Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
Heliyon ; 10(12): e33031, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988540

ABSTRACT

With the development of the technical trend, concrete using waste alternate material instead of sand material found economic potential for good structural behaviour. Besides, the susceptible crack, low strength-to-weight ratio, and low compressive strength are the reasons for shrinkage. Due to this reason, the investigation aims to limit the shrinkage under live load and increase the compression and flexural strength by the introduction of coconut waste chopped fiber (wCF), waste fly ash (wFA), and carbon nanotube powder (CNT) blended with conventional Portland paste. The developed concrete consists of 5 wt% wCF, 10 wt% wFA, and 0, 5, 10, and 15 wt% of CNT and is subjected to X-ray diffraction analysis, bulk density, compression and flexural strength, and water absorption studies. The X-ray diffraction pattern revealed the wCF, wFA, CNT, and matrix compositions. The concrete developed with 5 wt% wCF, 10 wt% wFA, and 15 wt% CNT cured within 28 days recorded maximum behaviour of compression strength (47 ± 1.8 MPa), flexural strength (4.9 ± 0.19 MPa), and water absorption of (2.8 ± 0.05 %).

2.
Polymers (Basel) ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000702

ABSTRACT

Fiber-reinforced composites are among the recognized competing materials in various engineering applications. Ramie and pineapple leaf fibers are fascinating natural fibers due to their remarkable material properties. This research study aims to unveil the viability of hybridizing two kinds of lignocellulosic plant fiber fabrics in polymer composites. In this work, the hybrid composites were prepared with the aid of the hot compression technique. The mechanical, water-absorbing, and thickness swelling properties of ramie and pineapple leaf fiber fabric-reinforced polypropylene hybrid composites were identified. A comparison was made between non-hybrid and hybrid composites to demonstrate the hybridization effect. According to the findings, hybrid composites, particularly those containing ramie fiber as a skin layer, showed a prominent increase in mechanical strength. In comparison with non-hybrid pineapple leaf fabric-reinforced composites, the tensile, flexural, and Charpy impact strengths were enhanced by 52.10%, 18.78%, and 166.60%, respectively, when the outermost pineapple leaf fiber layers were superseded with ramie fabric. However, increasing the pineapple leaf fiber content reduced the water absorption and thickness swelling of the hybrid composites. Undeniably, these findings highlight the potential of hybrid composites to reach a balance in mechanical properties and water absorption while possessing eco-friendly characteristics.

3.
Ann Bot ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021206

ABSTRACT

BACKGROUND: In epiphytic bromeliads, the roots used to be considered poorly functional organs in the processes of absorption and metabolization of water and nutrients, while the leaves always acted as protagonists in both functions. More recent discoveries have been changing this old view of the root system. SCOPE: In this review, we will address the old thoughts of the scientific community regarding the function performed by the roots of epiphytic bromeliads (mere holdfast structures with low physiological activity) and the importance of a reduced or lack of root system for the emergence of epiphytism. We will present indirect and direct evidence that contradicts this older hypothesis. Furthermore, the importance of the root absorptive function mainly for juvenile tankless epiphytic bromeliads and the characteristics of the root absorption process of adult epiphytic tank bromeliads will be thoroughly discussed in physiological aspects. Finally, some factors (species, substrate, environmental conditions) that influence the absorptive capability of the roots of epiphytic tank bromeliads will also be considered in this review, highlighting the importance that the absorptive role of the roots have for the plasticity of bromeliads that live on trees, which is an environment characterized by the intermittent availability of water and nutrients. CONCLUSIONS: The roots of tank-forming epiphytic bromeliads play important roles in the absorption and metabolization of nutrients and water. The importance of roots stands out mainly for juvenile tankless bromeliads since the root is the main absorptive organ. In larger plants with tank, although the leaves become the protagonists in the resource acquisition process, the roots complement the absorptive function of the leaf trichomes, resulting in a better growth of the bromeliad. The physiological and biochemical properties of the processes of absorption and distribution of resources in the tissues seem to differ between absorption by trichomes and roots.

