Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Cir Cir ; 92(4): 426-436, 2024.
Article in English | MEDLINE | ID: mdl-39079248

ABSTRACT

OBJECTIVE: To share our experience in creating precise anatomical models using available open-source software. METHODS: An affordable method is presented, where from a DICOM format of a computed tomography, a segmentation of the region of interest is achieved. The image is then processed for surface improvement and the DICOM format is converted to STL. Error correction is achieved and the model is optimized to be printed by stereolithography with a desktop 3D printer. RESULTS: Precise measurements of the dimensions of the DICOM file (CT), the STL file, and the printed model (3D) were carried out. For the C6 vertebra, the dimensions of the horizontal axis were 55.3 mm (CT), 55.337 mm (STL), and 55.3183 mm (3D). The dimensions of the vertebral body were 14.2 mm (CT), 14.551 mm (STL), and 14.8159 mm (3D). The length of the spinous process was 18.2 mm (CT), 18.283 mm (STL), and 18.2266 mm (3D), while its width was 8.5 mm (CT), 8.3644 mm (STL), and 8.3226 mm (3D). For the C7 vertebra, the dimensions of the horizontal axis were 58.6 mm (CT), 58.739 mm (STL), and 58.7144 mm (3D). The dimensions of the vertebral body were 14 mm (CT), 14.0255 mm (STL), and 14.2312 mm (3D). The length of the spinous process was 18.7 mm (CT), 18.79 mm (STL), and 18.6458 mm (3D), and its width was 8.9 mm (CT), 8.988 mm (STL), and 8.9760 mm (3D). CONCLUSION: The printing of a 3D model of bone tissue using this algorithm is a viable, useful option with high precision.


OBJETIVO: Compartir nuestra experiencia para crear modelos anatómicos precisos utilizando software con licencia abierta disponibles. MÉTODOS: Se presenta un método asequible, en donde a partir de un formato DICOM de una tomografía computarizada se logra una segmentación de la región de interés. Posteriormente se procesa la imagen para una mejora de superficie y se realiza la conversión de formato DICOM a STL. Se logra la corrección de errores y se optimiza el modelo para luego ser impreso por medio de estereolitografía con una impresora 3D de escritorio. RESULTADOS: Se efectuaron mediciones precisas de las dimensiones del archivo DICOM (TC), del archivo STL y del modelo impreso (3D). Para la vértebra C6, las dimensiones del eje horizontal fueron 55.3 mm (TC), 55.337 mm (STL) y 55.3183 mm (3D). Las dimensiones del cuerpo vertebral fueron 14.2 mm (TC), 14.551 mm (STL) y 14.8159 mm (3D). La longitud de la apófisis espinosa fue de 18.2 mm (TC), 18.283 mm (STL) y 18.2266 mm (3D), mientras que su ancho fue de 8.5 mm (TC), 8.3644 mm (STL) y 8.3226 mm (3D). Para la vértebra C7, las dimensiones del eje horizontal fueron 58.6 mm (TC), 58.739 mm (STL) y 58.7144 mm (3D). Las dimensiones del cuerpo vertebral fueron 14 mm (TC), 14.0255 mm (STL) y 14.2312 mm (3D). La longitud de la apófisis espinosa fue de 18.7 mm (TC), 18.79 mm (STL) y 18.6458 mm (3D), y su ancho fue de 8.9 mm (TC), 8.988 mm (STL) y 8.9760 mm (3D). CONCLUSIÓN: La impresión de un modelo en 3D de tejido óseo mediante este algoritmo resulta una opción viable, útil y con una alta precisión.


Subject(s)
Models, Anatomic , Printing, Three-Dimensional , Tomography, X-Ray Computed , Humans , Software , Imaging, Three-Dimensional/methods , Stereolithography , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/anatomy & histology
2.
Dent J (Basel) ; 12(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39056980

ABSTRACT

This clinical report presents a technique to reconstruct extensively resected mandibles using a combination of autologous bone grafts and additive manufacturing techniques. Mandibular defects, often arising from trauma, tumors, or congenital anomalies, can severely impact both function and aesthetics. Conventional reconstruction methods have their limitations, often resulting in suboptimal outcomes. In these reports, we detail clinical cases where patients with different mandibular defects underwent reconstructive surgery. In each instance, autologous grafts were harvested to ensure the restoration of native bone tissue, while advanced virtual planning techniques were employed for precise graft design and dental implant placement. The patients experienced substantial improvements in masticatory function, speech, and facial aesthetics. Utilizing autologous grafts minimized the risk of rejection and complications associated with foreign materials. The integration of virtual planning precision allowed customized solutions, reducing surgical duration and optimizing implant positioning. These 2 cases underscores the potential of combining autologous grafts with virtual planning precision and dental implants produced by additive manufacturing for mandible reconstruction.

