Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Mol Pain ; : 17448069241261687, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818803

ABSTRACT

Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. However, performing the von Frey and acetone spray tests in the orofacial region has been challenging, largely due to the high mobility of the head of testing animals. To solve this problem, we implemented a sheltering tube method to assess orofacial nociception in mice. In experiments, mice were sheltered in elevated tubes, where they were quickly accommodated because the tubes provided safe shelters for mice. Examiners could reliably apply mechanical stimuli with von Frey filament, cold stimuli with acetone spray, and light stimuli with a laser beam to the orofacial regions. We validated this method in Nav1.8-ChR2 mice treated with oxaliplatin that induced peripheral neuropathy. Using the von Frey test, orofacial response frequencies and nociceptive response scores were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.

2.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38302457

ABSTRACT

Cypin (cytosolic postsynaptic density protein 95 interactor) is the primary guanine deaminase in the central nervous system (CNS), promoting the metabolism of guanine to xanthine, an important reaction in the purine salvage pathway. Activation of the purine salvage pathway leads to the production of uric acid (UA). UA has paradoxical effects, specifically in the context of CNS injury as it confers neuroprotection, but it also promotes pain. Since neuropathic pain is a comorbidity associated with spinal cord injury (SCI), we postulated that small molecule cypin inhibitor B9 treatment could attenuate SCI-induced neuropathic pain, potentially by interfering with UA production. However, we also considered that this treatment could hinder the neuroprotective effects of UA and, in doing so, exacerbate SCI outcomes. To address our hypothesis, we induced a moderate midthoracic contusion SCI in female mice and assessed whether transient intrathecal administration of B9, starting at 1 d postinjury (dpi) until 7 dpi, attenuates mechanical pain in hindlimbs at 3 weeks pi. We also evaluated the effects of B9 on the spontaneous recovery of locomotor function. We found that B9 alleviates mechanical pain but does not affect locomotor function. Importantly, B9 does not exacerbate lesion volume at the epicenter. In accordance with these findings, B9 does not aggravate glutamate-induced excitotoxic death of SC neurons in vitro. Moreover, SCI-induced increased astrocyte reactivity at the glial scar is not altered by B9 treatment. Our data suggest that B9 treatment reduces mechanical pain without exerting major detrimental effects following SCI.


Subject(s)
Neuralgia , Spinal Cord Injuries , Mice , Female , Animals , Hyperalgesia/metabolism , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neurons/metabolism , Neuralgia/drug therapy , Neuralgia/etiology , Neuralgia/metabolism , Purines , Spinal Cord/metabolism
3.
Neurosci Res ; 198: 30-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37392833

ABSTRACT

Repeated cold stress (RCS) can trigger the development of fibromyalgia (FM)-like symptoms, including persistent deep-tissue pain, although nociceptive changes to the skin have not been fully characterized. Using a rat RCS model, we investigated nociceptive behaviors induced by noxious mechanical, thermal, and chemical stimuli applied to plantar skin. Neuronal activation in the spinal dorsal horn was examined using the formalin pain test. In rats exposed to RCS, nociceptive behavioral hypersensitivity was observed in all modalities of cutaneous noxious stimuli: the mechanical withdrawal threshold was decreased, and the heat withdrawal latency was shortened one day after the cessation of stress. The duration of nocifensive behaviors in the formalin test was prolonged in phase II but not in phase I. The number of c-Fos-positive neurons increased in the entire dorsal horn laminae I-VI, ipsilateral, but not contralateral, to formalin injection at the L3-L5 segments. The duration of nocifensive behavior in phase II was significantly and positively correlated with the number of c-Fos-positive neurons in laminae I-II. These results demonstrate that cutaneous nociception is facilitated in rats exposed to RCS for a short time and that the spinal dorsal horn neurons are hyperactivated by cutaneous formalin in the RCS model.


