT

Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/epidemiology , Bayes Theorem
9.
Infect Genet Evol ; 108: 105405, 2023 03.
Article in English | MEDLINE | ID: mdl-36681102

ABSTRACT

The COVID-19 pandemic has brought significant challenges for genomic surveillance strategies in public health systems worldwide. During the past thirty-four months, many countries faced several epidemic waves of SARS-CoV-2 infections, driven mainly by the emergence and spread of novel variants. In that line, genomic surveillance has been a crucial toolkit to study the real-time SARS-CoV-2 evolution, for the assessment and optimization of novel diagnostic assays, and to improve the efficacy of existing vaccines. During the pandemic, the identification of emerging lineages carrying lineage-specific mutations (particularly those in the Receptor Binding domain) showed how these mutations might significantly impact viral transmissibility, protection from reinfection and vaccination. So far, an unprecedented number of SARS-CoV-2 viral genomes has been released in public databases (i.e., GISAID, and NCBI), achieving 14 million genome sequences available as of early-November 2022. In the present review, we summarise the global landscape of SARS-CoV-2 during the first thirty-four months of viral circulation and evolution. It demonstrates the urgency and importance of sustained investment in genomic surveillance strategies to timely identify the emergence of any potential viral pathogen or associated variants, which in turn is key to epidemic and pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Genomics , Databases, Factual , Mutation , Genome, Viral
10.
Mem. Inst. Oswaldo Cruz ; 118: e230066, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440670

ABSTRACT

BACKGROUND Elite controllers (EC) are human immunodeficiency virus (HIV)-positive individuals who can maintain low viral loads for extended periods without antiretroviral therapy due to multifactorial and individual characteristics. Most have a small HIV-1 reservoir composed of identical proviral sequences maintained by clonal expansion of infected CD4+ T cells. However, some have a more diverse peripheral blood mononuclear cell (PBMC)-associated HIV-1 reservoir with unique sequences. OBJECTIVES To understand the turnover dynamics of the PBMC-associated viral quasispecies in ECs with relatively diverse circulating proviral reservoirs. METHODS We performed single genome amplification of the env gene at three time points during six years in two EC with high intra-host HIV DNA diversity. FINDINGS Both EC displayed quite diverse PBMCs-associated viral quasispecies (mean env diversity = 1.9-4.1%) across all time-points comprising both identical proviruses that are probably clonally expanded and unique proviruses with evidence of ongoing evolution. HIV-1 env glycosylation pattern suggests that ancestral and evolving proviruses may display different phenotypes of resistance to broadly neutralising antibodies consistent with persistent immune pressure. Evolving viruses may progressively replace the ancestral ones or may remain as minor variants in the circulating proviral population. MAIN CONCLUSIONS These findings support that the high intra-host HIV-1 diversity of some EC resulted from long-term persistence of archival proviruses combined with the continuous reservoir's reseeding and low, but measurable, viral evolution despite undetectable viremia.

11.
Viruses, v. 15, n. 9, 1924, set. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5118

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought about significant challenges worldwide. In this study, we present a comprehensive analysis of the genomic epidemiology and lineage dynamics of SARS-CoV-2 in Bulgaria over a three-year period. Through extensive genomic sequencing and data analysis, we investigated the evolution of the virus, the emergence of variants of concern (VOCs), and their impact on the country’s pandemic trajectory. We also assessed the relationship between viral diversity and COVID-19 morbidity and mortality in Bulgaria. Our findings shed light on the temporal and spatial distribution of SARS-CoV-2 lineages and provide crucial insights into the dynamics of the pandemic in the country. The interplay between international travel and viral transmission plays a significant role in the emergence and dissemination of different SARS-CoV-2 variants. The observed proportions of exportation to various continents provide insights into the potential pathways through which these lineages spread globally. Understanding the genomic epidemiology of SARS-CoV-2 in Bulgaria is essential for formulating targeted public health strategies, enhancing vaccination efforts, and effectively managing future outbreaks.

