Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
BMC Bioinformatics ; 25(1): 239, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014298

ABSTRACT

BACKGROUND: Metal ions play vital roles in regulating various biological systems, making it essential to control the concentration of free metal ions in solutions during experimental procedures. Several software applications exist for estimating the concentration of free metals in the presence of chelators, with MaxChelator being the easily accessible choice in this domain. This work aimed at developing a Python version of the software with arbitrary precision calculations, extensive new features, and a user-friendly interface to calculate the free metal ions. RESULTS: We introduce the open-source PyChelator web application and the Python-based Google Colaboratory notebook, PyChelator Colab. Key features aim to improve the user experience of metal chelator calculations including input in smaller units, selection among stability constants, input of user-defined constants, and convenient download of all results in Excel format. These features were implemented in Python language by employing Google Colab, facilitating the incorporation of the calculator into other Python-based pipelines and inviting the contributions from the community of Python-using scientists for further enhancements. Arbitrary-precision arithmetic was employed by using the built-in Decimal module to obtain the most accurate results and to avoid rounding errors. No notable differences were observed compared to the results obtained from the PyChelator web application. However, comparison of different sources of stability constants showed substantial differences among them. CONCLUSIONS: PyChelator is a user-friendly metal and chelator calculator that provides a platform for further development. It is provided as an interactive web application, freely available for use at https://amrutelab.github.io/PyChelator , and as a Python-based Google Colaboratory notebook at https://colab. RESEARCH: google.com/github/AmruteLab/PyChelator/blob/main/PyChelator_Colab.ipynb .


Subject(s)
Chelating Agents , Internet , Metals , Software , Chelating Agents/chemistry , Metals/chemistry
2.
J Med Internet Res ; 26: e47070, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833299

ABSTRACT

BACKGROUND: The COVID-19 pandemic posed significant challenges to global health systems. Efficient public health responses required a rapid and secure collection of health data to improve the understanding of SARS-CoV-2 and examine the vaccine effectiveness (VE) and drug safety of the novel COVID-19 vaccines. OBJECTIVE: This study (COVID-19 study on vaccinated and unvaccinated subjects over 16 years; eCOV study) aims to (1) evaluate the real-world effectiveness of COVID-19 vaccines through a digital participatory surveillance tool and (2) assess the potential of self-reported data for monitoring key parameters of the COVID-19 pandemic in Germany. METHODS: Using a digital study web application, we collected self-reported data between May 1, 2021, and August 1, 2022, to assess VE, test positivity rates, COVID-19 incidence rates, and adverse events after COVID-19 vaccination. Our primary outcome measure was the VE of SARS-CoV-2 vaccines against laboratory-confirmed SARS-CoV-2 infection. The secondary outcome measures included VE against hospitalization and across different SARS-CoV-2 variants, adverse events after vaccination, and symptoms during infection. Logistic regression models adjusted for confounders were used to estimate VE 4 to 48 weeks after the primary vaccination series and after third-dose vaccination. Unvaccinated participants were compared with age- and gender-matched participants who had received 2 doses of BNT162b2 (Pfizer-BioNTech) and those who had received 3 doses of BNT162b2 and were not infected before the last vaccination. To assess the potential of self-reported digital data, the data were compared with official data from public health authorities. RESULTS: We enrolled 10,077 participants (aged ≥16 y) who contributed 44,786 tests and 5530 symptoms. In this young, primarily female, and digital-literate cohort, VE against infections of any severity waned from 91.2% (95% CI 70.4%-97.4%) at week 4 to 37.2% (95% CI 23.5%-48.5%) at week 48 after the second dose of BNT162b2. A third dose of BNT162b2 increased VE to 67.6% (95% CI 50.3%-78.8%) after 4 weeks. The low number of reported hospitalizations limited our ability to calculate VE against hospitalization. Adverse events after vaccination were consistent with previously published research. Seven-day incidences and test positivity rates reflected the course of the pandemic in Germany when compared with official numbers from the national infectious disease surveillance system. CONCLUSIONS: Our data indicate that COVID-19 vaccinations are safe and effective, and third-dose vaccinations partially restore protection against SARS-CoV-2 infection. The study showcased the successful use of a digital study web application for COVID-19 surveillance and continuous monitoring of VE in Germany, highlighting its potential to accelerate public health decision-making. Addressing biases in digital data collection is vital to ensure the accuracy and reliability of digital solutions as public health tools.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , Germany/epidemiology , COVID-19/prevention & control , COVID-19/epidemiology , Prospective Studies , COVID-19 Vaccines/administration & dosage , Female , Male , Middle Aged , Adult , SARS-CoV-2/immunology , Pandemics , Vaccine Efficacy/statistics & numerical data , Aged , Internet , Self Report , Young Adult , Cohort Studies , Adolescent
3.
JMIR Med Inform ; 12: e49613, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904996