4.
Materials (Basel) ; 17(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893821

ABSTRACT

As key performance indicators, the water absorption and mechanical strength of ceramics are highly associated with sintering temperature. Lower sintering temperatures, although favorable for energy saving in ceramics production, normally render the densification degree and water absorption of as-prepared ceramics to largely decline and increase, respectively. In the present work, 0.5 wt.% MnO2, serving as an additive, was mixed with aluminosilicate ceramics using mechanical stirring at room temperature, achieving a flexural strength of 58.36 MPa and water absorption of 0.05% and lowering the sintering temperature by 50 °C concurrently. On the basis of the results of TG-DSC, XRD, MIP, and XPS, etc., we speculate that the MnO2 additive promoted the elimination of water vapor in the ceramic bodies, effectively suppressing the generation of pores in the sintering process and facilitating the densification of ceramics at a lower temperature. This is probably because the MnO2 transformed into a liquid phase in the sintering process flows into the gap between grains, which removed the gas inside pores and filled the pores, suppressing the generation of pores and the abnormal growth of grains. This study demonstrated a facile and economical method to reduce the porosity and enhance the densification degree in the practical production of aluminosilicate ceramics.

5.
Dent Mater J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38945865

ABSTRACT

This study investigated the usefulness of a dental laboratory polymerization unit with light-emitting diode (LED) as a light source. The depth of cure (n=15), water absorption and solubility (n=9) of two indirect composite materials (Cesead N and Solidex Hardura) were evaluated by five dental laboratory polymerization units (LED Cure Master, Twinkle LED, α-Light V, α-Light II, and Hyper LII). Statistical analysis was performed by one-way ANOVA and Tukey test or non-parametric tests. Comparison of light sources for curing depth showed that metal halide had the highest value, followed by the LED group with similar values, and halogen lamps with the lowest value. The water absorption and solubility of the composite specimens polymerized with the three LED laboratory polymerization units were within the ISO recommended limit.

6.
Sci Rep ; 14(1): 14606, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918546

ABSTRACT

The aim of the present study, an attempt to shed light on the use of industrial-based wastes as alkali-activated binder (AAB) material is mainly. The present novel research work, the characterization of waste ferrochrome slag (FCS) and the performance of alkali-activated mortar consisting of fly ash (FA) were investigated. The characterization of used materials were carried out using advanced microstructural analysis techniques (XRF, XRD and SEM). A total of thirty two mortars are prepared using FCS (90-60%) and FA (10-40%) with 5 M, 10 M sodium hydroxide (NaOH), Na2SiO3/NaOH (SS/SH = 1 and 2) solution. All specimens were cured in an oven at 70 °C and 100 °C for 24 h. After oven curing, the geopolymer mortars were kept in the laboratory for 28 days and thermal and mechanical tests were applied to them. The A5 mixture (SS/SH = 1 with 10%FA, 90%FCS and 5 M NaOH) was found to be optimum in terms of thermal insulation properties, making it suitable for use in sustainable construction in terms of low energy cost through exterior insulation. The C8 mixture (SS/SH = 1 with 40%FA, 60% FCS and 10 M NaOH) was found to be optimum in terms of strength and durability, making it suitable for use in sustainable construction. As a result, in this study, an optimum mixture of waste FCS and FA was obtained and geopolymer building materials that provide thermal insulation and structural performance and are resistant to external influences were produced.

7.
Carbohydr Polym ; 340: 122301, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858023

ABSTRACT

Chemical modification is a reliable and efficient strategy for designing cellulose-based functional materials. Herein, porous quaternized cellulose beads (QCBs) as cationic superabsorbent were fabricated by homogeneous in-situ chemical grafting cellulose molecular chains with glycidyl trimethylammonium chloride (GTAC) in tetraethylammonium hydroxide (TEAOH)/urea aqueous solution followed by acetic acid induced regeneration. The influence of GTAC dosage on the physicochemical-structural properties of cationic QCBs was deeply investigated. Results revealed that cotton liner could well-dissolved in TEAOH/urea aqueous solution, leading to a homogeneous and efficient quaternization medium for cellulose, thereby giving the high DS and positive charge density for quaternized cellulose. NMR results demonstrated the main substitution of GTAC groups at 2-OH and 6-OH positions of the cellulose chains during quaternization reaction. With increasing GTAC dosage, the network skeleton of QCBs gradually transformed from thick fibrils to thin aggregates, as well as enhanced pore volumes and hydrophilicity. Accordingly, QCBs-1.5 with high pore volume (99.70 cm3/g) exhibited excellent absorption capacity and efficiency, absorbing 122.32 g of water and 0.45 g of moisture per gram of the beads in 20 min. This work not only offers a simple strategy for the homogeneous quaternization modification of cellulose, but also provides a porous cellulose-based cationic superabsorbent material.