Subject(s)
Cold-Shock Response , Nociception , Rats , Animals , Rats, Sprague-Dawley , Pain Measurement/methods , Pain/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Formaldehyde
4.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006163

ABSTRACT

A significant challenge in improving the deep brain stimulation (DBS) system is the miniaturization of the device, aiming to integrate both the stimulator and the electrode into a compact unit with a wireless charging capability to reduce invasiveness. We present a miniaturized, fully implantable, and battery-free DBS system designed for rats, using a liquid crystal polymer (LCP), a biocompatible and long-term reliable material. The system integrates the simulator circuit, the receiver coil, and a 20 mm long depth-type microelectrode array in a dome-shaped LCP package that is 13 mm in diameter and 5 mm in height. Wireless powering and control via an inductive link enable device miniaturization, allowing for full implantation and, thus, the free behavior of untethered animals. The eight-channel stimulation electrode array was microfabricated on an LCP substrate to form a multilayered system substrate, which was monolithically encapsulated by a domed LCP lid using a specialized spot-welding process. The device functionality was validated via an in vivo animal experiment using a neuropathic pain model in rats. This experiment demonstrated an increase in the mechanical withdrawal threshold of the rats with microelectrical stimulation delivered using the fully implanted device, highlighting the effectiveness of the system.

5.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240217

ABSTRACT

Effective pain control is an underappreciated aspect of managing opioid withdrawal, and its absence presents a significant barrier to successful opioid detoxification. Accordingly, there is an urgent need for effective non-opioid treatments to facilitate opioid detoxification. l-Tetrahydropalmatine (l-THP) possesses powerful analgesic properties and is an active ingredient in botanical formulations used in Vietnam for the treatment of opioid withdrawal syndrome. In this study, rats receiving morphine (15 mg/kg, i.p.) for 5 days per week displayed a progressive increase in pain thresholds during acute 23 h withdrawal as assessed by an automated Von Frey test. A single dose of l-THP (5 or 7.5 mg/kg, p.o.) administered during the 4th and 5th weeks of morphine treatment significantly improves pain tolerance scores. A 7-day course of l-THP treatment in animals experiencing extended withdrawal significantly attenuates hyperalgesia and reduces the number of days to recovery to baseline pain thresholds by 61% when compared to vehicle-treated controls. This indicates that the efficacy of l-THP on pain perception extends beyond its half-life. As a non-opioid treatment for reversing a significant hyperalgesic state during withdrawal, l-THP may be a valuable addition to the currently limited arsenal of opioid detoxification treatments.


Subject(s)
Hyperalgesia , Morphine , Rats , Animals , Morphine/adverse effects , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Analgesics, Opioid/adverse effects , Pain Threshold
7.
Life (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36836904

ABSTRACT

Laboratory rats have excellent learning abilities and are often used in cognitive neuroscience research. The majority of rat studies are conducted on males, whereas females are usually overlooked. Here, we examined sex differences in behavior and tactile sensitivity in littermates during adulthood (5.8-7.6 months of age). We used a battery of behavioral tests, including the 2% sucrose preference test (positive motivation), a free-choice paradigm (T-maze, neutral situation), and associative fear-avoidance learning (negative motivation, aversive situation). Tactile perception was examined using the von Frey test (aversive situation). In two aversive situations (von Frey test and avoidance learning), females were examined during the diestrus stage of the estrous cycle, and ultrasonic vocalization was recorded in both sexes. It was found that (1) females, but not males, lost their body weight on the first day of the sucrose preference test, suggesting sex differences in their reaction to environmental novelty or in metabolic homeostasis; (2) the tactile threshold in females was lower than in males, and females less frequently emitted aversive ultrasonic calls; (3) in the avoidance learning task, around 26% of males (but no females) were not able to learn and experienced frizzing. Overall, the performance of associative fear-avoidance in males was worse than in females. In general, females demonstrated higher abilities of associative learning and less persistently emitted aversive ultrasonic calls.