3.
J Esthet Restor Dent ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837612

ABSTRACT

OBJECTIVE: This article aims to showcase the implementation of a digital workflow in addressing a case of multifactorial excessive gingival display in a patient with high esthetic demands, incorporating both surgical and restorative interventions in a single session. CLINICAL CONSIDERATIONS: A 28-year-old female patient presented with excessive gingival display, attributed to a combination of short teeth due to altered passive eruption, lip hyperactivity, and a sub-nasal depression that lodged the upper lip during spontaneous smiling. The multidisciplinary treatment strategy encompassed surgical crown lengthening, the placement of a biovolume in the maxillary concavity, and the rehabilitation of the six anterior teeth with direct composite resin, all done in a single session. Smilecloud Biometrics was used to digitally plan the smile, and the final wax-up/mock-up was approved by the patient prior to any irreversible procedure. A digital planning center (GuiderLab) enabled the materialization of the virtual planning and the printing of the periodontal surgical guide, the biovolume, and the resin layering guides for the restorative technique. CONCLUSIONS: Adopting a digital workflow in multidisciplinary cases with excessive gingival display leads to predictable and more expedited outcomes, ensuring a favorable result between soft and hard tissues. CLINICAL SIGNIFICANCE: Excessive gingival display is a condition with multifactorial etiologies, including dentoalveolar, periodontal, skeletal, or muscular origins, or a combination of these factors. The diagnoses of altered passive eruption and a hypermobile upper lip are common in daily clinical practice and can be successfully managed through surgical crown lengthening and filling of the maxillary concavity, respectively. To achieve the desired outcome, restorative procedures often complement these surgical interventions.

4.
Acta Ortop Mex ; 36(1): 39-47, 2022.
Article in Spanish | MEDLINE | ID: mdl-36099572

ABSTRACT

Three-dimensional (3D) printing includes a group of technologies by means of which it is possible to generate three-dimensional objects from binary information. Orthopedics and traumatology are fields of medicine in which 3D planning has had the greatest impact, especially in trauma and oncological orthopedics. Applications of this technique include diagnosis, surgical planning, intraoperative guide creation, custom implants, surgical training, orthotic and prosthetic impression, and bioprinting. Advantages have been demonstrated in its use, such as greater technical precision, shorter surgical times, decreased blood loss and less exposure to X-rays. Although the process is increasingly optimized and accessible due to advances in software and automation, it is a technique that requires adequate training. The objective of this review is to offer an approach to this technology and its basic principles.


La impresión en tres dimensiones (3D) incluye un grupo de tecnologías por medio de las cuales es posible generar objetos tridimensionales a partir de información binaria. La ortopedia y traumatología es uno de los campos de la medicina en los que mayor impacto ha tenido la planificación 3D, en especial en trauma y ortopedia oncológica. Las aplicaciones de esta técnica incluyen el diagnóstico, planificación quirúrgica, creación de guías intraoperatorias, implantes personalizados, entrenamiento quirúrgico, impresión de ortesis y prótesis y la bioimpresión. Se han demostrado ventajas en su uso como la mayor precisión técnica, el acortamiento de tiempos quirúrgicos, disminución de pérdida sanguínea y menor exposición a rayos. Si bien el proceso está cada vez más optimizado y accesible por los avances en software y automatización, es una técnica que requiere un entrenamiento adecuado. El objetivo de esta revisión es ofrecer un acercamiento a esta tecnología y sus principios básicos.