8.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730829

ABSTRACT

This article presents the results of an investigation of the proposed method and the influence of a modified additive on foam concrete properties. X-ray diffraction analysis showed that the modified additive has a variable mineralogical composition, and the joint use of the components contributes to the synergistic effect, improving the processes of cement hydration. Microscopy of the foam concrete samples showed the presence of microcracks and micropores in samples both with and without the additive. However, the use of the additive significantly reduced their number and size, which indicates an improvement in the structure of the material. The strength values showed that the samples with the additive have high strength. In particular, the strength values of samples of type 3 at different stages of curing exceed those of samples of type 1 by 1.32-1.51 times and samples of type 2 by 1.07-1.10 times. The obtained strength values are 2.82-3.21 MPa for type 1, 3.64-4.04 MPa for type 2, and 4.39-4.84 MPa for type 3, which corresponds to grade D600. The evaluation of water absorption also confirmed the advantages of the proposed method and the additive, significantly reducing the water absorption of the samples and increasing their hydrophobicity. The obtained values of water absorption are 13.8-16.6% for type 1, 13.7-16.1% for type 2, and 9.5-11.2% for type 3.

9.
Sci Rep ; 14(1): 11414, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762568

ABSTRACT

Using polyaspartic acid (PAsp) and bentonite (BT) as the main raw materials, a new type of degradable soil water retaining agent (PAsp-AA/BT) was synthesized by microwave radiation. The optimum synthesis conditions and comprehensive properties of PAsp-AA/BT were discussed and the structure and surface characteristics of PAspsp-AA/BT were characterized by FTIR, SEM, XRD and TGA in the paper. The results showed that the optimum synthesis conditions of PAsp-AA/BT were as follows: the dosages of polyaspartic acid (PAsp), bentonite (BT), initiator potassium persulfate, crosslinking agent N,N'-methylene bisacrylamide was 5, 3, 0.3, 0.03%, respectively, the neutralization degree of acrylic acid was 75%, and the microwave power was 490W. Under this condition, the absorption ratio of the synthesized PAspsp-AA/BT in deionized water and 0.9% NaCl solution was 953 and 164 g/g, respectively. The synthesized PAsp-AA/BT had a high water absorption rate, good water retention and repeated water absorption, and the degradation rate in soil within 30 days reached 32.75%, with good degradation effect. The analysis of SEM, FT-IR, XRD and TGA showed that: the surface of PAsp-AA/BT was rough and had obvious pore structure, which was conducive to the diffusion of water molecules; polyaspartic acid, bentonite and acrylic acid were polymerized; the cross-linking structure was formed between polyaspartic acid, bentonite and acrylic acid; the product of PASP-AA/BT had good thermal stability. This study provides a new soil water retaining agent, which is helpful for the better development of soil water retaining agent research.

10.
Int J Biol Macromol ; 270(Pt 1): 132303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744366

ABSTRACT

In order to solve ecological remediation issues for abandoned mines with steep slopes, a kind of hydrogels with high cohesion and water-retaining were designed by inorganic mineral skeleton combining with polymeric organic network cavities. This eco-friendly hydrogel (MFA/HA-g-p(AA-co-AM)) was prepared with acrylic acid (AA)-acrylamide (AM) as network, which was grafted with humic acids (HA) as network binding point reinforcement skeleton and polar functional group donors, KOH-modified fly ash (MFA) as internal supporter. The maximum water absorption capacities were 1960 g/g for distilled water, which followed the pseudo-second-order model. This super water absorption was attributed to the first stage of 62 % fast absorption due to the high specific surface area, pore volume and low osmotic pressure, moreover, the multiple hydrophilic functional groups and network structure swell contributed to 36 % of the second stage slow adsorption. In addition, the pore filling of water in mesoporous channels contributed the additional 2 % water retention on the third stage. The high saline-alkali resistance correlated with the electrostatic attraction with MFA and multiple interactions with oxygen-containing functional groups in organic components. MFA and HA also enhanced the shear strength and fertility retention properties. After 5 cycles of natural dehydration and reabsorption process, these excellent characteristics of reusability and water absorption capacity kept above 97 %. The application of 0.6 wt% MFA/HA-g-p(AA-co-AM) at 15° slope could improve the growth of ryegrass by approximately 45 %. This study provides an efficient and economic superabsorbent material for ecological restoration of abandoned mines with steep slopes.