9.
J Adv Vet Anim Res ; 9(3): 359-368, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36382046

ABSTRACT

Objective: The research was designed to assess the consequences of Azadirachta indica aqueous leaf extract (AILE) on neuropathic pain in Wister rats and the role of the ATP-dependent potassium channel (KATP) as an underlying mechanism. Materials and Methods: This experimental layout was conducted on Wistar rats (n = 120) having 150 to 200 gm of body weight. On the foundation of the experimental design, rats were divided into group I (normal saline, 5 ml/kg/body weight) and group II (sham surgery and treatment with NS), group III [chronic constriction injury (CCI) in the sciatic nerve; and treated with NS], group IV (CCI and treated with AILE 400 mg/kg body weight), Group V (CCI, pretreated with Glibenclamide 15 mg/kg followed by treated with AILE 400 mg/kg). All the treatments were given once daily for a consecutive 21 days via the oral route, except Glibenclamide. Glibenclamide was given once through the intraperitoneal route on the day of the experiment. Results: Based on the neuropathic pain evaluation test, all groups were again sub-divided into subgroup "a" (walking tract analysis), "b" (cold tail immersion test), "c" (Von Frey test), and "d" (hot plate test). AILE showed a significantly higher sciatic functional index (p < 0.05) in walking track analysis, tail flick latency (p ≤ 0.05) in the cold tail immersion test, and paw withdrawal threshold (p ≤ 0.05) in the Von Frey test compared to CCI control. In addition, a nonsignificant difference in all these above-mentioned variables between the rats with CCI plus AILE and the CCI plus AILE plus glibenclamide group indicated that the KATP channel was not involved in the beneficial analgesic effects of AILE. Conclusions: The outcome of the present study indicates that AILE prevented worsening of neuropathic pain after chronic constriction injury in the sciatic nerve of Wistar rats in which the KATP channel was not involved.

10.
Pharmacol Res Perspect ; 10(2): e00919, 2022 04.
Article in English | MEDLINE | ID: mdl-35306752

ABSTRACT

In clinical practice, pregabalin is orally administered for neuropathic pain, but causes severe central nervous system side effects, such as dizziness, which results in dose limitation or discontinuation. To reduce the central side effects of pregabalin, we developed four pregabalin preparations for transdermal application: 0.4% aqueous solution, pluronic lecithin organogel (PLO gel), hydrophilic cream, and lipophilic cream. Transdermal permeabilities of pregabalin among the four formulations were compared in vitro using hairless mouse skin. The longitudinal distribution of pregabalin within the skin was analyzed using mass spectrometric (MS) imaging. Furthermore, the in vivo analgesic effects of the formulations were evaluated using the von Frey filament test in a mouse model of diabetic neuropathy (DN). The PLO gel showed the highest permeability of pregabalin, followed by the aqueous solution, and no permeation was observed in the two cream formulations. The MS imaging analysis showed that pregabalin was distributed up to the dermis in the PLO gel 1 h after application, while the aqueous solution was distributed near the epidermis. A significant analgesic effect (p < .05) was observed 1.5 h after PLO gel application in the DN model mice, but the aqueous solution had no effect. This study indicated for the first time that pregabalin penetrated beyond the skin epidermis up to the dermis, from the PLO gel formulation, and that the application of this formulation exhibited an in vivo analgesic effect in the mouse model of DN.


Subject(s)
Lecithins , Poloxamer , Analgesics/therapeutic use , Animals , Gels/chemistry , Lecithins/chemistry , Mice , Pregabalin/therapeutic use
11.
Naunyn Schmiedebergs Arch Pharmacol ; 395(3): 325-335, 2022 03.
Article in English | MEDLINE | ID: mdl-34985531

ABSTRACT

Recent studies indicate presence of a strong link between adipokines and neuropathic pain. However, the effects of asprosin, a novel adipokine, on neuropathic pain have not been studied in animal models.Mouse models were employed to investigate the antinociceptive effectiveness of asprosin in the treatment of three types of neuropathic pain, with metabolic (streptozocin/STZ), toxic (oxaliplatin/OXA), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, respectively. Changes in nociceptive behaviors were assessed relative to controls using thermal (the hot plate and cold plate tests, at 50 °C and 4 °C respectively) and mechanical pain (von Frey test) tests after intraperitoneal (i.p.) administration of asprosin (10 µg/kg) and gabapentin (50 mg/kg) in several times intervals. Besides, possible effect of asprosin on the motor coordination of mice was assessed with a rotarod test. Serum level of asprosin was quantified by ELISA.In neuropathic pain models (STZ, OXA, and CCI), asprosin administration significantly reduced both mechanical and thermal hypersensitivity, indicating that it exhibits a clear-cut antihypersensitivity effect in the analyzed neuropathic pain models. The most effective time of asprosin on pain threshold was observed 60 min after its injection. Also, asprosin displayed no notable effect on the motor activity. Asprosin levels were significantly lower in neuropathic pain compared to healthy group (p < 0.05).The results yielded by the present study suggest that asprosin exhibits an analgesic effect in the neuropathic pain models and may have clinical utility in alleviating chronic pain associated with disease and injury originating from peripheral structures.


