Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
J Environ Sci Health B ; : 1-11, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001801

ABSTRACT

Two years of monthly sampling and hydrological monitoring were performed at the outlet of a Mediterranean watershed in northern Tunisia to determine the contents of 469 pesticide active ingredients and metabolites in water and evaluate their behavior. Wadi Guenniche is a tributary of the Bizerte coastal lagoon, with a watershed area of 86 km2, which exhibits pluvial cereal, legume, and orchid cultivation and irrigated market gardening. Twenty-nine pesticide active ingredients and 2 metabolites were detected in water. Twenty-four pesticide active ingredients were authorized for use in Tunisia. Among them, 14 had never been mentioned in previous farmer surveys. Five herbicides and their metabolites were the most frequently detected: aminomethylphosphonic acid (AMPA) (100%), glyphosate (94%), simazine (94%), 2,4-D (70%), and deisopropylatrazine (DIA) (47%). The detection frequency and concentration range suggested that the phytosanitary pressure and resulting water contamination are close to those on the northern Mediterranean shore. These results, in addition to characterizing the pollution state, emphasized the need for additional studies on the use and fate of pesticides on the southern shore of the Mediterranean Sea, particularly in Tunisia.

2.
Ecotoxicology ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992211

ABSTRACT

We experimentally tested the effects of different concentrations of cigarette butt leachate on freshwater phytoplankton chlorophyll-a, species richness, cell density, and community composition. For this, we sampled the phytoplankton from a eutrophic lake and acclimated it for 24 h in microcosms. We then conducted the experiment in microcosms maintained for 96 h. The experiment consisted of four treatments: control and leachate from 1 butt L-1 (T1), 5 butts L-1 (T5), and 10 butts L-1 (T10), which were prepared by diluting a stock solution of leachate from 50 butts L-1. We found that algal chlorophyll-a content was not affected by different leachate concentrations. In contrast, phytoplankton cell density decreased in a dose-dependent manner as concentrations of the leachate increased. Similarly, the number of species was highest in the control group relative to all other treatments, with T1 and T5 showing higher species richness than T10. Additionally, the exposition to different concentrations of the leachate impacted community composition across all treatments in comparison to the control group. Our results suggest that cigarette butt leachate alters the number of cells and species, as well as the distribution of abundance, without necessarily reducing chlorophyll-a concentrations. Our findings indicate that to gain a comprehensive understanding of the effects of cigarette butt leachate on freshwater ecosystems, it is essential to evaluate more realistic scenarios that incorporate aquatic communities, rather than isolated species.

3.
J Policy Anal Manage ; 43(2): 368-399, 2024.
Article in English | MEDLINE | ID: mdl-38983462

ABSTRACT

Previous research in the US has found negative health effects of contamination when it triggers regulatory violations. An important question is whether levels of contamination that do not trigger a health-based violation impact health. We study the impact of drinking water contamination in community water systems on birth outcomes using drinking water sampling results data in Pennsylvania. We focus on the effects of water contamination for births not exposed to regulatory violations. Our most rigorous specification employs mother fixed effects and finds changing from the 10th to the 90th percentile of water contamination (among births not exposed to regulatory violations) increases low birth weight by 12% and preterm birth by 17%.