Subject(s)
Hydrogels , Shear Strength , Hydrogels/chemistry , Environmental Restoration and Remediation/methods , Humic Substances , Adsorption , Coal Ash/chemistry , Water/chemistry , Nutrients/chemistry , Acrylates/chemistry
11.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793319

ABSTRACT

Silica fly ash, Certyd aggregate, and an alkaline solution were used to produce lightweight geopolymer concretes. The compressive strength, water absorption, and bulk density results, along with SEM photos showing the structure of the obtained composite, were obtained. Tests conducted on the specifications of lightweight geopolymer concretes have revealed significant chemical interactions between the ash aggregate and the geopolymer mortar, particularly when the coarse aggregate surface has been pre-treated with an alkaline solution. A statistical analysis of the experimental data, which investigated the influence of three key variables on the compressive strength, water absorption, and bulk density of lightweight geopolymer concrete (LBG), identified the following factors as having the most substantial impact: the quantity of alkali used, the curing temperature, and the concentration of alkali in the mixture. The optimal test series exhibited a commendable compressive strength of 20.14 megapascals (MPa), accompanied by a water absorption rate of 14.72%, and a bulk density of 1486.6 kg per cubic meter (kg/m³). These findings underscore the importance of alkali content, curing temperature, and alkali concentration in tailoring the properties of lightweight geopolymer concrete to meet specific performance requirements.

12.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732231

ABSTRACT

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.


Subject(s)
Biocompatible Materials , Gelatin , Hydrogels , Regenerative Medicine , Tissue Scaffolds , Gelatin/chemistry , Tissue Scaffolds/chemistry , Regenerative Medicine/methods , Biocompatible Materials/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Humans , Tissue Engineering/methods , Cross-Linking Reagents/chemistry
13.
Polymers (Basel) ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611183

ABSTRACT

The aim of this work is to analyze the effect of water absorption on the mechanical properties and damage mechanisms of polyester/glass fiber/jute fiber hybrid composites obtained using the compression molding and vacuum-assisted resin transfer molding (VARTM) techniques with different stacking sequences. For this purpose, the mechanical behavior under tensile stress of the samples was evaluated before and after hygrothermal aging at different temperatures: TA, 50 °C, and 70 °C for a period of 696 h. The damage mechanism after the mechanical tests was evaluated using SEM analysis. The results showed a tendency for the mechanical properties of the composites to decrease with exposure to an aqueous ambient, regardless of the molding technique used to conform the composites. It was also observed that the stacking sequence had no significant influence on the dry composites. However, exposure to the aqueous ambient led to a reduction in mechanical properties, both for the molding technique and the stacking sequence. Damage such as delamination, fiber pull-out, fiber/matrix detachment, voids, and matrix removal were observed in the composites in the SEM analyses.

14.
Materials (Basel) ; 17(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612126

ABSTRACT

Crushing waste concrete and using it directly as RAs has the disadvantages of high porosity and high water absorption. To achieve the reuse of resources, the researchers use microbial mineralization methods to further reinforce RAs. In this paper, the effect of the microbial carbonic anhydrase mineralization method on the water absorption of RAs was investigated, and the macroscopic analysis was performed by determining the indexes of water absorption and apparent density of RAs before and after the modification, and the microscopic analysis of RAs by using the methods of SEM, XRD, DSC, and EDS as well. According to the microscopic analysis, the mineralization products of microorganisms are calcium carbonate crystals, and with the increase in microbial liquid concentration, the water absorption rate of RAs shows a trend of decreasing and then increasing, and it can be found through the microscopic morphology that abundant mineralization products attached to the surface of the aggregate lead to the surface of the aggregate becoming rougher and more porous. The method of soaking the RAs in 3% bacterial solution and 0.1 mol/L calcium acetate solution followed by carbonation with 20% CO2 resulted in a 4.85% reduction in water absorption.