Subject(s)
Analgesics/pharmacology , Fibrillin-1/pharmacology , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Peptide Fragments/pharmacology , Peptide Hormones/pharmacology , Analgesics/administration & dosage , Animals , Disease Models, Animal , Fibrillin-1/administration & dosage , Gabapentin/pharmacology , Hyperalgesia/physiopathology , Male , Mice , Mice, Inbred BALB C , Neuralgia/physiopathology , Pain Threshold , Peptide Fragments/administration & dosage , Peptide Hormones/administration & dosage , Rotarod Performance Test
12.
Cannabis Cannabinoid Res ; 7(2): 179-187, 2022 04.
Article in English | MEDLINE | ID: mdl-34468198

ABSTRACT

Introduction: Alpha/beta-hydrolase domain 6 (ABHD6) is an enzyme that hydrolyzes 2-arachidonoylglycerol, a high-efficiency endogenous cannabinoid. Although the endocannabinoid system has been suggested to be involved in regulation of bladder function, the roles of ABHD6 in the control of micturition remain unknown. To elucidate the physiological and pathological roles of ABHD6 in vivo, we examined phenotypes of ABHD6 knockout rats (Abhd6-/-) generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins system. Materials and Methods: Age-matched knockout and wild-type (WT) rats of both sexes were used. Results: Expression of ABHD6, assessed by quantitative real-time polymerase chain reaction and Western blot analysis, was clearly diminished in Abhd6-/- rats compared with WT rats. Mutant rats had a normal appearance, and the body weight and food consumption were similar to those of WT rats. The interval between bladder contractions assessed by continuous cystometry was significantly shorter in ABHD6 knockout rats than in WT rats when the bladder was stimulated with acetic acid. Mechanical paw withdrawal thresholds measured by von Frey testing were significantly lowered in the knockout rats than in WT rats. The plasma levels of prostaglandin E2 (PGE2) and the stable metabolite of PGE2 in Abhd6-/- rats were twice as high as that in WT rats. Conclusions: Deletion of the ABHD6 gene in rats causes more frequent urination in the stimulated bladder and hyperalgesia to non-noxious mechanical stimuli along with increased plasma PGE2.


Subject(s)
Endocannabinoids , Monoacylglycerol Lipases , Animals , Dinoprostone , Endocannabinoids/metabolism , Female , Hydrolases , Male , Monoacylglycerol Lipases/genetics , Phenotype , Rats
13.
Brain Res Bull ; 174: 323-338, 2021 09.
Article in English | MEDLINE | ID: mdl-34192579

ABSTRACT

The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.


Subject(s)
Cannabidiol/pharmacology , Depression/drug therapy , Neuralgia/drug therapy , Prefrontal Cortex/drug effects , Receptor, Cannabinoid, CB1/agonists , Receptor, Serotonin, 5-HT1A/drug effects , Animals , Cannabidiol/administration & dosage , Chronic Disease , Cobalt , Depression/complications , Limbic System , Microinjections , Neuralgia/complications , Piperazines/therapeutic use , Piperidines/pharmacology , Pyrazoles/pharmacology , Pyridines/therapeutic use , Rats , Rats, Wistar , Sciatica/drug therapy , Sciatica/pathology , Serotonin 5-HT1 Receptor Antagonists/therapeutic use , Swimming/psychology , Synapses/drug effects
14.
Neurosci Lett ; 736: 135253, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32710918

