Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.003
Filter
1.
Article in English | MEDLINE | ID: mdl-38988234

ABSTRACT

OBJECTIVES: The aim of the study was to evaluate the effects on infant growth and tolerance of a Test infant formula based on a novel whey extraction and demineralization process, compared to a Standard formula and a breastfed reference arm. METHODS: Healthy term infants (n = 61) aged up to 21 days were randomized to Test or Control formula. A breastfed group (n = 39) served as a reference. Growth, tolerance, adverse events, and sleep were evaluated every month until 6 months of age. Plasma amino-acid concentrations at 3 months of age were measured in a subgroup population. RESULTS: Growth curves of all infants globally agreed with World Health Organization standards across the 6-months period study. Regarding tolerance, no difference between the formula-fed groups was observed on daily number of crying episodes, intensity or time to onset of regurgitations, and stool frequency or consistency, except at 5 months with infants in the Control group having more watery stools. Plasma concentration of some amino acids differed between the groups, especially tryptophan concentration which was higher in infants fed with the Test formula. In parallel, total sleep duration was longer in these infants at 2, 3, and 5 months of age, corresponding to an increase in daytime sleep. CONCLUSIONS: Test formula supported an adequate infant growth from birth to 6 months of age and was well-tolerated by all infants. An increase in total sleep at several months was also observed with the Test formula.

2.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971787

ABSTRACT

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Subject(s)
Microbial Sensitivity Tests , Nanocomposites , Silver , Whey , Nanocomposites/chemistry , Silver/chemistry , Silver/pharmacology , Whey/chemistry , Whey/metabolism , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Metal Nanoparticles/chemistry , Lactobacillus/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared
3.
J Food Sci ; 89(7): 4109-4122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957103

ABSTRACT

The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, ß-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.


Subject(s)
Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Phosphatidylcholines , Thermodynamics , Whey Proteins , Whey Proteins/chemistry , Phosphatidylcholines/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Emulsions/chemistry , Lactalbumin/chemistry , Lactalbumin/metabolism , Serum Albumin, Bovine/chemistry , Infant Formula/chemistry
4.
J Dairy Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969004

ABSTRACT

Milk and dairy products are important in the human diet not only for the macro nutrients, such as proteins and fats, that they provide, but also for the supply of essential micronutrients, such as minerals. Minerals are present in milk in soluble form in the aqueous phase and in colloidal form associated with the macronutrients of the milk. These 2 forms affect the nutritional functions of the minerals and their contribution to the technological properties of milk during cheese-making. The aim of the present work was to study and compare the detailed mineral profiles of dairy foods (milk, whey, and cheese) obtained from cows, buffaloes, goats, ewes and dromedary camels, and to analyze the recovery in the curd of the individual minerals according to a model cheese-making procedure applied to the milk of these 5 dairy species. The detailed mineral profile of the milk samples was obtained by inductively coupled plasma - optical emission spectroscopy (ICP - OES). We divided the 21 minerals identified in the 3 different matrices into essential macro- and micro-minerals, and environmental micro-minerals, and calculated the recovery of the individual minerals in the cheeses. The complete mineral profiles and the recoveries in the cheeses were then analyzed using a linear mixed model with Species and Food, and their interaction included as fixed effects, and Sample within Species as a random effect. The mineral profiles of each food matrix were then analyzed separately with a general linear model in which only the fixed effect of Species was included. The results showed that the species could be divided into 2 groups: those producing a more diluted milk characterized by a higher content of soluble minerals (in particular K), and those with a more concentrated milk with a higher colloidal mineral content in the skim of the milk (such as Ca and P). The recoveries of the minerals in the curd were in line with the initial content in the milk, and also highlighted the fact that the influence of the brine was not limited to the Na content but to its whole mineral makeup. These results provide valuable information for the evaluation of the nutritional and technological properties of milk, and for the uses made of the byproducts of cheese making from the milk of different species.