15.
Materials (Basel) ; 17(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612163

ABSTRACT

New composites produced with recycled waste are needed to manufacture more sustainable construction materials. This paper aimed to analyze the hygrothermal and mechanical performance of plasterboard with a polymethylhydrosiloxane (PMHS) content, incorporating recycled PET microplastic waste and varying factors such as PMHS dose, homogenization time, and drying temperature after setting. A cube-centered experimental design matrix was performed. The crystal morphology, porosity, fluidity, water absorption, flexural strength, and thermal conductivity of plasterboards were measured. The results showed that incorporating recycled PET microplastics does not produce a significant difference in the absorption and flexural strength of plasterboards. However, the addition of recycled PET reduced the thermal conductivity of plasterboards by around 10%.

16.
Int J Biol Macromol ; 268(Pt 1): 131845, 2024 May.
Article in English | MEDLINE | ID: mdl-38677695

ABSTRACT

Researchers have begun focusing on developing biodegradable materials, such as natural fiber/polymer composites (NFPC), since the growing of environmental concerns related to waste management. One crucial aspect that must be established in the development of these composites is their water-absorption behavior. This paper examines the water absorption (WA) behavior of NFPC, with a specific emphasis on natural fiber/polylactic acid (PLA) composites. It discusses processes and numerous aspects related to this behavior, based on recent published research. This review analyzes the influence of several factors, such as the loading of natural fiber, the combination of different natural fibers, the methods used in manufacturing, and the temperature of the water, on the WA behavior of natural fiber/PLA composites. It also explores how WA affects the properties of these composites. In addition, this review also presented techniques for improving the WA resistance of the composites. This review paper provides researchers with insights into the WA behavior of the composites, aiming to facilitate the development of a versatile and eco-friendly material that may effectively address waste disposal challenges.


Subject(s)
Polyesters , Water , Polyesters/chemistry , Water/chemistry , Temperature , Absorption, Physicochemical
17.
Article in English | MEDLINE | ID: mdl-38685771

ABSTRACT

BACKGROUND: Recently, progress has been made toward understanding the efficiency of polymer composites with natural fibres. With the hope of enhancing the characteristics of polymer composites supplemented with natural fibres in a watery environment, TiO2 nanoparticles have been used to improve their performance in the field. METHOD: These nanoparticles were filled in luffa-epoxy components at 1, 3, and 5 % volume fractions. A combination of x-ray diffraction and Fourier transform infrared spectroscopy was utilized to conduct the structural examinations. The nanoparticle spread was captured by field emission scanning electron microscopy. RESULT: Results show that dry nanocomposite's tensile strength and modulus have increased by 74% and, 13%, 137%, and 50% compared with epoxy and 40 vol% luffa-epoxy [E/L] composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. The diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively. The onset temperature of these nanocomposites was scattered in the range of 379-393°C, with a maximum char residue of 38%. CONCLUSION: The increase in the percentage of residue indicates the effectiveness of epoxy's flame retardant, improved thermal stability, diminished water absorption [approximately 2%], and 95% retention of wet composites' tensile properties. These results provided data support for improving the application of nanocomposites in the automobile field.

18.
Materials (Basel) ; 17(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38591536

ABSTRACT

Natural fiber composites (NFC) are eco-friendly alternatives to synthetic polymers. However, some intrinsic natural fillers' properties hinder their widespread implementation as reinforcement in polymeric matrices and require further investigation. In the scope of this study, the thermal, rheologic, mechanical (tension and flexural modes), and morphological properties, as well as the water absorption and dimensional stability of the NF polypropylene (PP)-based injection molded composites reinforced with rice husk (rh) and olive pits (op) of 20 wt.% and 30% wt.%, respectively, were investigated. The results suggest that the higher content of the rice husk and olive pits led to a similar reduction in the melt flow index (MFI), independent of the additive type compared to virgin polypropylene (PPv). The melting and crystallization temperatures of the PPrh and PPop composites did not change with statistical significance. The composites are stiffer than the PP matrix by up to 49% and possess higher mechanical strength in the tension mode at the expense of decreased ductility. PPrh and PPop have a superior flexural modulus in the bending mode, while the flexural strength improvement was accomplished for the PP30%rh. The influence of the fibers' distribution in the bulk of the parts on their mechanical performance was confirmed based on a non-localized morphology evaluation, which constitutes a novelty of the presented research. The dimensional stability of the composites was improved as the linear shrinkage in the flow direction was decreased by 49% for PPrh and 30% for PPop, positively correlating with an increase in the filler content and stiffness. PPop was less susceptible to water sorption than PPrh due to fibers' composition and larger surface-to-area volume ratios.