ABSTRACT

BACKGROUND: Dermoscopy is a growing field that uses microscopy to allow dermatologists and primary care physicians to identify skin lesions. For a given skin lesion, a wide variety of differential diagnoses exist, which may be challenging for inexperienced users to name and understand. OBJECTIVE: In this study, we describe the creation of the dermoscopy differential diagnosis explorer (D3X), an ontology linking dermoscopic patterns to differential diagnoses. METHODS: Existing ontologies that were incorporated into D3X include the elements of visuals ontology and dermoscopy elements of visuals ontology, which connect visual features to dermoscopic patterns. A list of differential diagnoses for each pattern was generated from the literature and in consultation with domain experts. Open-source images were incorporated from DermNet, Dermoscopedia, and open-access research papers. RESULTS: D3X was encoded in the OWL 2 web ontology language and includes 3041 logical axioms, 1519 classes, 103 object properties, and 20 data properties. We compared D3X with publicly available ontologies in the dermatology domain using a semiotic theory-driven metric to measure the innate qualities of D3X with others. The results indicate that D3X is adequately comparable with other ontologies of the dermatology domain. CONCLUSIONS: The D3X ontology is a resource that can link and integrate dermoscopic differential diagnoses and supplementary information with existing ontology-based resources. Future directions include developing a web application based on D3X for dermoscopy education and clinical practice.

4.
JMIR Public Health Surveill ; 10: e37625, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915175

ABSTRACT

Unlabelled: The use of innovative digital health technologies in public health is expanding quickly, including the use of these tools in outbreak response. The translation of a digital health innovation into effective public health practice is a complex process requiring diverse enablers across the people, process, and technology domains. This paper describes a novel web-based application that was designed and implemented by a district-level public health authority to assist residential aged care facilities in influenza and COVID-19 outbreak detection and response. It discusses some of the challenges, enablers, and key lessons learned in designing and implementing such a novel application from the perspectives of the public health practitioners (the authors) that undertook this project.


Subject(s)
COVID-19 , Disease Outbreaks , Homes for the Aged , Influenza, Human , Internet , Humans , Influenza, Human/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Aged
5.
J Infect Chemother ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825002

ABSTRACT

INTRODUCTION: Vancomycin requires a population pharmacokinetic (popPK) model to estimate the area under the concentration-time curve (AUC), and an AUC-guided dosing strategy is necessary. This study aimed to develop a popPK model for vancomycin using a real-world database pooled from a nationwide web application (PAT). METHODS: In this retrospective study, the PAT database between December 14, 2022 and April 6, 2023 was used to develop a popPK model. The model was validated and compared with six existing models based on the predictive performance of datasets from another PAT database and the Kumamoto University Hospital. The developed model determined the dosing strategy for achieving the target AUC. RESULTS: The modeling populations consisted of 7146 (13,372 concentrations from the PAT database), 3805 (7540 concentrations from the PAT database), and 783 (1775 concentrations from Kumamoto University Hospital) individuals. A two-compartment popPK model was developed that incorporated creatinine clearance as a covariate for clearance and body weight for central and peripheral volumes of distribution. The validation demonstrated that the popPK model exhibited the smallest mean absolute prediction error of 5.07, outperforming others (ranging from 5.10 to 5.83). The dosing strategies suggested a first dose of 30 mg/kg and maintenance doses adjusted for kidney function and age. CONCLUSIONS: This study demonstrated the updating of PAT through the validation and development of a popPK model using a vast amount of data collected from anonymous PAT users.