ABSTRACT

Peripheral neuropathy is a complication of diabetes commonly associated with pain and decline in motor compound action potential, leading to alterations in plantar pressure during gait. We identified motor impairments in streptozotocin (STZ)-induced diabetic neuropathic rats and correlated with mechanical withdrawal thresholds, establishing this correlation as a complementary method to investigate the development of chronic hyperalgesia in diabetic neuropathy. METHODS: UNICAMP's Ethics Committee (protocol number 3902-1) approved all experiments. Male Lewis rats (200-250 g) received a STZ-low-dose (25 mg/kg/day) (STZ group) or 0.1 M sodium citrate buffer (SCB, control group) once a day, during five consecutive days. Diabetic rats (250 mg/dL blood glucose) were submitted to electronic von Frey and CatWalk tests at 0, 7, 14, 21, and 28 days after treatment. RESULTS: STZ, but not SCB, induced diabetes. After the 14th day (STZ)-induced diabetic rats showed mechanical hyperalgesia and a reduction in the hind limbs footprint intensities. At the 28th day, rats presented alterations in spatial parameters (Maximum Contact Area; Stride Length; Print Area), which showed a strong correlation with mechanical withdrawal thresholds (r2 = 0.97; 0.99, and 0.93, respectively). CONCLUSIONS: Correlation between gait parameters and mechanical withdrawal thresholds enables a better experimental approach to evaluate the development of chronic hyperalgesia in the STZ-induced diabetes model. It allows a concise crosstalk of motor and sensorial functions, which are usually analyzed individually. CatWalk gait parameters can be used as a complementary tool to investigate the development of hyperalgesia in STZ-induced diabetic neuropathic rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Gait Analysis/methods , Gait Disorders, Neurologic , Hyperalgesia , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/complications , Gait Disorders, Neurologic/etiology , Hyperalgesia/etiology , Male , Rats , Rats, Inbred Lew
15.
Psychopharmacology (Berl) ; 237(5): 1545-1555, 2020 May.
Article in English | MEDLINE | ID: mdl-32114633

ABSTRACT

RATIONALE: Over the last decade, oxycodone has become one of the most widely abused drugs in the USA. Oxycodone use disorder (OUD) is a serious health problem that has prompted a need to develop animal models of OUD that have both face and predictive validity. Oxycodone use in humans is more prevalent in women and leads to pronounced hyperalgesia and irritability during withdrawal. However, unclear is whether current animal models of oxycodone self-administration recapitulate these characteristics in humans. OBJECTIVES: We assessed the face validity of a model of extended-access oxycodone self-administration in rats by examining the escalation of oxycodone intake and behavioral symptoms of withdrawal, including irritability-like behavior and mechanical nociception, in male and female Wistar rats. RESULTS: Both male and female rats escalated their oxycodone intake over fourteen 12-h self-administration sessions. After escalation, female rats administered more drug than male rats. No differences in plasma oxycodone levels were identified, but males had a significantly higher level of oxycodone in the brain at 30 min. Extended access to oxycodone significantly decreased aggressive-like behavior and increased defensive-like behaviors when tested immediately after a 12-h self-administration session, followed by a rebound increase in aggressive-like behavior 12 h into withdrawal. Tests of mechanical nociception thresholds during withdrawal indicated pronounced hyperalgesia. No sex differences in irritability-like behavior or pain sensitivity were observed. CONCLUSIONS: The present study demonstrated the face validity of the extended access model of oxycodone self-administration by identifying sex differences in the escalation of oxycodone intake and pronounced changes in pain and affective states.


Subject(s)
Analgesics, Opioid/administration & dosage , Oxycodone/administration & dosage , Pain Threshold/drug effects , Pain Threshold/psychology , Sex Characteristics , Substance Withdrawal Syndrome/psychology , Analgesics, Opioid/adverse effects , Animals , Brain/drug effects , Brain/metabolism , Emotions/drug effects , Emotions/physiology , Female , Male , Oxycodone/adverse effects , Pain Threshold/physiology , Rats , Rats, Wistar , Self Administration , Substance Withdrawal Syndrome/metabolism
16.
Braz. j. med. biol. res ; 53(5): e9255, 2020. graf
Article in English | LILACS | ID: biblio-1098115

