Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000398

ABSTRACT

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Subject(s)
Immunohistochemistry , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Foxes/genetics , Foxes/metabolism , Mice , Wolves/genetics , Wolves/metabolism , Dogs , Canidae/genetics
2.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747258

ABSTRACT

In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.


Subject(s)
Vomeronasal Organ , Animals , Vomeronasal Organ/physiology , Mice , Male , Female , Odorants/analysis , Pheromones/urine , Pheromones/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains
3.
Genesis ; 62(2): e23593, 2024 04.
Article in English | MEDLINE | ID: mdl-38562011

ABSTRACT

The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell/genetics , Gene Expression Regulation , Epigenesis, Genetic , Mammals
4.
Genesis ; 62(2): e23597, 2024 04.
Article in English | MEDLINE | ID: mdl-38590121

ABSTRACT

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Subject(s)
Olfactory Bulb , Vomeronasal Organ , Mice , Animals , Olfactory Bulb/physiology , Sensory Receptor Cells/metabolism , Vomeronasal Organ/metabolism
5.
Genesis ; 62(2): e23596, 2024 04.
Article in English | MEDLINE | ID: mdl-38665067

ABSTRACT

The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.


Subject(s)
Vomeronasal Organ , Vomeronasal Organ/metabolism , Vomeronasal Organ/cytology , Animals , Mice , Olfactory Mucosa/metabolism , Olfactory Mucosa/cytology , Keratin-15/metabolism , Keratin-15/genetics , Keratin-5/metabolism , Keratin-5/genetics , Keratin-14/metabolism , Keratin-14/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
6.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38439531

ABSTRACT

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Subject(s)
Olfactory Receptor Neurons , S100 Proteins , Vomeronasal Organ , Animals , Olfactory Bulb/metabolism , Olfactory Mucosa , Olfactory Receptor Neurons/metabolism , S100 Proteins/metabolism , Vomeronasal Organ/metabolism , Xenopus laevis/metabolism
7.
J Vet Med Sci ; 86(5): 458-462, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38508726

ABSTRACT

Little is known about the neuronal structure of the vomeronasal organ (VNO), a receptor organ responsible for pheromone perception, in the alpaca (Vicugna pacos). This study was performed to determine the localization of neuronal elements, including protein gene product 9.5 (PGP 9.5), a pan-neuronal marker, olfactory marker protein (OMP), a marker of mature olfactory receptor cells, and phospholipase C beta 2 (PLC-ß2), a marker of solitary chemoreceptor cells (SCCs), in the VNO. OMP was identified in receptor cells of the vomeronasal sensory epithelium (VSE), while PGP 9.5 and PLC-ß2 were localized in both the VSE and vomeronasal non-sensory epithelium. Collectively, these results suggested that the alpaca VNO possesses SCCs and olfactory receptor cells, which recognize both harmful substances and pheromones.


Subject(s)
Camelids, New World , Olfactory Marker Protein , Vomeronasal Organ , Animals , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/cytology , Camelids, New World/anatomy & histology , Male , Olfactory Marker Protein/metabolism , Phospholipase C beta/metabolism , Female , Olfactory Receptor Neurons , Chemoreceptor Cells , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
8.
J Anat ; 245(1): 109-136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366249

ABSTRACT

Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.


Subject(s)
Vomeronasal Organ , Wolves , Animals , Vomeronasal Organ/physiology , Wolves/physiology , Male , Pheromones/metabolism , Female , Olfactory Bulb/physiology , Olfactory Bulb/anatomy & histology , Dogs , Immunohistochemistry
9.
Physiol Behav ; 275: 114451, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38176291

ABSTRACT

Early exposure of does to sexually active bucks triggers early puberty onset correlating with neuroendocrine changes. However, the sensory pathways that are stimulated by the male are still unknown. Here, we assessed whether responses to olfactory stimuli are modulated by social experience (exposure to males or not) and/or endocrine status (prepubescent or pubescent). We used a calcium imaging approach on goat sensory cells from the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). For both cell types, we observed robust responses to active male hair in females under three physiological conditions: prepubescent females isolated from males (ISOL PrePub), pubescent females exposed to males (INT Pub) and isolated females (ISOL Pub). Response analysis showed overall greater proportion of responses to buck hair in ISOL PrePub. We hypothesized that females would be more responsive to active buck hair during the prepubertal period, with numerous responses perhaps originating from immature neurons. We also observed a greater proportion of mature olfactory neurons in the MOE and VNO of INT Pub females suggesting that male exposure can induce plastic changes on olfactory cell function and organization. To determine whether stimulation by male odor can advance puberty, we exposed prepubescent does to active buck hair (ODOR). In both ODOR and females isolated from males (ISOL) groups, puberty was reached one month after females exposed to intact bucks (INT), suggesting that olfactory stimulation is not sufficient to trigger puberty.