6.
Biology (Basel) ; 13(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785833

ABSTRACT

Microarray experiments, a mainstay in gene expression analysis for nearly two decades, pose challenges due to their complexity. To address this, we introduce DExplore, a user-friendly web application enabling researchers to detect differentially expressed genes using data from NCBI's GEO. Developed with R, Shiny, and Bioconductor, DExplore integrates WebGestalt for functional enrichment analysis. It also provides visualization plots for enhanced result interpretation. With a Docker image for local execution, DExplore accommodates unpublished data. To illustrate its utility, we showcase two case studies on cancer cells treated with chemotherapeutic drugs. DExplore streamlines microarray data analysis, empowering molecular biologists to focus on genes of biological significance.

7.
BMC Musculoskelet Disord ; 25(1): 401, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773464

ABSTRACT

BACKGROUND: The frequency of anterior cervical discectomy and fusion (ACDF) has increased up to 400% since 2011, underscoring the need to preoperatively anticipate adverse postoperative outcomes given the procedure's expanding use. Our study aims to accomplish two goals: firstly, to develop a suite of explainable machine learning (ML) models capable of predicting adverse postoperative outcomes following ACDF surgery, and secondly, to embed these models in a user-friendly web application, demonstrating their potential utility. METHODS: We utilized data from the National Surgical Quality Improvement Program database to identify patients who underwent ACDF surgery. The outcomes of interest were four short-term postoperative adverse outcomes: prolonged length of stay (LOS), non-home discharges, 30-day readmissions, and major complications. We utilized five ML algorithms - TabPFN, TabNET, XGBoost, LightGBM, and Random Forest - coupled with the Optuna optimization library for hyperparameter tuning. To bolster the interpretability of our models, we employed SHapley Additive exPlanations (SHAP) for evaluating predictor variables' relative importance and used partial dependence plots to illustrate the impact of individual variables on the predictions generated by our top-performing models. We visualized model performance using receiver operating characteristic (ROC) curves and precision-recall curves (PRC). Quantitative metrics calculated were the area under the ROC curve (AUROC), balanced accuracy, weighted area under the PRC (AUPRC), weighted precision, and weighted recall. Models with the highest AUROC values were selected for inclusion in a web application. RESULTS: The analysis included 57,760 patients for prolonged LOS [11.1% with prolonged LOS], 57,780 for non-home discharges [3.3% non-home discharges], 57,790 for 30-day readmissions [2.9% readmitted], and 57,800 for major complications [1.4% with major complications]. The top-performing models, which were the ones built with the Random Forest algorithm, yielded mean AUROCs of 0.776, 0.846, 0.775, and 0.747 for predicting prolonged LOS, non-home discharges, readmissions, and complications, respectively. CONCLUSIONS: Our study employs advanced ML methodologies to enhance the prediction of adverse postoperative outcomes following ACDF. We designed an accessible web application to integrate these models into clinical practice. Our findings affirm that ML tools serve as vital supplements in risk stratification, facilitating the prediction of diverse outcomes and enhancing patient counseling for ACDF.


Subject(s)
Cervical Vertebrae , Diskectomy , Internet , Machine Learning , Postoperative Complications , Spinal Fusion , Humans , Diskectomy/methods , Diskectomy/adverse effects , Spinal Fusion/adverse effects , Spinal Fusion/methods , Cervical Vertebrae/surgery , Male , Female , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Middle Aged , Length of Stay/statistics & numerical data , Treatment Outcome , Aged , Patient Readmission/statistics & numerical data , Adult , Databases, Factual
8.
JMIR Form Res ; 8: e50812, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767946