5.
J Colloid Interface Sci ; 674: 951-958, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38959740

ABSTRACT

HYPOTHESIS: Our hypothesis is that dynamic interfacial tension values as measured by the partitioned-Edge-based Droplet GEneration (EDGE) tensiometry can be connected to those obtained with classical techniques, such as the automated drop tensiometer (ADT), expanding the range of timescales towards very short ones. EXPERIMENTS: Oil-water and air-water interfaces are studied, with whey protein isolate solutions (WPI, 2.5 - 10 wt%) as the continuous phase. The dispersed phase consists of pure hexadecane or air. The EDGE tensiometer and ADT are used to measure the interfacial (surface) tension at various timescales. A comparative assessment is carried out to identify differences between protein concentrations as well as between oil-water and air-water interfaces. FINDINGS: The EDGE tensiometer can measure at timescales down to a few milliseconds and up to around 10 s, while the ADT provides dynamic interfacial tension values after at least one second from droplet injection and typically is used to also cover hours. The interfacial tension values measured with both techniques exhibit overlap, implying that the techniques provide consistent and complementary information. Unlike the ADT, the EDGE tensiometer distinguishes differences in protein adsorption dynamics at protein concentrations as high as 10 wt% (which is the highest concentration tested) at both oil-water and air-water interfaces.

6.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961829

ABSTRACT

During the application of Whey proteins (WPs), they often have complex interactions with saccharides (Ss), another important biopolymer in food substrate. The texture and sensory qualities of foods containing WPs and Ss are largely influenced by the interactions of WPs-Ss. Moreover, the combination of WPs and Ss is possible to produce many excellent functional properties including emulsifying properties and thermal stability. However, the interactions between WPs-Ss are complex and susceptible to some processing conditions. In addition, with different interaction ways, they can be applied in different fields. Therefore, the non-covalent interaction mechanisms between WPs-Ss are firstly summarized in detail, including electrostatic interaction, hydrogen bond, hydrophobic interaction, van der Waals force. Furthermore, the existence modes of WPs-Ss are introduced, including complex coacervates, soluble complexes, segregation, and co-solubility. The covalent interactions of WPs-Ss in food applications are often formed by Maillard reaction (dry or wet heat reaction) and occasionally through enzyme induction. Then, two common influencing factors, pH and temperature, on non-covalent/covalent bonds are introduced. Finally, the applications of WPs-Ss complexes and conjugations in improving WP stability, delivery system, and emulsification are described. This review can improve our understanding of the interactions between WPs-Ss and further promote their wider application.

7.
Front Nutr ; 11: 1418120, 2024.
Article in English | MEDLINE | ID: mdl-38887503

ABSTRACT

Composite natural emulsifiers such as whey protein isolate (WPI) and chitosan (CS) are commonly used in Pickering emulsions to address the effect of thermal deformation of proteins before complexation with CS and heating after complexation. In this study, the properties of WPI and CS composites were investigated by complexing CS with either unmodified WPI or thermally denatured WPI (DWPI). Three types of composite particles were prepared, WPI-CS, DWPI-CS, and D(WPI-CS). Atomic force microscopy revealed that the composite particles formed larger aggregates with increased contour size and surface roughness compared to CS and WPI, whereas the interfacial tension decreased, indicating improved emulsifying abilities. Fourier-transform infrared analysis revealed differences in the hydrogen bonds between CS and WPI/DWPI. All three composite particles formed stable emulsions with droplet sizes of 20.00 ± 0.15, 27.80 ± 0.35, and 16.77 ± 0.51 µm, respectively. Thermal stability experiments revealed that the curcumin emulsion stabilized with WPI-CS and DWPI-CS exhibited relatively better thermal stability than that stabilized with D(WPI-CS). In vitro experiments results indicated that the bioaccessibility of the curcumin emulsion stabilized with WPI-CS was 61.18 ± 0.16%, significantly higher than that of the emulsions prepared with the other two composite particles (p < 0.05). This study will enable the customized design of WPI composite-based Pickering emulsions for application in the food and nutrition industries.