12.
Infect Genet Evol, v. 108, 105405, jan. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4782

ABSTRACT

The COVID-19 pandemic has brought significant challenges for genomic surveillance strategies in public health systems worldwide. During the past thirty-four months, many countries faced several epidemic waves of SARS-CoV-2 infections, driven mainly by the emergence and spread of novel variants. In that line, genomic surveillance has been a crucial toolkit to study the real-time SARS-CoV-2 evolution, for the assessment and optimization of novel diagnostic assays, and to improve the efficacy of existing vaccines. During the pandemic, the identification of emerging lineages carrying lineage-specific mutations (particularly those in the Receptor Binding domain) showed how these mutations might significantly impact viral transmissibility, protection from reinfection and vaccination. So far, an unprecedented number of SARS-CoV-2 viral genomes has been released in public databases (i.e., GISAID, and NCBI), achieving 14 million genome sequences available as of early-November 2022. In the present review, we summarise the global landscape of SARS-CoV-2 during the first thirty-four months of viral circulation and evolution. It demonstrates the urgency and importance of sustained investment in genomic surveillance strategies to timely identify the emergence of any potential viral pathogen or associated variants, which in turn is key to epidemic and pandemic preparedness.

13.
Braz J Microbiol ; 53(4): 2009-2014, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272063

ABSTRACT

We report SARS-CoV-2 genomic surveillance results between Belo Horizonte, Brazil's third and fourth case waves. Samples were obtained through a routine university monitoring COVID-19 program from the 9th to the 22nd epidemiological weeks (March and June 2022). We identified ten samples from the BA.1 clade (BA.1, BA.1.1, and BA.1.14.1 lineages) and 45 samples from the BA.2 clade (BA.2, BA.2.56, BA.2.9, BA.2.62, BA.2.23, BA.2.81, and BA.2.10). We observed progressive replacement of the BA.1 by the BA.2 clade. Furthermore, two XAG recombinants were found in the 22nd week. Diversification of the omicron variant seems to have contributed to the resurgence of cases in Belo Horizonte, similarly to what has been reported in South Africa.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Brazil/epidemiology , SARS-CoV-2/genetics , Universities , COVID-19/epidemiology
14.
Viruses ; 14(4)2022 03 23.
Article in English | MEDLINE | ID: mdl-35458389

ABSTRACT

Tocantins is a state in the cross-section between the Central-West, North and Northeast regions of Brazilian territory; it is a gathering point for travelers and transportation from the whole country. In this study, 9493 genome sequences, including 241 local SARS-CoV-2 samples (collected from 21 December 2020, to 16 December 2021, and sequenced in the MinION platform) were analyzed with the following aims: (i) identify the relative prevalence of SARS-CoV-2 lineages in the state of Tocantins; (ii) analyze them phylogenetically against global SARS-CoV-2 sequences; and (iii) hypothesize the viral dispersal routes of the two most abundant lineages found in our study using phylogenetic and phylogeographic approaches. The performed analysis demonstrated that the majority of the strains sequenced during the period belong to the Gamma P.1.7 (32.4%) lineage, followed by Delta AY.99.2 (27.8%), with the first detection of VOC Omicron. As expected, there was mainly a dispersion of P.1.7 from the state of São Paulo to Tocantins, with evidence of secondary spreads from Tocantins to Goiás, Mato Grosso, Amapá, and Pará. Rio de Janeiro was found to be the source of AY.99.2 and from then, multiple cluster transmission was observed across Brazilian states, especially São Paulo, Paraiba, Federal District, and Tocantins. These data show the importance of trade routes as pathways for the transportation of the virus from Southeast to Northern Brazil.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics
15.
Avian Dis ; 66(4): 459-464, 2022 12.
Article in English | MEDLINE | ID: mdl-36715480