ABSTRACT

The neurochemical mechanisms underlying neuropathic pain (NP) are related to peripheral and central sensitization caused by the release of inflammatory mediators in the peripheral damaged tissue and ectopic discharges from the injured nerve, leading to a hyperexcitable state of spinal dorsal horn neurons. The aim of this work was to clarify the role played by cyclooxygenase (COX) in the lesioned peripheral nerve in the development and maintenance of NP by evaluating at which moment the non-steroidal anti-inflammatory drug indomethacin, a non-selective COX inhibitor, attenuated mechanical allodynia after placing one loose ligature around the nervus ischiadicus, an adaptation of Bennett and Xie's model in rodents. NP was induced in male Wistar rats by subjecting them to chronic constriction injury (CCI) of the nervus ischiadicus, placing one loose ligature around the peripheral nerve, and a sham surgery (without CCI) was used as control. Indomethacin (2 mg/kg) or vehicle was intraperitoneally and acutely administered in each group of rats and at different time windows (1, 2, 4, 7, 14, 21, and 28 days) after the CCI or sham surgical procedures, followed by von Frey's test for 30 min. The data showed that indomethacin decreased the mechanical allodynia threshold of rats on the first, second, and fourth days after CCI (P<0.05). These findings suggested that inflammatory mechanisms are involved in the induction of NP and that COX-1 and COX-2 are involved in the induction but not in the maintenance of NP.


Subject(s)
Animals , Male , Rats , Sciatic Nerve/injuries , Pain Measurement , Indomethacin/administration & dosage , Neuralgia/drug therapy , Rats, Wistar , Rats, Sprague-Dawley , Pain Threshold , Constriction , Disease Models, Animal , Neuralgia/etiology
17.
J Wound Care ; 28(11): 762-772, 2019 Nov 02.
Article in English | MEDLINE | ID: mdl-31721662

ABSTRACT

OBJECTIVE: A method for measuring mechanical withdrawal threshold of full-thickness cutaneous wound pain in animal models is lacking. This study aimed to confirm the validity and reactivity of the von Frey test in full-thickness cutaneous wounds in rats. METHOD: A 1.5cm-diameter wound was established on the dorsal areas of male Sprague-Dawley rats and subcutaneously injected with either morphine hydrochloride (5.0mg/kg) or indomethacin (2.5mg/kg) with a 27-gauge needle on day three post-wounding. On day five post-wounding, an injection of morphine hydrochloride, indomethacin or lambda-carrageenan (1.0%) into the granulation tissue was also administered. The withdrawal threshold of mechanical stimulation of the wound edge was compared in each group before treatment with injection and at two, four, eight and 24 hours after injection. RESULTS: A total of 40 rats were used in the study. Since more severe inflammation in and around the wound was induced on day three post-wounding than that of day five, the withdrawal threshold measured on day three post-wounding was significantly lower than that of day five. The decrease of the withdrawal threshold was depressed by morphine hydrochloride and indomethacin treatment on day three post-wounding. While there was no significant difference between the changes in the withdrawal threshold after indomethacin treatment on day five post-wounding, we observed an increased withdrawal threshold after morphine hydrochloride treatment and decreased withdrawal threshold after lambda-carrageenan treatment on day five post-wounding. CONCLUSION: The results suggest that the von Frey test can be applied to measure the mechanical withdrawal threshold of full-thickness dorsal wounds in rats.


Subject(s)
Pain Measurement/methods , Pain Threshold , Skin/injuries , Analgesics/administration & dosage , Animals , Disease Models, Animal , Male , Physical Stimulation , Rats , Rats, Sprague-Dawley
18.
Molecules ; 24(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934631

ABSTRACT

The dried fruits of Forsythia viridissima have been prescribed to relive fever, pain, vomiting, and nausea in traditional medicine. Oxaliplatin (LOHP) is used to treat advanced colorectal cancer; however, it frequently induces peripheral neuropathies. This study was done to evaluate the neuroprotective effects of an aqueous extract of Forsythia viridissima fruits (EFVF) and its major constituents. Chemical constituents from EFVF were characterized and quantified with the UHPLC-diode array detector method, and three major constituents were identified as arctiin, matairesinol, and arctigenin. The in vitro cytotoxicity was measured by the Ez-cytox viability assay, and the in vivo neuroprotection activity was evaluated by a von Frey test in two rodent animal models that were administered LOHP. EFVF significantly alleviated the LOHP-induced mechanical hypersensitivity in the induction model. EFVF also prevented the induction of mechanical hyperalgesia by LOHP in the pre- and co-treatment of LOHP and EFVF. Consistently, EFVF exerted protective effects against LOHP-induced neurotoxicity as well as inhibited neurite outgrowths in PC12 and dorsal root ganglion cells. Among the major components of EFVF, arctigenin and matairesinol exerted protective effects against LOHP-induced neurotoxicity. Therefore, EFVF may be useful for relieving or preventing LOHP-induced peripheral neuropathy in cancer patients undergoing chemotherapy with LOHP.