8.
J Biotechnol ; 392: 1-10, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897291

ABSTRACT

The widespread adoption of Poly(3-hydroxybutyrate) (PHB) encounters challenges due to its higher production costs compared to conventional plastics. To overcome this obstacle, this study investigates the use of low-cost raw materials and optimized production methods. Specifically, food processing byproducts such as corn germ and corn bran were utilized as solid substrates through solid-state fermentation, enriched with molasses and cheese whey. Employing the One Factor at a Time technique, we examined the effects of substrate composition, temperature, initial substrate moisture, molasses, and cheese whey on PHB production at the flask scale. Subsequently, experiments were conducted at the bioreactor scale to evaluate the influence of aeration. In flask-scale experiments, the highest PHB yield, reaching 4.1 (g/kg Initial Dry Weight Substrate) (IDWS) after 72 hours, was achieved using a substrate comprising a 1:1 mass ratio of corn germ to corn bran supplemented with 20 % (v/w) cheese whey. Furthermore, PHB production in a 0.5-L packed-bed bioreactor yielded a maximum of 8.4 (g/kg IDWS), indicating a more than 100 % increase in yield after 72 hours, with optimal results achieved at an aeration rate of 0.5 l/(kg IDWS. h).

9.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892006

ABSTRACT

There is increasing evidence about the role of inflammation in sarcopenia and tumor progression; thus, its modulation would represent a valuable strategy for improving clinical outcomes in patients with cancer. Several studies have reported that whey protein has significant anti-inflammatory and antioxidant characteristics in humans. We aimed to evaluate the effects of whey protein-based oral nutritional support on circulating cytokines in patients with solid tumors undergoing systemic treatment. Forty-six patients with solid tumors of different origin and undergoing systemic treatment were evaluated. Nutritional support with two daily whey protein-based oral supplements was administered. Circulating levels of IL-6, IL-8, IL-10, MCP-1 and IP-10 were determined. Nutritional evaluation included anthropometric, instrumental and biochemical parameters. Over 63% of the evaluated patients underwent surgery, 56.5% required chemotherapy and almost 50% received combined treatment. Patients with resected primary tumor presented with lower baseline IL-6 (p < 0.05) and IP-10 (p < 0.001); after three months of nutritional support, they presented with lower IL-8 (p < 0.05) and tended to present lower IL-6 and IP-10 (p = 0.053 and 0.067, respectively). Significant positive correlations between circulating cytokines, C-reactive protein and ferritin were observed; similarly, negative correlations with anthropometric and biochemical nutritional parameters were noticed (p < 0.05). We did not observe significant changes in circulating cytokine levels (IL-6, IL-8, IL-10, MCP-1 and IP-10) in patients with cancer undergoing systemic treatment after three months of nutritional support with whey protein-based oral supplements. According to a univariate analysis in our cohort, circulating IL-8 was associated with mortality in these patients, additionally, MCP-1 and IP-10 tended to correlate; but an age- and sex-adjusted multivariate analysis revealed that only baseline MCP-1 was significantly associated with mortality (OR 1.03 (95% CI: 1.00-1.05)). In conclusion, surgery of the primary solid tumor and combination treatment allow significant reduction in circulating cytokine levels, which remained stable while patients received nutritional support with whey protein-based oral supplements over three months. The role of MCP-1 as an independent factor for mortality in these patients should be further evaluated.


Subject(s)
Cytokines , Inflammation , Neoplasms , Nutritional Support , Whey Proteins , Humans , Female , Male , Middle Aged , Aged , Inflammation/blood , Nutritional Support/methods , Cytokines/blood , Adult , Dietary Supplements , Chemokine CCL2/blood
10.
Nutrients ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892645

ABSTRACT

The current state of the literature lacks a clear characterization of gastrointestinal (GI) symptoms, gut microbiota composition, and general physical and mental wellbeing in well-trained athletes. Therefore, this study aimed to characterize differences in self-reported symptoms, gut microbiota composition, and wellbeing (i.e., sleep quality, mood, and physical (PHQ) and mental wellbeing) between athletes with and without GI symptoms. In addition, we assessed the potential impact of a 3-week multi-ingredient fermented whey supplement in the GI complaints group, without a control group, on the gut microbiota and self-reported GI symptoms and wellbeing. A total of 50 athletes (24.7 ± 4.5 years) with GI issues (GI group at baseline, GI-B) and 21 athletes (25.4 ± 5.3 years) without GI issues (non-GI group, NGI) were included. At baseline, there was a significant difference in the total gastrointestinal symptom rating scale (GSRS) score (24.1 ± 8.48 vs. 30.3 ± 8.82, p = 0.008) and a trend difference in PHQ (33.9 ± 10.7 vs. 30.3 ± 8.82, p = 0.081), but no differences (p > 0.05) were seen for other outcomes, including gut microbiota metrics, between groups. After 3-week supplementation, the GI group (GI-S) showed increased Bifidobacterium relative abundance (p < 0.05), reported a lower number of severe GI complaints (from 72% to 54%, p < 0.001), and PHQ declined (p = 0.010). In conclusion, well-trained athletes with GI complaints reported more severe GI symptoms than an athletic reference group, without showing clear differences in wellbeing or microbiota composition. Future controlled research should further investigate the impact of such multi-ingredient supplements on GI complaints and the associated changes in gut health-related markers.