ABSTRACT

Avian reovirus (ARV) is highly disseminated in commercial Brazilian poultry farms, causing arthritis/tenosynovitis, runting-stunting syndrome, and malabsorption syndrome in different meat- and egg-type birds (breeders, broilers, grillers, and layers). In Brazil, ARV infection was first described in broilers in the 1970s but was not considered an important poultry health problem for decades. A more concerning outcome of field infections has been observed in recent years, including condemnations at slaughterhouses because of the unsightly appearance of chicken body parts, mainly the legs. Analyses of the performance of poultry flocks have further evidenced economic losses to farms. Genetic and antigenic characterization of ARV field strains from Brazil demonstrated a high diversity of lineages circulating in the entire country, including four of the five main phylogenetic groups previously described (I, II, III, and V). It is still unclear if all of them are associated with different diseases affecting flocks' performance in Brazilian poultry. ARV infections have been controlled in Brazilian poultry farms by immunization of breeders and young chicks with classical commercial live vaccine strains (S1133, 1733, 2408, and 2177) used elsewhere in the Western Hemisphere. However, genetic and antigenic variations of the field isolates have prevented adequate protection against associated diseases, so killed autogenous vaccines are being produced from isolates obtained on specific farms. In conclusion, ARV field variants are continuously challenging poultry farming in Brazil. Epidemiological surveillance combined with molecular biological analyses from the field samples, as well as the development of vaccine strains directed toward the ARV circulating variants, are necessary to control this economically important poultry pathogen.


Reovirus aviares en granjas avícolas de Brasil. El reovirus aviar (ARV) está muy diseminado en las granjas avícolas comerciales brasileñas y causa artritis/tenosinovitis viral, síndrome de retraso de enanismo infeccioso y síndrome de malabsorción en diferentes tipos de aves de carne y huevos (reproductoras, pollos de engorde, parrillas y ponedoras). En Brasil, la infección por reovirus aviares se describió por primera vez en pollos de engorde en la década de 1970, pero no se consideró un problema importante de salud avícola durante décadas. En los últimos años se ha observado un resultado más preocupante de las infecciones de campo, incluidos los decomisos en las plantas de procesamiento debido a la apariencia antiestética de las partes del cuerpo de los pollos, principalmente las patas. Los análisis del desempeño de las parvadas avícolas han evidenciado pérdidas económicas adicionales para las granjas. La caracterización genética y antigénica de las cepas de campo de reovirus aviares de Brasil demostró una gran diversidad de linajes que circulan en todo el país, incluidos cuatro de los cinco grupos filogenéticos principales descritos anteriormente (I, II, III y V). Todavía no está claro si todos ellos están asociados con diferentes enfermedades que afectan el rendimiento de las parvadas en las aves de corral brasileñas. Las infecciones por reovirus aviares se han controlado en granjas avícolas brasileñas mediante la inmunización de reproductores y pollitos jóvenes con cepas vacunales vivas comerciales clásicas (S1133, 1733, 2408 y 2177) utilizadas en otras partes del hemisferio occidental. Sin embargo, las variaciones genéticas y antigénicas de los aislamientos de campo han impedido una protección adecuada contra enfermedades asociadas, por lo que se están produciendo vacunas autógenas inactivadas a partir de aislamientos obtenidos en granjas específicas. En conclusión, las variantes de campo de ARV son un desafío continuo para la avicultura en Brasil. La vigilancia epidemiológica combinada con análisis de biología molecular de las muestras de campo, así como el desarrollo de cepas de vacunas dirigidas a las variantes circulantes de los reovirus aviares, son necesarias para controlar este patógeno avícola económicamente importante.