Subject(s)
Ovulation , Sexual Behavior, Animal , Animals , Female , Male , Sexual Behavior, Animal/physiology , Seasons , Ovulation/physiology , Smell , Goats/physiology
10.
Cells Tissues Organs ; 213(2): 147-160, 2024.
Article in English | MEDLINE | ID: mdl-36599327

ABSTRACT

The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.


Subject(s)
Vomeronasal Organ , Male , Humans , Horses , Animals , Vomeronasal Organ/metabolism , Prostate-Specific Antigen/metabolism , Epithelium/metabolism , Lectins/metabolism , Glycoconjugates/analysis , Glycoconjugates/metabolism
11.
J Comp Neurol ; 532(2): e25545, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37849047

ABSTRACT

In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.


Subject(s)
Corticomedial Nuclear Complex , Vomeronasal Organ , Animals , Female , Male , Olfactory Bulb/physiology , Vomeronasal Organ/physiology , Sex Characteristics , GABAergic Neurons
12.
J Morphol ; 284(11): e21655, 2023 11.
Article in English | MEDLINE | ID: mdl-37856277

ABSTRACT

Many tetrapod vertebrates have two distinct olfactory organs, the olfactory epithelium (OE) and vomeronasal organ (VNO). In turtles, the olfactory organ consists of two types of sensory epithelia, the upper chamber epithelium (UCE; corresponding to the OE) and the lower chamber epithelium (LCE; corresponding to the VNO). In many turtle species, the UCE contains ciliated olfactory receptor cells (ORCs) and the LCE contains microvillous ORCs. To date, several transcription factors involved in the development of the OE and VNO have been identified in mammals. Fez family zinc-finger protein 1 and 2 (Fezf1 and 2) are expressed in the OE and VNO, respectively, of mouse embryos, and are involved in the development and maintenance of ORCs. B-cell lymphoma/leukemia 11B (Bcl11b) is expressed in the mouse embryo OE except the dorsomedial parts of the nasal cavity, and regulates the expression of odorant receptors in the ORCs. In this study, we examined the expression of Fezf1, Fezf2, and Bcl11b in the olfactory organs of embryos in three turtle species, Pelodiscus sinensis, Trachemys scripta elegans, and Centrochelys sulcata, to evaluate their involvement in the development of reptile olfactory organs. In all three turtle species, Bcl11b was expressed in the UCE, Fezf2 in the LCE, and Fezf1 in both the UCE and LCE. These results imply that the roles of the transcription factors Fezf1, Fezf2, and Bcl11b in olfactory organ development are conserved among mammals and turtles.


Subject(s)
Olfactory Mucosa , Transcription Factors , Tumor Suppressor Proteins , Turtles , Vomeronasal Organ , Animals , Olfactory Mucosa/innervation , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Turtles/genetics , Turtles/metabolism , Vomeronasal Organ/innervation , Vomeronasal Organ/metabolism
13.
Article in English | MEDLINE | ID: mdl-37690081

ABSTRACT

In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.

14.
Acta Histochem ; 125(7): 152078, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37540956

ABSTRACT

The vomeronasal organ is an olfactory organ found in amphibians and higher vertebrates. Type 1 vomeronasal receptors, one of the major olfactory receptors in vertebrates, are expressed in the vomeronasal organ in mammals. In amphibians and fish, they are expressed in the olfactory epithelium. The lungfish, which is the species of fish most closely related to amphibians, has a primitive vomeronasal organ: the recess epithelium. Expression of type 1 vomeronasal receptors has been reported in both the olfactory epithelium and the recess epithelium in three species of African lungfish and one species of South American lungfish. However, a previous study suggested that in the African lungfish Protopterus dolloi these receptors are expressed only in the olfactory epithelium. In this study, we identified 21 type 1 vomeronasal receptor genes in P. dolloi and examined the expression sites in the olfactory organ. In P. dolloi, most cells expressing the type 1 vomeronasal receptor were distributed in the olfactory epithelium, but a few were also found in the recess epithelium. This implies that the functions of the olfactory epithelium and the primitive vomeronasal organ are incompletely separated, and that all extant African and South American lungfish share this trait.

15.
BMC Biol ; 21(1): 152, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37424020

ABSTRACT

BACKGROUND: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS: We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS: Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.