Subject(s)
Orthopedic Procedures , Orthopedics , Traumatology , Humans , Printing, Three-Dimensional , Prostheses and Implants
5.
Acta ortop. mex ; 36(1): 39-47, ene.-feb. 2022. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1447108

ABSTRACT

Resumen: La impresión en tres dimensiones (3D) incluye un grupo de tecnologías por medio de las cuales es posible generar objetos tridimensionales a partir de información binaria. La ortopedia y traumatología es uno de los campos de la medicina en los que mayor impacto ha tenido la planificación 3D, en especial en trauma y ortopedia oncológica. Las aplicaciones de esta técnica incluyen el diagnóstico, planificación quirúrgica, creación de guías intraoperatorias, implantes personalizados, entrenamiento quirúrgico, impresión de ortesis y prótesis y la bioimpresión. Se han demostrado ventajas en su uso como la mayor precisión técnica, el acortamiento de tiempos quirúrgicos, disminución de pérdida sanguínea y menor exposición a rayos. Si bien el proceso está cada vez más optimizado y accesible por los avances en software y automatización, es una técnica que requiere un entrenamiento adecuado. El objetivo de esta revisión es ofrecer un acercamiento a esta tecnología y sus principios básicos.


Abstract: Three-dimensional (3D) printing includes a group of technologies by means of which it is possible to generate three-dimensional objects from binary information. Orthopedics and traumatology are fields of medicine in which 3D planning has had the greatest impact, especially in trauma and oncological orthopedics. Applications of this technique include diagnosis, surgical planning, intraoperative guide creation, custom implants, surgical training, orthotic and prosthetic impression, and bioprinting. Advantages have been demonstrated in its use, such as greater technical precision, shorter surgical times, decreased blood loss and less exposure to X-rays. Although the process is increasingly optimized and accessible due to advances in software and automation, it is a technique that requires adequate training. The objective of this review is to offer an approach to this technology and its basic principles.

6.
J Oral Implantol ; 48(3): 171-176, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34091691

ABSTRACT

This study evaluated the anatomical factors that influence the virtual planning of zygomatic implants by using cone-beam computerized tomography (CBCT) scans. CBCT scans of 268 edentulous patients were transferred to specialized implant planning software for the following measurements: maxillo-sinus concavity size (small, medium, and large), zygoma width, implant insertion angle, implant length, and implant apical anchorage. Concavity sizes found were as follows: 34.95% small, 52.30% medium, and 7.35% large. The mean insertion angle was 43.2 degrees, and the average implant apical anchorage was 9.1 mm. The most frequent implant length was 40 mm. Significant differences were found when the different types of concavities in relation to the installation angle, the distance of the apical portion of the implant in contact with the zygomatic bone, and the lateral-lateral thickness of the zygomatic bone were compared (P < .001). Medium-sized maxillary sinus concavity presented greater apical anchorage of the implant (9.7 mm) and was the most frequent type (52.30%). The zygomatic bone is a viable site for zygomatic fixtures, and the use of specialized implant planning software is an important tool to achieve predictable outcomes for zygomatic implants and allows good visualization of the relation between implants and anatomical structures.


Subject(s)
Dental Implants , Zygoma , Dental Implantation, Endosseous/methods , Humans , Maxilla/diagnostic imaging , Maxilla/surgery , Software , Zygoma/diagnostic imaging , Zygoma/surgery
7.
Med Devices (Auckl) ; 12: 253-273, 2019.
Article in English | MEDLINE | ID: mdl-31496840

ABSTRACT

The main purpose of this investigation was to systematically review the literature regarding case studies on patient-specific implants and devices, with the goal of analyzing the process of developing custom-made medical devices. A content analysis was performed to identify design processes and methodologies implemented to develop devices such as implants adapted to bone geometries. Reverse engineering, computer-aided design, simulation of assets, and rapid prototyping technologies were selected according to their interoperability in a process framework for developing new products. Finally, results from the case studies and process stages identified in the consulted research were analyzed. These results showed a relationship between the scope and complexity of the process and the stage of technology integration of the patient-specific device development. The analyzed case studies were characterized by technical, scientific, and multidisciplinary components to achieve research goals. Likewise, integration of technologies using patient-specific technologies is needed for product development that converges into designing devices, such as implants, biomodels, and cutting drilling guides.

8.
Dental press j. orthod. (Impr.) ; 23(6): 80-89, Nov.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-975031

ABSTRACT

Abstract Facial asymmetry is a condition that compromises function and social interactions and, consequently, the quality of life. Orthodontic-surgical treatment may be indicated to achieve a stable occlusion and significant improvement in facial aesthetics. The virtual planning of the maxillary, mandibular and chin movements can be done prior to surgery. These movements can be successfully performed with the use of prototyped guides obtained from virtual planning. The aim of this article is to show the state of the art of treatments of facial asymmetries, and emphasize how important is the multi-disciplinary approach to achieve predictable aesthetic and functionally stable results in a patient with facial asymmetry and chin protrusion.