Subject(s)
Orthoreovirus, Avian , Poultry Diseases , Vaccines , Animals , Poultry , Chickens , Orthoreovirus, Avian/genetics , Brazil/epidemiology , Farms , Phylogeny
16.
Viruses ; 13(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34578387

ABSTRACT

Brazil was considered one of the emerging epicenters of the coronavirus pandemic in 2021, experiencing over 3000 daily deaths caused by the virus at the peak of the second wave. In total, the country had more than 20.8 million confirmed cases of COVID-19, including over 582,764 fatalities. A set of emerging variants arose in the country, some of them posing new challenges for COVID-19 control. The goal of this study was to describe mutational events across samples from Brazilian SARS-CoV-2 sequences publicly obtainable on Global Initiative on Sharing Avian Influenza Data-EpiCoV (GISAID-EpiCoV) platform and to generate indexes of new mutations by each genome. A total of 16,953 SARS-CoV-2 genomes were obtained, which were not proportionally representative of the five Brazilian geographical regions. A comparative sequence analysis was conducted to identify common mutations located at 42 positions of the genome (38 were in coding regions, whereas two were in 5' and two in 3' UTR). Moreover, 11 were synonymous variants, 27 were missense variants, and more than 44.4% were located in the spike gene. Across the total of single nucleotide variations (SNVs) identified, 32 were found in genomes obtained from all five Brazilian regions. While a high genomic diversity has been reported in Europe given the large number of sequenced genomes, Africa has demonstrated high potential for new variants. In South America, Brazil, and Chile, rates have been similar to those found in South Africa and India, providing enough "space" for new mutations to arise. Genomic surveillance is the central key to identifying the emerging variants of SARS-CoV-2 in Brazil and has shown that the country is one of the "hotspots" in the generation of new variants.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Mutation , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/history , Evolution, Molecular , Genotype , History, 21st Century , Humans , Models, Theoretical , Mutation Rate , Phylogeny , Phylogeography , Public Health Surveillance
17.
Infect Genet Evol ; 93: 104941, 2021 09.
Article in English | MEDLINE | ID: mdl-34044192

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people since its beginning in 2019. The propagation of new lineages and the discovery of key mechanisms adopted by the virus to overlap the immune system are central topics for the entire public health policies, research and disease management. Since the second semester of 2020, the mutation E484K has been progressively found in the Brazilian territory, composing different lineages over time. It brought multiple concerns related to the risk of reinfection and the effectiveness of new preventive and treatment strategies due to the possibility of escaping from neutralizing antibodies. To better characterize the current scenario we performed genomic and phylogenetic analyses of the E484K mutated genomes sequenced from Brazilian samples in 2020. From October 2020, more than 40% of the sequenced genomes present the E484K mutation, which was identified in three different lineages (P.1, P.2 and B.1.1.33 - posteriorly renamed as N.9) in four Brazilian regions. We also evaluated the presence of E484K associated mutations and identified selective pressures acting on the spike protein, leading us to some insights about adaptive and purifying selection driving the virus evolution.


Subject(s)
Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Brazil , COVID-19/virology , Evolution, Molecular , Genomics , Humans , SARS-CoV-2/isolation & purification , Selection, Genetic
18.
Viruses ; 12(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32824934

ABSTRACT

Phage biology has been developing for the last hundred years, and the potential of phages as tools and treatments has been known since their early discovery. However, the lack of knowledge of the molecular mechanisms coded in phage genomes hindered the development of the field. With current molecular methods, the last decade has been a resurgence of the field. The Special Issue on "Diversity and Evolution of Phage Genomes" is a great example with its 17 manuscripts published. It covers some of the latest methods to sample and characterize environmental and host associated viromes, considering experimental biases and computational developments. Furthermore, the use of molecular tools coupled with traditional methods has allowed to isolate and characterize viruses from different hosts and environments with such diversity that even a new viral class is being proposed. The viruses described cover all different phage families and lifestyles. However, is not only about diversity; the molecular evolution is studied in a set of manuscripts looking at phage-host interactions and their capacity to uncover the frequency and type of mutations behind the bacterial resistance mechanisms and viral pathogenesis, and such methods are opening new ways into identifying potential receptors and characterizing the bacterial host range.