ABSTRACT

BACKGROUND: Thailand's HIV epidemic is heavily concentrated among men who have sex with men (MSM), and surveillance efforts are mostly based on case surveillance and local biobehavioral surveys. OBJECTIVE: We piloted Kai Noi, a web-based respondent-driven sampling (RDS) survey among MSM. METHODS: We developed an application coded in PHP that facilitated all procedures and events typically used in an RDS office for use on the web, including e-coupon validation, eligibility screening, consent, interview, peer recruitment, e-coupon issuance, and compensation. All procedures were automated and e-coupon ID numbers were randomly generated. Participants' phone numbers were the principal means to detect and prevent duplicate enrollment. Sampling took place across Thailand; residents of Bangkok were also invited to attend 1 of 10 clinics for an HIV-related blood draw with additional compensation. RESULTS: Sampling took place from February to June 2022; seeds (21 at the start, 14 added later) were identified through banner ads, micromessaging, and in online chat rooms. Sampling reached all 6 regions and almost all provinces. Fraudulent (duplicate) enrollment using "borrowed" phone numbers was identified and led to the detection and invalidation of 318 survey records. A further 106 participants did not pass an attention filter question (asking recruits to select a specific categorical response) and were excluded from data analysis, leading to a final data set of 1643 valid participants. Only one record showed signs of straightlining (identical adjacent responses). None of the Bangkok respondents presented for a blood draw. CONCLUSIONS: We successfully developed an application to implement web-based RDS among MSM across Thailand. Measures to minimize, detect, and eliminate fraudulent survey enrollment are imperative in web-based surveys offering compensation. Efforts to improve biomarker uptake are needed to fully tap the potential of web-based sampling and data collection.

9.
Acad Radiol ; 31(5): 1968-1975, 2024 05.
Article in English | MEDLINE | ID: mdl-38724131

ABSTRACT

RATIONALE AND OBJECTIVES: Radiology is a rapidly evolving field that benefits from continuous innovation and research participation among trainees. Traditional methods for involving residents in research are often inefficient and limited, usually due to the absence of a standardized approach to identifying available research projects. A centralized online platform can enhance networking and offer equal opportunities for all residents. MATERIALS AND METHODS: Research Connect is an online platform built with PHP, SQL, and JavaScript. Features include project and collaboration listing as well as advertisement of project openings to medical/undergraduate students, residents, and fellows. The automated system maintains project data and sends notifications for new research opportunities when they meet user preference criteria. Both pre- and post-launch surveys were used to assess the platform's efficacy. RESULTS: Before the introduction of Research Connect, 69% of respondents used informal conversations as their primary method of discovering research opportunities. One year after its launch, Research Connect had 141 active users, comprising 63 residents and 41 faculty members, along with 85 projects encompassing various radiology subspecialties. The platform received a median satisfaction rating of 4 on a 1-5 scale, with 54% of users successfully locating projects of interest through the platform. CONCLUSION: Research Connect addresses the need for a standardized method and centralized platform with active research projects and is designed for scalability. Feedback suggests it has increased the visibility and accessibility of radiology research, promoting greater trainee involvement and academic collaboration.


Subject(s)
Internet , Radiology , Humans , Radiology/education , Cooperative Behavior , Biomedical Research , Internship and Residency , Surveys and Questionnaires
10.
Nurs Health Sci ; 26(2): e13126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754867

ABSTRACT

Multidrug-resistant organism infections are a serious health problem globally, and can result in patient mortality and morbidity. In this descriptive study, we produced the first web application for transmission prevention specific to the situation based on nursing experience, knowledge, and practice guidelines and to evaluate web application satisfaction among Thai nurses. The sample comprised 282 Thai registered nurses experienced in caring for patients with multidrug-resistant organisms in a tertiary hospital. A demographic form and knowledge test were completed anonymously online. Data were analyzed using descriptive statistics. The application emphasized crucial topics for which participants had low preliminary knowledge and included tutorial sessions, pictures, video clips, drills, and a post-test. The application was piloted with a random sample of 30 nurses, and an instrument tested their satisfaction with this. Results revealed that preliminary knowledge scores for preventing transmission were moderate, and participants were highly satisfied with the application. Findings suggest the application is suitable for Thai nurses and could be applied to nursing practice elsewhere. However, further testing is recommended before implementing it into nursing practice.