Subject(s)
Vomeronasal Organ , Mice , Animals , Vomeronasal Organ/physiology , Lipopolysaccharides , Brain , Sensory Receptor Cells , Inflammation
16.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445898

ABSTRACT

In numerous animals, one essential chemosensory organ that detects chemical signals is the vomeronasal organ (VNO), which is involved in species-specific behaviors, including social and sexual behaviors. The purpose of this study is to investigate the mechanism underlying the processing of chemosensory cues in semi-aquatic mammals using muskrats as the animal model. Muskrat (Ondatra zibethicus) has a sensitive VNO system that activates seasonal breeding behaviors through receiving specific substances, including pheromones and hormones. Vomeronasal organ receptor type 1 (V1R) and type 2 (V2R) and estrogen receptor α and ß (ERα and ERß) were found in sensory epithelial cells, non-sensory epithelial cells and lamina propria cells of the female muskrats' VNO. V2R and ERα mRNA levels in the VNO during the breeding period declined sharply, in comparison to those during the non-breeding period, while V1R and ERß mRNA levels were detected reversely. Additionally, transcriptomic study in the VNO identified that differently expressed genes might be related to estrogen signal and metabolic pathways. These findings suggested that the seasonal structural and functional changes in the VNO of female muskrats with different reproductive status and estrogen was regulated through binding to ERα and ERß in the female muskrats' VNO.


Subject(s)
Estrogen Receptor alpha , Vomeronasal Organ , Animals , Female , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Cues , Mammals/metabolism , Estrogens/metabolism , Vomeronasal Organ/metabolism , Arvicolinae
17.
Anat Rec (Hoboken) ; 306(11): 2765-2780, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37523493

ABSTRACT

The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.


Subject(s)
Chiroptera , Vomeronasal Organ , Animals , Vomeronasal Organ/anatomy & histology , Chiroptera/genetics , Chiroptera/anatomy & histology , Phylogeny , Smell , Carrier Proteins
18.
Animals (Basel) ; 13(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37370413

ABSTRACT

Chemical communication in mammals is ensured by exchanging chemical signals through the vomeronasal organ (VNO) and its ability to detect pheromones. The alteration of this organ has been proven to impact animal life, participating in the onset of aggressive behaviors in social groups. To date, few studies have highlighted the possible causes leading to these alterations, and the farming environment has not been investigated, even though irritant substances such as ammonia are known to induce serious damage in the respiratory tract. The goal of this study was to investigate the environmental impact on the VNO structure. Thirty mice were split into three groups, one housed in normal laboratory conditions and the other two in confined environments, with or without the release of litter ammonia. VNOs were analyzed using histology and immunohistochemistry to evaluate the effect of different environments on their condition. Both restricted conditions induced VNO alterations (p = 0.0311), soft-tissue alteration (p = 0.0480), and nonsensory epithelium inflammation (p = 0.0024). There was glycogen accumulation (p < 0.0001), the olfactory marker protein was underexpressed (p < 0.0001), and Gαi2 positivity remained unchanged while Gαo expression was upregulated in confined conditions. VNO conditions seemed to worsen with ammonia, even if not always significantly. These murine model results suggest that the housing environment can strongly impact VNO conditions, providing novel insights for improving indoor farming systems.

19.
Zoological Lett ; 9(1): 6, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36895049

ABSTRACT

Lungfish are the most closely related fish to tetrapods. The olfactory organ of lungfish contains lamellae and abundant recesses at the base of lamellae. Based on the ultrastructural and histochemical characteristics, the lamellar olfactory epithelium (OE), covering the surface of lamellae, and the recess epithelium, contained in the recesses, are thought to correspond to the OE of teleosts and the vomeronasal organ (VNO) of tetrapods. With increasing body size, the recesses increase in number and distribution range in the olfactory organ. In tetrapods, the expression of olfactory receptors is different between the OE and VNO; for instance, the type 1 vomeronasal receptor (V1R) is expressed only in the OE in amphibians and mainly in the VNO in mammals. We recently reported that V1R-expressing cells are contained mainly in the lamellar OE but also rarely in the recess epithelium in the olfactory organ of lungfish of approximately 30 cm body length. However, it is unclear whether the distribution of V1R-expressing cells in the olfactory organ varies during development. In this study, we compared the expression of V1Rs in the olfactory organs between juveniles and adults of the African lungfish Protopterus aethiopicus and South American lungfish, Lepidosiren paradoxa. The density of V1R-expressing cells was higher in the lamellae than in the recesses in all specimens evaluated, and this pattern was more pronounced in juveniles than adults. In addition, the juveniles showed a higher density of V1R-expressing cells in the lamellae compared with the adults. Our results imply that differences in lifestyle between juveniles and adults are related to differences in the density of V1R-expressing cells in the lamellae of lungfish.

20.
Surg Radiol Anat ; 45(4): 457-460, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36759365

ABSTRACT

OBJECTIVE: To find out whether the vomeronasal organ (VNO) can be identified in the nose as a mucosal pit in the anterior nasal septum, to elucidate its function in man and to determine whether it is important to preserve the VNO during septal surgery. METHODS: Literature review. RESULTS AND CONCLUSION: The VNO is histologically present in almost all humans, but a macroscopically visible septal pit does not necessarily correspond with the actual VNO. The human VNO is probably a vestigial organ with a non-operational sensory function. It is not necessary to take particular care not to damage the VNO during septal surgery.


Subject(s)
Vomeronasal Organ , Humans , Clinical Relevance , Nasal Septum/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...