4.
Sci Rep ; 14(1): 13416, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862670

ABSTRACT

The aim of the present study was to assess the drinking water quality in the selected urban areas of Lahore and to comprehend the public health status by addressing the basic drinking water quality parameters. Total 50 tap water samples were collected from groundwater in the two selected areas of district Lahore i.e., Gulshan-e-Ravi (site 1) and Samanabad (site 2). Water samples were analyzed in the laboratory to elucidate physico-chemical parameters including pH, turbidity, temperature, total dissolved solids (TDS), electrical conductivity (EC), dissolved oxygen (DO), total hardness, magnesium hardness, and calcium hardness. These physico-chemical parameters were used to examine the Water Quality Index (WQI) and Synthetic Pollution Index (SPI) in order to characterize the water quality. Results of th selected physico-chemical parameters were compared with World Health Organization (WHO) guidelines to determine the quality of drinking water. A GIS-based approach was used for mapping water quality, WQI, and SPI. Results of the present study revealed that the average value of temperature, pH, and DO of both study sites were within the WHO guidelines of 23.5 °C, 7.7, and 6.9 mg/L, respectively. The TDS level of site 1 was 192.56 mg/L (within WHO guidelines) and whereas, in site 2 it was found 612.84 mg/L (higher than WHO guidelines), respectively. Calcium hardness of site 1 and site 2 was observed within the range from 25.04 to 65.732 mg/L but, magnesium hardness values were higher than WHO guidelines. The major reason for poor water quality is old, worn-out water supply pipelines and improper waste disposal in the selected areas. The average WQI was found as 59.66 for site 1 and 77.30 for site 2. Results showed that the quality of the water was classified as "poor" for site 1 and "very poor " for site 2. There is a need to address the problem of poor water quality and also raise the public awareness about the quality of drinking water and its associated health impacts.


Subject(s)
Drinking Water , Environmental Monitoring , Water Quality , Drinking Water/analysis , Drinking Water/chemistry , Pakistan , Environmental Monitoring/methods , Cities , Geographic Information Systems , Groundwater/analysis , Groundwater/chemistry , Humans , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Water Supply/standards
5.
Article in English | MEDLINE | ID: mdl-38928976

ABSTRACT

A recent study conducted in Khon Kaen Province, Thailand, evaluated the effectiveness of a technology-assisted intervention aimed at improving water quality and addressing related health issues in communities around key water bodies. The intervention targeted health concerns associated with water contamination, including chronic kidney diseases, skin conditions, hypertension, and neurological symptoms. The study included water quality assessments and health evaluations of 586 residents and implemented a Learning Innovation Platform (LIP) across 13 communities. Results showed significant improvements in the community, including a decrease in hypertension and skin-related health issues, as well as enhanced community awareness and proficiency in implementing simple water quality assessments and treatment. The study demonstrated the value of a comprehensive, technology-driven community approach, effectively enhancing water quality and health outcomes, and promoting greater community awareness and self-sufficiency in managing environmental health risks.


Subject(s)
Water Quality , Thailand , Humans , Female , Male , Adult , Water Pollution , Middle Aged , Skin Diseases/therapy
6.
J Water Health ; 22(5): 939-952, 2024 May.
Article in English | MEDLINE | ID: mdl-38822471

ABSTRACT

Health authorities are particularly concerned about water security in Enugu, southeast Nigeria and heavy metal (HM) pollution. The HM profiles of 51 samples collected from 17 different commercial bottled water brands in Enugu were examined using an flame atomic absorption spectroscopy. Cd, Cr, Cu, Pb, Ni, and Zn had mean values of 0.15 ± 0.03, 0.03 ± 0.02, 0.16 ± 0.03, 0.13 ± 0.02, and 0.02 ± 0.01 mg/L, respectively. The highest levels of Pb2+ were 0.27 mg/L in Exalté, Ni2+ 0.26 mg/L in Jasmine, Cd2+ 0.36 mg/L in Ezbon, Cr3+ 0.07 mg/L in Trinity, Cu2+ 0.04 mg/L in Bigi, and Zn2+ 0.02 mg/L in Aquarapha. The amounts of Cr, Cu, and Zn were below the allowable limits; nevertheless, the Pb content in eight bottled water samples exceeded both the Nigerian and World Health Organization (WHO)/U.S. Environmental Protection Agency (USEPA) permissible limits. The Cd2+ and Ni2+ levels in the 11th and 4th bottled water samples were above the WHO/USEPA-approved limits. Statistical evaluation revealed significant differences in the amounts of HM ions in the samples (p < 0.05). The findings indicated that concentration levels of Cd2+ Ni2+, and Pb2+ pose a public health concern that needs to be addressed due to potential risk to consumer health.