Resumo A assimetria facial é uma condição capaz de comprometer a função oclusal e as interações sociais e, consequentemente, a qualidade de vida dos indivíduos. Nessas condições, para se obter oclusão estável e melhora significativa na estética facial, o tratamento ortodôntico-cirúrgico pode estar indicado. A simulação virtual da cirurgia permite planejar de forma adequada, e antecipada, os movimentos cirúrgicos a serem efetuados na maxila, mandíbula e mento. Esses movimentos são, então, realizados com sucesso graças ao uso de guias prototipados obtidos a partir do planejamento virtual. Assim, os objetivos do presente artigo consistem em relatar o estado da arte no planejamento virtual do tratamento de um paciente com assimetria facial e protrusão do mento, e enfatizar a importância da abordagem multidisciplinar para se atingir resultados estéticos previsíveis e funcionalmente estáveis.


Subject(s)
Humans , Male , Esthetics , Facial Asymmetry/surgery , Facial Asymmetry/therapy , Orthognathic Surgical Procedures/methods , Orthognathic Surgery/methods , Orthodontics, Corrective , Osteotomy/methods , Patient Care Planning , Cephalometry , Chin/surgery , Osteotomy, Le Fort/methods , Surgery, Computer-Assisted/methods , Dental Occlusion , Facial Asymmetry/diagnostic imaging , Dentofacial Deformities/surgery , Dentofacial Deformities/therapy , Malocclusion/surgery , Malocclusion/therapy , Malocclusion/diagnostic imaging , Mandible/surgery , Mandible/diagnostic imaging , Maxilla/surgery , Maxilla/diagnostic imaging
9.
Dental press j. orthod. (Impr.) ; 23(3): 80-93, May-June 2018. graf
Article in English | LILACS | ID: biblio-953026

ABSTRACT

ABSTRACT Dentofacial deformities usually are surgically treated, and 3D virtual planning has been used to favor accurate outcomes. Cases reported in the present article show that orthognathic surgery carried out to correct facial asymmetries does not comprise only one treatment protocol. 3D virtual planning might be used for surgical planning, but it should also be used to diagnose the deformity, thus allowing for an analysis of the best-recommended possibilities for the orthodontic preparation that suits each individual case.


RESUMO As deformidades dentofaciais são, geralmente, tratadas de forma cirúrgica, e o planejamento virtual 3D tem sido utilizado para aumentar a precisão dos resultados. Os casos exemplificados no presente artigo mostram que a cirurgia ortognática para correção das assimetrias faciais não apresenta um único protocolo de tratamento. O planejamento virtual 3D pode ser adotado para planejar a cirurgia, mas também deve ser utilizado na fase de diagnóstico da deformidade, assim permitindo uma análise das possibilidades mais indicadas para o preparo ortodôntico mais adequado em cada caso.


Subject(s)
Humans , Female , Adult , Patient Care Planning , Imaging, Three-Dimensional , Facial Asymmetry/surgery , Facial Asymmetry/diagnostic imaging , Orthognathic Surgical Procedures/methods , Radiography, Panoramic , Tomography Scanners, X-Ray Computed , Dentofacial Deformities/surgery , Dentofacial Deformities/diagnostic imaging
10.
Rev. Salusvita (Online) ; 36(1): 77-89, 2017.
Article in Portuguese | LILACS | ID: biblio-876175

ABSTRACT

Introdução: os casos de assimetria facial são considerados os de maior complexidade dentro do âmbito da cirurgia Buco-Maxilo-Facial, devido a alteração esquelético-morfológica nos três planos do espaço (Pitch, Yaw e Roll). Estes planos foram trazidos do posicionamento de uma aeronave no espaço para o mundo da cirurgia, mais especificamente ao planejamento virtual, para romper as limitações do planejamento manual e a plataforma de Erickson, usados durante décadas para correção não só de casos simples envolvendo movimentos puros dos ossos, como também assimetrias. Hoje é sabido que o planejamento manual ainda é usado, porém, vem caindo em desuso devido as suas limitações. A cirurgia virtual vem ganhando muito espaço e se superando a cada dia. Objetivo: relatar um caso de cirurgia ortognática em que a paciente era portadora de assimetria facial, planejada de forma manual (tradicional) e os erros encontrados após 04 anos, levando a uma re-operação baseada em planejamento virtual.