Subject(s)
Bacteria/virology , Bacteriophages/genetics , Evolution, Molecular , Genetic Variation , Genome, Viral , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/physiology , Mutation
19.
Avian Pathol ; 49(6): 611-620, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32746617

ABSTRACT

Avian reovirus (ARV) is one of the main causes of infectious arthritis/tenosynovitis and malabsorption syndrome (MAS) in poultry. ARVs have been disseminated in Brazilian poultry flocks in the last years. This study aimed to genotype ARVs and to evaluate the molecular evolution of the more frequent ARV lineages detected in Brazilian poultry-producing farms. A total of 100 poultry flocks with clinical signs of tenosynovitis/MAS, from all Brazilian poultry-producing regions were positive for ARV by PCR. Seventeen bird tissues were submitted to cell culture and ARV RNA detection/genotyping by two PCRs. The phylogenetic classification was based on σC gene alignment using a dataset with other Brazilian and worldwide ARVs sequences. ARVs were specifically detected by both PCRs from the 17 cell cultures, and σC gene partial fragments were sequenced. All these sequences were aligned with a total of 451 ARV σC gene data available in GenBank. Phylogenetic analysis demonstrated five well-defined clusters that were classified into lineages I, II, III, IV, and V. Three lineages could be further divided into sub-lineages: I (I vaccine, Ia, Ib), II (IIa, IIb, IIc) and IV (IVa and IVb). Brazilian ARVs were from four lineages/sub-lineages: Ib (48.2%), IIb (22.2%), III (3.7%) and V (25.9%). The Bayesian analysis demonstrated that the most frequent sub-lineage Ib emerged in the world around 1968 and it was introduced into Brazil in 2010, with increasing spread soon after. In conclusion, four different ARV lineages are circulating in Brazilian poultry flocks, all associated with clinical diseases. RESEARCH HIGHLIGHTS One-hundred ARV-positive flocks were detected in all main poultry-producing regions from Brazil. A large dataset of 468 S1 sequences was constructed and divided ARVs into five lineages. Four lineages/sub-lineages (Ib, IIb, III and V) were detected in commercial poultry flocks from Brazil. Brazilian lineages shared a low identity with the commercial vaccine lineage (I vaccine). Sub-lineage Ib emerged around 1968 and was introduced into Brazil in 2010.


Subject(s)
Orthoreovirus, Avian/genetics , Poultry Diseases/virology , Tenosynovitis/veterinary , Animals , Bayes Theorem , Brazil/epidemiology , Evolution, Molecular , Genotype , Orthoreovirus, Avian/classification , Phylogeny , Polymerase Chain Reaction/veterinary , Poultry/virology , Poultry Diseases/epidemiology , Tenosynovitis/epidemiology , Tenosynovitis/virology
20.
J Viral Hepat ; 27(6): 620-630, 2020 06.
Article in English | MEDLINE | ID: mdl-32052519

ABSTRACT

The genotype F (HBV-F) is an autochthonous Native American strain of the hepatitis B virus. In this study, we reconstruct the HBV-F long-term evolution under a hypothesis of co-divergence with humans in Central and South America, since their entry into the region 14.5-16 thousand years ago. The Bayesian phylogeographic reconstruction supported a virus-host co-expansion; however, two evolutionary scenarios would have been present. Whereas subgenotype F1 spreads along a Pacific coastal route and would have evolved associated with Central American and Andean cultures from the west of the continent, subgenotypes F2-F6 spread along the Atlantic coastline and inner pathways associated with communities inhabiting the tropical forest lowlands. Then, we propose a model for HBV-F evolution in which the selection of differential biological characteristics in these two main groups would be related to their evolution in host populations with different genetic backgrounds and dissimilar demographic conditions.


Subject(s)
Evolution, Molecular , Hepatitis B virus , Hepatitis B , Bayes Theorem , Central America , Genotype , Hepatitis B/history , Hepatitis B virus/genetics , History, Ancient , Humans , Phylogeny , South America
SELECTION OF CITATIONS
SEARCH DETAIL