Subject(s)
Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Nigeria , Drinking Water/analysis , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Humans , Environmental Monitoring , Risk Assessment , Spectrophotometry, Atomic
7.
Environ Pollut ; 356: 124205, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797351

ABSTRACT

Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India. The mean relative abundance of gene copies was found to be sulI (2.4 × 10-2 copies/16S rRNA gene) > sulII (5.4 × 10-3 copies/16S rRNA gene) > sulIII (2.4 × 10-3 copies/16S rRNA gene) in groundwater (n = 15) and surface water (n = 3). A comparison between antimicrobial resistance (AMR) genes and wastewater indicators, particularly tryptophan:fulvic-like fluorescence, suggests that wastewater was associated with AMR gene prevalence. Urban drainage channels, containing hospital and domestic wastes, are likely a substantial source of antimicrobial resistance in groundwater and surface water, including the Ganges (Ganga) River. This study is a reference point for decision-makers in the fight against antimicrobial resistance because it quantifies and determines potential sources of AMR genes in Indian groundwater.

8.
Environ Sci Pollut Res Int ; 31(23): 33223-33238, 2024 May.
Article in English | MEDLINE | ID: mdl-38691293

ABSTRACT

Groundwater contamination by pharmaceutically active compounds (PhACs) has been considered a public health concern worldwide. Alongside the potential toxicological risk of these organic substances, many countries still rely on groundwater for drinking water supply. Thus, this study identified a priority list of seven licit PhACs, comprising acetaminophen (ACT), tramadol (TRA), carbamazepine (CBZ), erythromycin (ERY), sulfamethoxazole (SMX), metformin (MET), and oxazepam (OXZ). Consumption, concentration, and human toxicity in silico results were collected from open access databases. These three indicators were analyzed separately and grouped through a general risk index. The consumption index (data from the USA and Brazil) indicated that ACT, TRA, and MET are the most consumed. Monitoring samples from the USA and Europe (n = 816) indicated that OXZ and ERY stand out as the higher occurrence index considering both regions, but the ranking for each region showed considerable differences. When assessing toxicological risk, an index ≥ 0.5 was attributed to CBZ, MET, OXZ, SMX, and TRA. The general risk indicated the need to be attentive to MET, OXZ, and TRA as they presented ≥ 0.5 index values for at least two indicators.


Subject(s)
Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Pharmaceutical Preparations/analysis , Environmental Monitoring , Carbamazepine/toxicity , Drinking Water/chemistry , Brazil
9.
Sensors (Basel) ; 24(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38676100

ABSTRACT

Anthropogenic waste deposition in aquatic environments precipitates a decline in water quality, engendering pollution that adversely impacts human health, ecological integrity, and economic endeavors. The evolution of underwater robotic technologies heralds a new era in the timely identification and extraction of submerged litter, offering a proactive measure against the scourge of water pollution. This study introduces a refined YOLOv8-based algorithm tailored for the enhanced detection of small-scale underwater debris, aiming to mitigate the prevalent challenges of high miss and false detection rates in aquatic settings. The research presents the YOLOv8-C2f-Faster-EMA algorithm, which optimizes the backbone, neck layer, and C2f module for underwater characteristics and incorporates an effective attention mechanism. This algorithm improves the accuracy of underwater litter detection while simplifying the computational model. Empirical evidence underscores the superiority of this method over the conventional YOLOv8n framework, manifesting in a significant uplift in detection performance. Notably, the proposed method realized a 6.7% increase in precision (P), a 4.1% surge in recall (R), and a 5% enhancement in mean average precision (mAP). Transcending its foundational utility in marine conservation, this methodology harbors potential for subsequent integration into remote sensing ventures. Such an adaptation could substantially enhance the precision of detection models, particularly in the realm of localized surveillance, thereby broadening the scope of its applicability and impact.