19.
Appl Plant Sci ; 12(2): e11565, 2024.
Article in English | MEDLINE | ID: mdl-38638616

ABSTRACT

Premise: Methods to evaluate lichen thalli hydrophobicity have previously been described, but only recently has hydrophobicity been shown to be an important functional trait related to water regulation dynamics that could be used to predict future climate change effects. We describe a novel protocol to measure lichen thallus hydrophobicity that aims to be an easier and more affordable approach. Methods and Results: Our protocol requires only a micropipette, distilled water, a tripod, and a smartphone or camera. Hydrophobicity is inferred from multiple metrics associated with the absorption times of standardized droplets (initial and total absorption time). We used a data set of 93 lichen taxa with different growth forms and from different biomes and demonstrated that this method is well suited for capturing different levels of hydrophobicity, including very hydrophilic species. Conclusions: Our results show that this new protocol to measure lichen hydrophobicity is a rapid and low-cost method to assess an ecophysiologically based functional trait that can be used with almost no limitations, including in different climates, lichen species, and growth forms.


Premisa: En el pasado se han descrito métodos para evaluar la hidrofobicidad de los talos liquénicos, sin embargo, no fue hasta recientemente que se demostró la importancia de esta propiedad como rasgo funcional en relación a la dinámica de regulación hídrica de los talos, permitiendo utilizarla como herramienta para predecir futuros efectos del cambio climático. Describimos un nuevo protocolo para medir la hidrofobicidad de los talos liquénicos que pretende ser más fácil y asequible. Métodos y Resultados: Nuestro protocolo requiere solamente de una micropipeta, agua destilada, un trípode y un teléfono o una cámara. La hidrofobicidad es inferida a partir de múltiples métricas asociadas a los tiempos de absorción de gotas de un volumen estandarizado (tiempo de absorción inicial y tiempo de absorción total). Utilizamos datos de 93 taxones de líquenes con diferentes formas de crecimiento y provenientes de distintos biomas, lo que permitió demostrar que este método es adecuado para capturar diferentes niveles de hidrofobicidad, incluyendo a especies altamente hidrofílicas. Conclusiones: Nuestros resultados muestran que la medición de la hidrofobicidad de los talos es un método rápido y de bajo costo que permite evaluar un rasgo funcional basado en la ecofisiología de líquenes y que puede ser utilizado prácticamente sin limitaciones, incluyendo en diferentes climas, especies y formas de crecimiento.

20.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475494

ABSTRACT

Rhodotypos scandens (Thunb.) Makino is known to have a seed dispersal that is thick and stony (endocarp + seeds) and has potential as a landscaping tree seed. In several Rosaceae species, seeds are covered with a hard endocarp, making the internal seeds water-impermeable and germination difficult. Here, we analyzed the morphoanatomical traits and germination properties of R. scandens seeds. To identify ideal seed propagation conditions, we immersed R. scandens seeds in sulfuric acid for varying durations and subjected them to phytohormone (gibberellic acid A3 and fluridone) and a cold stratification (CS) (5 °C) treatment after endocarp removal (ER). The R. scandens stony seeds did not increase in mass by ≥25.0%. Following ER, the seed mass increased by ≥50.0% with water absorption when compared to the initial dry mass. Seed surfaces showed damage and cracks through scarification after 1 h of immersion in sulfuric acid, failing to germinate. A combination of ER, phytohormone treatment, and CS improved seed germination compared to ER alone (26.0 ± 5.3%). Overall, R. scandens seeds showed a dispersal with a hard endocarp from the parent plant, and a pre-treatment with ER, phytohormones, and CS was required for effective seed propagation.

SELECTION OF CITATIONS
SEARCH DETAIL
...