Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514583

ABSTRACT

Microgrids represent a promising energy technology, because of the inclusion in them of clean and smart energy technologies. They also represent research challenges, including controllability, stability, and implementation. This article presents a dSPACE-control-platform-based implementation of a fixed-switching-frequency modulated model predictive control (M2PC) strategy, as an inner controller of a two-level, three-phase voltage source inverter (VSI) working in an islanded AC microgrid. The developed controller is hierarchical, as it includes a primary controller to share the load equally with the other power converter with its own local modulated predictive-based controller. All details of the implementation are given for establishing the dSPACE-based implementation of the control on a dSPACE ds1103 control platform, using MATLAB/Simulink for the controller design, I/O implementation and configuration with the embedded dSPACE's real-time interface in Simulink, and then using the ControlDesk software for monitoring and testing of the real plant. The latter consists of the VSI operating with LCL filters, and sharing an RL load with a paralleled VSI with exactly the same controller. Finally, the obtained experimental waveforms are shown, with our respective conclusions representing this work, which is a very valuable tool for helping microgrid researchers implement dSPACE-based real-time simulations.

2.
HardwareX ; 15: e00452, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37497343

ABSTRACT

Generation, power conversion and subsequent integration of renewable energy generation systems, such as solar photovoltaic or wind, require an efficient power conversion system that can provide sufficient quality energy according to technical standards (e.g. IEEE 519-2022). In this context, this paper focuses on the analysis, design and experimental validation of a multilevel voltage source inverter (VSI) scheme based on H-bridge cells with a modular and scalable structure for its application in power electronic converter circuits. The designed and assembled experimental setup is a versatile platform for testing experimentally varied control strategies and power converter configurations, such as the number of levels (3, 5, 7 levels) and phases (single-phase or three-phase). Therefore, the hardware design process proposed for the H-bridge cell and the measurement and conditioning circuits for voltage and current signals necessary for implementing the control algorithms are explained in detail. Moreover, a quantitative analysis of the operation of the design was carried out from measurements made with the experimental platform to verify its correct operation. Among the analysed parameters, the generated harmonics level stands out, quantified by calculating the total harmonic distortion and the mean square error between the reference signals and the measured values.

3.
Data Brief ; 25: 104104, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31334309

ABSTRACT

Power converters are essential for the use of renewable energy resources. For example, a photovoltaic system produces DC energy that is transformed into AC by the voltage source inverter (VSI). This power is used by a motor drive that operates at different speeds, generating variable loads. Two parameters, namely, resistance and inductance are essential to correctly adjust the model predictive control (MPC) in a VSI. In this paper, we describe the data from a VSI that incorporates an MPC. We generate four datasets consisting of 399 cases or instances (rows) each one. Two data set comprises the simulations varying the inductance (continuous and discrete versions) and the other two varying the resistance (continuous and discrete versions). The motivation behind this data is to support the design and development of nonintrusive models to predict the resistance and inductance of a VSI under different conditions.

SELECTION OF CITATIONS
SEARCH DETAIL