10.
Sci Total Environ ; 931: 172748, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38677422

ABSTRACT

Water pollution is a one of the most contributors to aquatic biodiversity decline. Consequently, ecological risk assessment methods have been developed to investigate the effects of existing stresses on the environment, including the toxic effects of chemicals. One of the existing approaches to quantify toxic risks is called "Potentially Affected Fraction of species" (PAF), which estimates the potential loss of species within a group of species studied. In this study, the PAF method was applied to the Garonne catchment (southwest France) due to the limited information available on the involvement of water pollution in the decline of diadromous fish populations. This approach was used to quantify the potential toxic risk associated with chemical contamination of water for fish species. The objectives were to quantify this risk (1) in the Garonne and Dordogne rivers and (2) in the spawning grounds of two endangered anadromous fish species: the allis shad and the European sturgeon during the development period of their early life stages. Environmental pollution data was provided for 21 sites within the Garonne catchment between 2007 and 2022, and toxicity data was obtained specifically from freshwater toxicity tests on fish species. Then, for each site and each year, the potential toxic risk for a single substance (ssPAF) and for a mixture of substances (msPAF) was calculated and classified as high (>5 %), moderate (>1 % and < 5 %) or low (<1 %). Potential toxic risks were mostly moderate and mainly associated with: metals > other industrial pollutants and hygiene and care products > agrochemicals. In summary, this study highlights the probable involvement of water contamination on the decline, fate and restoration of diadromous fish populations in the Garonne catchment, focusing notably on the toxic effects on early life stages, a previously understudied topic.


Subject(s)
Endangered Species , Environmental Monitoring , Fishes , Rivers , Water Pollutants, Chemical , Animals , France , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Risk Assessment , Animal Migration
11.
Environ Sci Pollut Res Int ; 31(20): 29979-29991, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598158

ABSTRACT

Water contamination incidents have become a significant ecological and environmental threat, particularly concerning the security of drinking water source areas (DWSAs). This research aimed to address this issue by integrating Geographic Information System (GIS) into bidimensional hydrodynamic water quality mathematical model developed using C + + and FORTRAN programming languages. The focus was on the Heshangshan drinking water source area (HDWSA), and the TECPLOT360 software was utilized for visualizing pollutant migration and dispersion processes. The study specifically considered a hypothetical lead (Pb) contamination accident, which is situated in the Three Gorges Reservoir Area (TGRA). The spatio-temporal variations in Pb concentration throughout the entire DWSA were analyzed, along with a comparison of Pb concentration changes during different water seasons. The results indicate that, during the accident, the Pb concentration at the water intake in the drought season, decline season, flood season, and impounding season reached the standard limits at 76, 58, 44, and 48 min, respectively. Moreover, the entire DWSA achieved standard levels of Pb concentration at 124, 89, 71, and 74 min during the respective seasons. The study also observed an expansion and subsequent contraction of the Pb contamination area in the DWSA, with the transfer rate of Pb concentration ranked as flood season > impounding season > decline season > drought season.


Subject(s)
Environmental Monitoring , Lead , Metals, Heavy , Water Pollutants, Chemical , Lead/analysis , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , China , Drinking Water/chemistry , Water Supply , Seasons
12.
J Water Health ; 22(3): 510-521, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557567

ABSTRACT

Anecdotal evidence and available literature indicated that contaminated water played a major role in spreading the prolonged cholera epidemic in Malawi from 2022 to 2023. This study assessed drinking water quality in 17 cholera-affected Malawi districts from February to April 2023. Six hundred and thirty-three records were analysed. The median counts/100 ml for thermotolerant coliform was 98 (interquartile range (IQR): 4-100) and that for Escherichia coli was 0 (IQR: 0-9). The drinking water in all (except one) districts was contaminated by thermotolerant coliform, while six districts had their drinking water sources contaminated by E. coli. The percentage of contaminated drinking water sources was significantly higher in shallow unprotected wells (80.0% for E. coli and 95.0% for thermotolerant coliform) and in households (55.8% for E. coli and 86.0% for thermotolerant coliform). Logistic regression showed that household water has three times more risk of being contaminated by E. coli and two and a half times more risk of being contaminated by thermotolerant coliform compared to other water sources. This study demonstrated widespread contamination of drinking water sources during a cholera epidemic in Malawi, which may be the plausible reason for the protracted nature of the epidemic.