Introduction: the cases of facial asymmetry are considered the most complex within the scope of oral and maxillofacial surgery due to skeletal-morphological changes in the three planes of space (Pitch, Yaw and Roll). These plans were brought from the position of an aircraft in space to the world of surgery, specifically the virtual planning to break the limitations of manual planning and Erickson platform, used for decades to fix not only simple cases involving purê bone's movements as well as asymmetries. Today it is known that manual planning is still used, however, it has fallen into disuse because of its limitations. Virtual surgery is gaining a lot of space and surpassing every day. Objective: this article aims to report a case of orthognathic surgery in which the patient had facial asymmetry, planned manually (traditional) and the errors found after 04 years, leading to a virtual planning-based re-operation.


Subject(s)
Humans , Female , Middle Aged , Orthodontics/classification , Maxillofacial Abnormalities/diagnostic imaging , Orthognathic Surgical Procedures , Orthognathic Surgery , Tomography, X-Ray Computed/instrumentation , Technology, Dental/trends , Orthodontic Appliance Design , Dental Occlusion , Esthetics, Dental , Facial Asymmetry/diagnostic imaging , Genioplasty/rehabilitation
11.
Int J Surg Case Rep ; 25: 238-42, 2016.
Article in English | MEDLINE | ID: mdl-27414994

ABSTRACT

INTRODUCTION: Segmental maxillary osteotomy enables correction of anterior open bites. However, the outcome can be somewhat unstable, particularly if pseudarthrosis occurs. Bone grafts can be used to prevent this complication. Among the many biomaterials available for grafting, Bio-oss(®) has been used successfully in a range of modalities, with studies to support several indications. This report describes a case of segmental maxillary osteotomy in which Bio-oss(®) granules were used as bone grafts in the surgical gap. PRESENTATION OF CASE: A 24-year-old female presented with anterior open bite, Angle class III posterior occlusion, and Angle class II anterior occlusion. Virtual surgical planning of the procedure predicted a gap of approximately 5mm in the region of the osteotomy, which was bridged with Bio-oss(®) granules. DISCUSSION: Although autogenous bone grafting is the gold standard due to its osteoconductive, osteoinductive, and osteogenic properties, it involves increased morbidity for the patient, unpredictable resorption rates, increased operative time, and risk of infection at the donor site. Use of the Bio-oss(®) material can provide good bone stability, osteoconduction, and biocompatibility, while reducing operative time and surgical morbidity. CONCLUSION: This is the first report of bone grafting with a granular biomaterial in segmental maxillary osteotomy. Successful formation of new bone with density greater than that of the surrounding tissue was achieved, preventing pseudarthrosis and postoperative instability.

12.
Acta odontol. venez ; 50(4)2012. ilus
Article in Spanish | LILACS | ID: lil-678992

ABSTRACT

El avance tecnológico de la odontología ha permitido el desarrollo de nuevas técnicas en la implantología y así alcanzar una evolución en el tratamiento de los edéntulos totales. Dentro de estas técnicas se destaca la cirugía guiada, que consiste en la utilización de imágenes de tomografía computadorizada para simular la colocación de implantes en un programa virtual computadorizado, confeccion inicial de una guía quirúrgica y posterior colocación de los implantes oseointegrados sin necesidad de levantar un colgajo. Esta técnica presenta como grandes ventajas: una disminución del tiempo de tratamiento (quirúrgico y protésico), menor sangrado, ofrece una mayor previsibilidad y menor incomodidad en el post-operatorio. Este artículo tiene como objetivo describir en un relato de caso clínico la rehabilitación de un individuo edéntulo total maxilar con la técnica de cirugía guiada


The technological advancement in dentistry has enabled the development of new techniques in implantology and has allowed an evolution in the treatment of edentulous patients. Among these techniques is highlighted guided surgery, which is the use of computed tomography to provide images to a computer program to simulate implant placement and enable the production of a prototyped guide that will allow the correct installation without the need for surgical flap. Besides having as main advantages the shorter duration of surgery and treatment, the decrease in bleeding, provides greater predictability and less discomfort during and after surgery. This article aims to describe a clinical case of oral rehabilitation of an individual edentulous upper jaw with the technique of imediated loaded with guided surgery


Subject(s)
Humans , Male , Middle Aged , Surgery, Oral/methods , Dental Implants , Maxilla/surgery , Guided Tissue Regeneration, Periodontal/methods , Health Planning/methods
SELECTION OF CITATIONS
SEARCH DETAIL