Subject(s)
Forsythia/chemistry , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/etiology , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Chromatography, High Pressure Liquid , Disease Models, Animal , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/pathology , Rats , Reactive Oxygen Species/metabolism
19.
Brain Res ; 1715: 66-72, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30898672

ABSTRACT

Chronic pain is the most common non-motor symptom among Parkinson's disease (PD) patients, with 1.85 million estimated to be in debilitating pain by 2030. Subthalamic deep brain stimulation (STN DBS) programmed for treating PD motor symptoms has also been shown to significantly improve pain scores. However, even though most patients' pain symptoms improve or disappear, 74% of patients treated develop new pain symptoms within 8 years. Previously we have shown that duloxetine and STN high frequency stimulation (HFS) significantly increase mechanical thresholds more than either alone. The current project specifically investigates the effects of gabapentin and morphine alone and with high (150 Hz; HFS) and low (50 Hz; LFS) frequency stimulation in the 6-hydroxydopamine rat model for PD. We found that HFS, LFS, gabapentin 15 mg/kg and morphine 1 mg/kg all independently improve von Frey (VF) thresholds. Neither drug augments the HFS response significantly. Morphine at 1 mg/kg showed a trend to increasing thresholds compared to LFS alone (p = 0.062). Interestingly, gabapentin significantly reduced (p = 0.019) the improved VF thresholds and Randall Selitto thresholds seen with LFS. Thus, though neither drug augments DBS, we found effects of both compounds independently increase VF thresholds, informing use of our model of chronic pain in PD. Gabapentin's reversal of LFS effects warrants further exploration.


Subject(s)
Chronic Pain/therapy , Pain Threshold/drug effects , Subthalamic Nucleus/drug effects , Animals , Deep Brain Stimulation/methods , Disease Models, Animal , Gabapentin/pharmacology , Male , Morphine/pharmacology , Oxidopamine/pharmacology , Parkinson Disease/therapy , Rats , Rats, Sprague-Dawley
20.
Pharm Biol ; 56(1): 124-131, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29385888

ABSTRACT

CONTEXT: Andrographolide (Andro), found in large quantities in Andrographis paniculata Nees (Acanthaceae), is anti-inflammatory, especially in the central nervous system (CNS) glia. OBJECTIVE: The objective of this study is to test Andro's ability to reduce allodynia in a spared nerve injury model. MATERIAL AND METHODS: Male 30 g BalbC mice were divided into four groups: (1) Sham-operated control (Sham-group); (2) nerve injured and treated with saline (Saline-group); (3) nerve injured and treated with Andro (Andro-group); (4) nerve injured and treated with non-steroidal anti-inflammatory drugs (NSAIDS) (NSAIDS-group). Andro or NSAIDS (diclofenac salt) were injected intraperitoneally at 5 mg/kg body weight daily. Mechanical allodynia was assessed by von Frey tests at 3, 7, and 14 d. For immunohistochemical analysis, samples were collected at 7 d. RESULTS: The threshold for inducing allodynia increased and the response percentage reduced in the Andro-group when compared with the Saline-group, as well as when compared with NSAIDS groups throughout 3-14 d. The ratio of threshold for OP-Andro/OP-saline and for OP-Andro/OP-NSAIDS groups was 20.42 and 11.67 at 14 d, respectively. The ratio of response percentage for OP-Andro/OP-saline and for OP-Andro/OP-NSAIDS was 0.32 and 0.39 at 14 d, respectively. Interleukin-1 (IL-1) immunostaining in the spinal cord was reduced in the Andro-group. Astrocytic activities were not significantly reduced in the Andro-group compared with the Saline-group at 7 d post-operation (PO) Conclusions: Andro reduced mechanical allodynia more than NSAIDS at the same concentration, and the observed behaviour was associated with a reduction in inflammatory cytokine produced in the spinal cord.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Diterpenes/therapeutic use , Hyperalgesia/drug therapy , Pain/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Hyperalgesia/pathology , Male , Mice , Mice, Inbred BALB C , Pain/pathology , Sciatic Neuropathy/drug therapy , Sciatic Neuropathy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...