Subject(s)
Athletes , Dietary Supplements , Gastrointestinal Diseases , Gastrointestinal Microbiome , Mental Health , Self Report , Humans , Athletes/psychology , Male , Gastrointestinal Diseases/microbiology , Female , Adult , Young Adult , Whey Proteins/administration & dosage
11.
SAGE Open Med Case Rep ; 12: 2050313X241260229, 2024.
Article in English | MEDLINE | ID: mdl-38859872

ABSTRACT

Whey protein and other protein-fortified supplements are frequently consumed as nutritional supplements to aid in muscle hypertrophy and myogenesis. This case presents a 36-year-old athletic male with elevated creatinine and uric acid levels during routine laboratory evaluation. The patient had no history of kidney disease, diabetes, or hypertension. It was revealed that the patient had been regularly consuming whey protein as a dietary supplement for 2 months. Given the potential association between the elevated creatinine and uric acid levels and the use of whey protein, the patient was advised to discontinue the supplement. The patient then switched to protein-fortified milk to mitigate the possible harmful connection between the dietary intake and the laboratory findings. However, despite the dietary change, the increased levels of creatinine and uric acid persisted. This observation suggests that the elevated levels may be attributed to chronic whey protein consumption along with high-protein dietary consumption.

12.
Food Sci Nutr ; 12(6): 4211-4222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873444

ABSTRACT

The study focused on the impact of the insoluble fraction of Persian gum-sodium alginate and a blend of the insoluble fraction of Persian gum-sodium alginate (IFPG-Al) with whey protein isolate (WPI) on sprayed Ziziphus jujuba extract (JE) powder. The addition of whey protein led to powders with higher moisture (10%), higher solubility (99.19%), and lower powder yield (27.82%). The powders fabricated with WPI depicted the best protection of polyphenolic compounds (3933.4 mg/L) and the highest encapsulation efficiency activity (74.84%). Additionally, they had a higher T g (62.63°C), which indicates more stability of the powders during shelf life. The sphericity of the majority of the particles was noticeable in powders, but multi-sided concavities were visible in the protein-containing particles. Based on the particle size's results, IFPG-Al/WPI capsules fabricated relatively smaller particles (2.54 µm). It can be acknowledged that the presence of protein in particles can bring fruitful results by preserving valuable bioactive compounds.

13.
Biomed Mater ; 19(4)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38857605

ABSTRACT

Chronic skin wounds pose a global clinical challenge, necessitating effective treatment strategies. This study explores the potential of 3D printed Poly Lactic Acid (PLA) scaffolds, enhanced with Whey Protein Concentrate (WPC) at varying concentrations (25, 35, and 50% wt), for wound healing applications. PLA's biocompatibility, biodegradability, and thermal stability make it an ideal material for medical applications. The addition of WPC aims to mimic the skin's extracellular matrix and enhance the bioactivity of the PLA scaffolds. Fourier Transform Infrared Spectroscopy results confirmed the successful loading of WPC into the 3D printed PLA-based scaffolds. Scanning Electron Microscopy (SEM) images revealed no significant differences in pore size between PLA/WPC scaffolds and pure PLA scaffolds. Mechanical strength tests showed similar tensile strength between pure PLA and PLA with 50% WPC scaffolds. However, scaffolds with lower WPC concentrations displayed reduced tensile strength. Notably, all PLA/WPC scaffolds exhibited increased strain at break compared to pure PLA. Swelling capacity was highest in PLA with 25% WPC, approximately 130% higher than pure PLA. Scaffolds with higher WPC concentrations also showed increased swelling and degradation rates. Drug release was found to be prolonged with increasing WPC concentration. After seven days of incubation, cell viability significantly increased in PLA with 50% WPC scaffolds compared to pure PLA scaffolds. This innovative approach could pave the way for personalized wound care strategies, offering tailored treatments and targeted drug delivery. However, further studies are needed to optimize the properties of these scaffolds and validate their effectiveness in clinical settings.