Subject(s)
Cholera , Drinking Water , Humans , Water Supply , Cholera/epidemiology , Cross-Sectional Studies , Escherichia coli , Malawi/epidemiology , Water Microbiology , Water Quality
13.
World J Microbiol Biotechnol ; 40(6): 177, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656467

ABSTRACT

During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.


Subject(s)
Anti-Bacterial Agents , Genetic Variation , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Ecosystem , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Plasmids/genetics , Water Microbiology
14.
Toxicol Rep ; 12: 375-388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584719

ABSTRACT

Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.

15.
Environ Sci Pollut Res Int ; 31(23): 33780-33793, 2024 May.
Article in English | MEDLINE | ID: mdl-38689041

ABSTRACT

Excessive fluoride presence in water poses significant environmental and public health risks, necessitating the development of effective remediation techniques. Conventional aluminum-based adsorbents face inherent limitations such as limited pH range and low adsorption capacity. To overcome these challenges, we present a facile solvent-thermal method for synthesizing a carbon-doped aluminum-based adsorbent (CDAA). Extensive characterization of CDAA reveals remarkable features including substantial carbon-containing groups, unsaturated aluminum sites, and a high pH at point of zero charge (pHpzc). CDAA demonstrates superior efficiency and selectivity in removing fluoride contaminants, surpassing other adsorbents. It exhibits exceptional adaptability across a broad pH spectrum from 3 to 12, with a maximum adsorption capacity of 637.4 mg/g, more than 110 times higher than alumina. The applicability of the Langmuir isotherm and pseudo-second-order models effectively supports these findings. Notably, CDAA exhibits rapid kinetics, achieving near-equilibrium within just 5 min. Comprehensive analyses utilizing Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) offer detailed insights into the mechanisms involving electrostatic attraction, ion exchange, and ligand exchange. Carbon-based groups play a role in ligand exchange processes, synergistically interacting with the unsaturated aluminum structure to provide a multitude of adsorption sites. The exceptional attributes of CDAA establish its immense potential as a transformative solution for the pressing challenge of fluoride removal from water sources.


Subject(s)
Aluminum , Carbon , Fluorides , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Aluminum/chemistry , Carbon/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
16.
Chemosphere ; 354: 141694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484998

ABSTRACT

The European Commission's current efforts to launch the largest proposal to restrict per- and polyfluoroalkyl substances (PFAS) in history reflect the dire global plight of PFAS accumulation in the environment and their health impacts. While there are existing studies on PFAS research, there is a lack of comprehensive analysis that both covers the entire research period and provides deep insights into global research patterns, incentives, and barriers based on various parameters. We have been able to demonstrate the increasing interest in PFAS research, although citation numbers are declining prematurely. Policy regulations based on proving and establishing the toxicity of PFASs have stimulated research in developed countries and vice versa, with increasing emphasis on ecological aspects. China, in particular, is investing increasingly in PFAS research, but without defining or implementing regulations - with devastating effects. The separation of industrial and environmental research interests is clear, with little involvement of developing countries, even though their exposure to PFAS is devastating. It, therefore, requires increased globally networked and multidisciplinary approaches to address PFAS contamination challenges.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Fluorocarbons/toxicity , Fluorocarbons/analysis , China , Drug Contamination , Industry
17.
Article in English | MEDLINE | ID: mdl-38541264

ABSTRACT

In 2022, the Virginia Chickahominy Indian Tribe partnered with Virginia Commonwealth University Massey Comprehensive Cancer Center to investigate concerns about a potential cancer cluster near a local landfill. While investigating cancer clusters is complex due to long latency and multifactorial causes, the community's concerns about structural factors driving cancer risk warrant exploration. Thus, the Chickahominy T.R.U.T.H. (Trust, Research, Understand, Teach, and Heal) Project was created as a community-academic partnership to (1) identify structural factors and barriers associated with perceived cancer risk and care; (2) assess cancer knowledge, care access gaps, and perceived risks, including testing private and community water sources; (3) develop and deploy culturally tailored cancer education and resource navigation, including groundwater safety education, policies, and remediation. We will conduct 150 in-person interviews and water tests among residents within a four-mile radius of the landfill, and deploy 1000 structured questionnaires among Charles City County residents. In this paper, we provide an overview of the ongoing project design, development, and progress in support of the project's objectives. This collaborative investigation aims to address cancer health disparities, enhance research and health policy advocacy, and honor the sacred knowledge of an underserved community, laying the groundwork for a long-term partnership to guide future research questions.