Subject(s)
Internet , Humans , Female , Thailand , Adult , Male , Surveys and Questionnaires , Middle Aged , Nurses/psychology , Nurses/statistics & numerical data , Personal Satisfaction , Drug Resistance, Multiple
11.
Pharmaceutics ; 16(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794351

ABSTRACT

Zolpidem is a widely prescribed hypnotic Z-drug used to treat short-term insomnia. However, a growing number of individuals intentionally overdose on these drugs. This study aimed to develop a predictive tool for physicians to assess patients with zolpidem overdose. A population pharmacokinetic (PK) model was established using digitized data obtained from twenty-three healthy volunteers after a single oral administration of zolpidem. Based on the final PK model, a web application was developed using open-source R packages such as rxode2, nonmem2rx, and shiny. The final model was a one-compartment model with first-order absorption and elimination with PK parameters, including clearance (CL, 16.9 L/h), absorption rate constant (Ka, 5.41 h-1), volume of distribution (Vd, 61.7 L), and lag time (ALAG, 0.394 h). Using the established population PK model in the current study, we developed a web application that enables users to simulate plasma zolpidem concentrations and visualize their profiles. This user-friendly web application may provide essential clinical information to physicians, ultimately helping in the management of patients with zolpidem intoxication.

12.
J Hazard Mater ; 472: 134501, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735182

ABSTRACT

Rapid advances in machine learning (ML) provide fast, accurate, and widely applicable methods for predicting free radical-mediated organic pollutant reactivity. In this study, the rate constants (logk) of four halogen radicals were predicted using Morgan fingerprint (MF) and Mordred descriptor (MD) in combination with a series of ML models. The findings highlighted that making accurate predictions for various datasets depended on an effective combination of descriptors and algorithms. To further alleviate the challenge of limited sample size, we introduced a data combination strategy that improved prediction accuracy and mitigated overfitting by combining different datasets. The Light Gradient Boosting Machine (LightGBM) with MF and Random Forest (RF) with MD models based on the unified dataset were finally selected as the optimal models. The SHapley Additive exPlanations revealed insights: the MF-LightGBM model successfully captured the influence of electron-withdrawing/donating groups, while autocorrelation, walk count and information content descriptors in the MD-RF model were identified as key features. Furthermore, the important contribution of pH was emphasized. The results of the applicability domain analysis further supported that the developed model can make reliable predictions for query compounds across a broader range. Finally, a practical web application for logk calculations was built.

13.
AAPS J ; 26(3): 39, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570385

ABSTRACT

A well-documented pharmacometric (PMx) analysis dataset specification ensures consistency in derivations of the variables, naming conventions, traceability to the source data, and reproducibility of the analysis dataset. Lack of standards in creating the dataset specification can lead to poor quality analysis datasets, negatively impacting the quality of the PMx analysis. Standardization of the dataset specification within an individual organization helps address some of these inconsistencies. The recent introduction of the Clinical Data Interchange Standards Consortium (CDISC) Analysis Data Model (ADaM) Population Pharmacokinetic (popPK) Implementation Guide (IG) further promotes industry-wide standards by providing guidelines for the basic data structure of popPK analysis datasets. However, manual implementation of the standards can be labor intensive and error-prone. Hence, there is still a need to automate the implementation of these standards. In this paper, we present PmWebSpec, an easily deployable web-based application to facilitate the creation and management of CDISC-compliant PMx analysis dataset specifications. We describe the application of this tool through examples and highlight its key features including pre-populated dataset specifications, built-in checks to enforce standards, and generation of an electronic Common Technical Document (eCTD)-compliant data definition file. The application increases efficiency, quality and semi-automates PMx analysis dataset, and specification creation and has been well accepted by pharmacometricians and programmers internally. The success of this application suggests its potential for broader usage across the PMx community.


Subject(s)
Software , Reproducibility of Results , Reference Standards
14.
Front Mol Biosci ; 11: 1321364, 2024.
Article in English | MEDLINE | ID: mdl-38584701

ABSTRACT

Lipid nanoparticles (LNPs) are being intensively researched and developed to leverage their ability to safely and effectively deliver therapeutics. To achieve optimal therapeutic delivery, a comprehensive understanding of the relationship between formulation, structure, and efficacy is critical. However, the vast chemical space involved in the production of LNPs and the resulting structural complexity make the structure to function relationship challenging to assess and predict. New components and formulation procedures, which provide new opportunities for the use of LNPs, would be best identified and optimized using high-throughput characterization methods. Recently, a high-throughput workflow, consisting of automated mixing, small-angle X-ray scattering (SAXS), and cellular assays, demonstrated a link between formulation, internal structure, and efficacy for a library of LNPs. As SAXS data can be rapidly collected, the stage is set for the collection of thousands of SAXS profiles from a myriad of LNP formulations. In addition, correlated LNP small-angle neutron scattering (SANS) datasets, where components are systematically deuterated for additional contrast inside, provide complementary structural information. The centralization of SAXS and SANS datasets from LNPs, with appropriate, standardized metadata describing formulation parameters, into a data repository will provide valuable guidance for the formulation of LNPs with desired properties. To this end, we introduce Simple Scattering, an easy-to-use, open data repository for storing and sharing groups of correlated scattering profiles obtained from LNP screening experiments. Here, we discuss the current state of the repository, including limitations and upcoming changes, and our vision towards future usage in developing our collective knowledge base of LNPs.

15.
MethodsX ; 12: 102696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633421

ABSTRACT

In recent years, there has been an increase in the interest in adopting Explainable Artificial Intelligence (XAI) for healthcare. The proposed system includes•An XAI model for cancer drug value prediction. The model provides data that is easy to understand and explain, which is critical for medical decision-making. It also produces accurate projections.•A model outperformed existing models due to extensive training and evaluation on a large cancer medication chemical compounds dataset.•Insights into the causation and correlation between the dependent and independent actors in the chemical composition of the cancer cell. While the model is evaluated on Lung Cancer data, the architecture offered in the proposed solution is cancer agnostic. It may be scaled out to other cancer cell data if the properties are similar. The work presents a viable route for customizing treatments and improving patient outcomes in oncology by combining XAI with a large dataset. This research attempts to create a framework where a user can upload a test case and receive forecasts with explanations, all in a portable PDF report.

16.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676024

ABSTRACT

In recent decades, technological advancements have transformed the industry, highlighting the efficiency of automation and safety. The integration of augmented reality (AR) and gesture recognition has emerged as an innovative approach to create interactive environments for industrial equipment. Gesture recognition enhances AR applications by allowing intuitive interactions. This study presents a web-based architecture for the integration of AR and gesture recognition, designed to interact with industrial equipment. Emphasizing hardware-agnostic compatibility, the proposed structure offers an intuitive interaction with equipment control systems through natural gestures. Experimental validation, conducted using Google Glass, demonstrated the practical viability and potential of this approach in industrial operations. The development focused on optimizing the system's software and implementing techniques such as normalization, clamping, conversion, and filtering to achieve accurate and reliable gesture recognition under different usage conditions. The proposed approach promotes safer and more efficient industrial operations, contributing to research in AR and gesture recognition. Future work will include improving the gesture recognition accuracy, exploring alternative gestures, and expanding the platform integration to improve the user experience.


Subject(s)
Augmented Reality , Gestures , Humans , Industry , Software , Pattern Recognition, Automated/methods , User-Computer Interface
17.
Digit Health ; 10: 20552076241242661, 2024.
Article in English | MEDLINE | ID: mdl-38596405

ABSTRACT

Objective: This study aimed at developing and validating a web application on hypertension management called the D-PATH website. Methods: The website development involved three stages: content analysis, web development, and validation. The model of Internet Intervention was used to guide the development of the website, in addition to other learning and multimedia theories. The content was developed based on literature reviews and clinical guidelines on hypertension. Then, thirteen experts evaluated the website using Fuzzy Delphi Technique. Results: The website was successfully developed and contains six learning units. Thirteen experts rated the website based on content themes, presentation, interactivity, and instructional strategies. All experts reached a consensus that the web is acceptable to be used for nutrition education intervention. Conclusion: D-PATH is a valid web-based educational tool ready to be used to help disseminate information on dietary and physical activity to manage hypertension. This web application was suitable for sharing information on dietary and physical activity recommendations for hypertension patients.