Subject(s)
Neoplasms , Trust , Humans , Virginia/epidemiology , Health Education , Surveys and Questionnaires , Water , Community-Based Participatory Research , Neoplasms/epidemiology
18.
Sci Rep ; 14(1): 7595, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38556536

ABSTRACT

Heavy metal ions can be introduced into the water through several point and non-point sources including leather industry, coal mining, agriculture activity and domestic waste. Regrettably, these toxic heavy metals may pose a threat to both humans and animals, particularly when they infiltrate water and soil. Heavy metal poisoning can lead to many health complications, such as liver and renal dysfunction, dermatological difficulties, and potentially even malignancies. To mitigate the risk of heavy metal ion exposure to humans and animals, it is imperative to extract them from places that have been polluted. Several conventional methods such as ion exchange, reverse osmosis, ultrafiltration, membrane filtration and chemical precipitation have been used for the removal of heavy metal ions. However, these methods have high operation costs and generate secondary pollutants during water treatment. Biosorption is an alternative approach to eliminating heavy metals from water that involves employing eco-friendly and cost-effective biomass. This review is focused on the heavy metal ions contamination in the water, biosorption methods for heavy metal removal and mathematical modeling to explain the behaviour of heavy metal adsorption. This review can be helpful to the researchers to design wastewater treatment plants for sustainable wastewater treatment.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Thermodynamics , Kinetics , Ions , Adsorption , Biomass , Heavy Metal Poisoning , Hydrogen-Ion Concentration
19.
Environ Pollut ; 346: 123684, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428790

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Coke/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Dietary Exposure/analysis , Environmental Monitoring , Soil Pollutants/analysis , Risk Assessment , Soil , China
20.
Environ Res ; 251(Pt 1): 118608, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38447604

ABSTRACT

The purpose of the study was to evaluate the occurrence and distribution of emerging contaminants, poly- and perfluoroalkyl substances (PFAS), in the Polish Oder River, aiming to uncover new insights into their environmental impact. The research aimed to identify potential sources of PFAS, assess water quality levels, and verify compliance with European Union environmental quality standards. The concentrations of 25 PFAS (20 legacy and 5 emerging) in 20 samples from intakes upstream and downstream of urban areas were analyzed using novel, developed in these studies, environmental analytical procedures involving solid phase extraction and liquid chromatography-tandem mass spectrometry. The presence of 14 PFAS was confirmed, and the concentration of Σ14PFAS ranged from 7.6 to 68.0 ng/L. The main components were short-chain analogs. PFBA was the most abundant, accounting for about one-third of all PFAS detected. An exception was observed in the waters of the Gliwice Canal, where ADONA represented half of the detected Σ14PFAS. Alternative PFOS replacements were found in all samples. In 11 of 20 water samples, environmental quality standards for PFOS exceeded the limit of 0.65 ng/L. In 5 of 9 cases, the ability of urban areas to increase PFAS levels in the river was determined. 9.5%-54.4% share of alternative PFAS in relation to the sum of the targeted PFAS showing their increasing use as substitutes for phased-out PFOS. Hierarchical cluster analysis was used to identify potential sources of PFAS. Analysis revealed that PFAS in the Oder River most likely originated from domestic and agricultural wastewater, as well as chemical industry discharges. However, the occurrence of PFAS in the Oder River is low and comparable to other recent European studies. These findings provide valuable insights for environmental management to mitigate the risks associated with PFAS pollution in Polish rivers. Moreover, the developed analytical procedure provides a valuable tool that can be successfully applied by other researchers to monitor PFAS in rivers around the world.


Subject(s)
Environmental Monitoring , Fluorocarbons , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Poland , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...