18.
Technol Health Care ; 32(4): 2837-2846, 2024.
Article in English | MEDLINE | ID: mdl-38517825

ABSTRACT

BACKGROUND: Incubators, especially the ones for babies, require continuous monitoring for anomaly detection and taking action when necessary. OBJECTIVE: This study aims to introduce a system in which important information such as temperature, humidity and gas values being tracked from incubator environment continuously in real-time. METHOD: Multiple sensors, a microcontroller, a transmission module, a cloud server, a mobile application, and a Web application were integrated Data were made accessible to the duty personnel both remotely via Wi-Fi and in the range of the sensors via Bluetooth Low Energy technologies. In addition, potential emergencies were detected and alarm notifications were created utilising a machine learning algorithm. The mobile application receiving the data from the sensors via Bluetooth was designed such a way that it stores the data internally in case of Internet disruption, and transfers the data when the connection is restored. RESULTS: The obtained results reveal that a neural network structure with sensor measurements from the last hour gives the best prediction for the next hour measurement. CONCLUSION: The affordable hardware and software used in this system make it beneficial, especially in the health sector, in which the close monitoring of baby incubators is vitally important.


Subject(s)
Incubators, Infant , Machine Learning , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Mobile Applications , Infant, Newborn , Clinical Alarms , Humidity , Internet of Things , Neural Networks, Computer , Cloud Computing , Wireless Technology/instrumentation , Temperature , Algorithms
19.
J Physiol Sci ; 74(1): 21, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555424

ABSTRACT

Mean circulatory filling pressure, venous return curve, and Guyton's graphical analysis are basic concepts in cardiovascular physiology. However, some medical students may not know how to view and interpret or understand them adequately. To deepen students' understanding of the graphical analysis, in place of having to perform live animal experiments, we developed an interactive cardiovascular simulator, as a self-learning tool, as a web application. The minimum closed-loop model consisted of a ventricle, an artery, resistance, and a vein, excluding venous resistance. The simulator consists of three modules: setting (parameters and simulation modes), calculation, and presentation. In the setting module, the user can interactively customize model parameters, compliances, resistance, Emax of the ventricular contractility, total blood volume, and unstressed volume. The hemodynamics are calculated in three phases: filling (late diastole), ejection (systole), and flow (early diastole). In response to the user's settings, the simulator graphically presents the hemodynamics: the pressure-volume relations of the artery, vein, and ventricle, the venous return curves, and the stroke volume curves. The mean filling pressure is calculated at approximately 7 mmHg at the initial setting. The venous return curves, linear and concave, are dependent on the venous compliance. The hemodynamic equilibrium point is marked on the crossing point of venous return curve and the stroke volume curve. Users can interactively do discovery learning, and try and confirm their interests and get their questions answered about hemodynamic concepts by using the simulator.


Subject(s)
Hemodynamics , Veins , Animals , Humans , Veins/physiology , Stroke Volume , Blood Pressure/physiology , Cardiac Output/physiology
20.
Exposome ; 4(1): osae003, 2024.
Article in English | MEDLINE | ID: mdl-38425336

ABSTRACT

The correlations among individual exposures in the exposome, which refers to all exposures an individual encounters throughout life, are important for understanding the landscape of how exposures co-occur, and how this impacts health and disease. Exposome-wide association studies (ExWAS), which are analogous to genome-wide association studies (GWAS), are increasingly being used to elucidate links between the exposome and disease. Despite increased interest in the exposome, tools and publications that characterize exposure correlations and their relationships with human disease are limited, and there is a lack of data and results sharing in resources like the GWAS catalog. To address these gaps, we developed the PEGS Explorer web application to explore exposure correlations in data from the diverse North Carolina-based Personalized Environment and Genes Study (PEGS) that were rigorously calculated to account for differing data types and previously published results from ExWAS. Through globe visualizations, PEGS Explorer allows users to explore correlations between exposures found to be associated with complex diseases. The exposome data used for analysis includes not only standard environmental exposures such as point source pollution and ozone levels but also exposures from diet, medication, lifestyle factors, stress, and occupation. The web application addresses the lack of accessible data and results sharing, a major challenge in the field, and enables users to put results in context, generate hypotheses, and, importantly, replicate findings in other cohorts. PEGS Explorer will be updated with additional results as they become available, ensuring it is an up-to-date resource in exposome science.

SELECTION OF CITATIONS
SEARCH DETAIL
...