Subject(s)
Bandages , Biocompatible Materials , Polyesters , Printing, Three-Dimensional , Tensile Strength , Tissue Scaffolds , Whey Proteins , Wound Healing , Whey Proteins/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Humans , Biocompatible Materials/chemistry , Materials Testing , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Cell Survival/drug effects , Porosity , Drug Liberation , Skin/metabolism
14.
Food Chem ; 456: 139934, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38852452

ABSTRACT

Gelatin (GEL), pectin (PEC), carboxymethyl cellulose (CMC), and whey protein isolate (WPI) were employed to formulate hydrogels for stabilizing N-Acetylneuraminic Acid (NeuAc). GEL/WPI-NeuAc hydrogels, irrespective of the ratio, exhibited a flexible and smooth surface with a continuous three-dimensional network structure internally. Porosity of the three types of hydrogels increased from 3.69% to 86.92% (GEL/WPI), 41.67% (PEC/WPI), and 87.62% (CMC/WPI), rendering them suitable as carriers for NeuAc encapsulation. The dynamic swelling behavior of all hydrogels followed Schott's second-order kinetics model. The degradation performance of GEL, PEC, and CMC/WPI-NeuAc hydrogels was optimal at a 5: 5 ratio, with degradation rates of 80.39 ± 1.26%, 82.38 ± 1.96%, and 81.39 ± 1.57%, respectively. GEL, PEC, CMC/WPI-NeuAc hydrogels demonstrated decreased release rates of 44.56%, 31.04%, and 41.26%, respectively, compared to free NeuAc, post gastric digestion. The present investigation suggests the potential of GEL/WPI hydrogels as effective carriers for delivering NeuAc encapsulation.

15.
Food Chem ; 456: 139954, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38852459

ABSTRACT

Malondialdehyde (MDA) can induce lipoxidation in whey protein isolate (WPI). The physicochemical changes in this reaction with or without the presence of a phenolic compound epicatechin (EC) were characterized in this study. Results suggested the content of MDA was significantly reduced during co-incubation of MDA and EC. The addition of EC dose-dependently alleviated MDA-induced protein carbonylation, Schiff base formation and loss of tryptophan fluorescence. The interruption of MDA-binding to WPI was directly visualized by immunoblotting analysis. Observation of the surface microstructure of WPI showed that MDA-induced protein aggregation was partially restored by EC. Meanwhile, EC was found to promote loss of both protein sulfhydryls and surface hydrophobicity due to possible phenol-protein interactions. These observations suggested the potential of EC in the relief of MDA-mediated protein lipoxidation.

16.
Sci Rep ; 14(1): 12682, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
17.
Food Res Int ; 188: 114485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823871

ABSTRACT

Whey protein isolate (WPI) is mainly composed of ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > ß-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.


Subject(s)
Antioxidants , Lactalbumin , Lactoglobulins , Oxidation-Reduction , Resveratrol , Serum Albumin, Bovine , Whey Proteins , Resveratrol/chemistry , Resveratrol/pharmacology , Whey Proteins/chemistry , Lactalbumin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Lactoglobulins/chemistry , Serum Albumin, Bovine/chemistry , Circular Dichroism
18.
Int J Biol Macromol ; 274(Pt 1): 133291, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908625

ABSTRACT

Understanding how shear affects whey protein stability is crucial to deal with typical industrial issues occurring at the bulk solution/surface interface, such as fouling during heat treatments. However, at the state of the art, this effect remains unclear, contrary to that of temperature. This article presents a novel strategy to study the impact of shear rate and concentration on the accumulation of whey protein surficial deposits. It consists in applying a range of shear rates (0-200 s-1) at controlled temperature (65 °C) on whey protein solutions (5-10 wt%) by a parallel plate rheometer equipped with a glass disc, thus allowing the off-line characterization of the deposits by microscopy. Our results highlight an unequivocal effect of increasing shear stress. At 5 wt%, it fosters the formation of primary deposits (≈ 10 µm), whereas at 10 wt% it results in the development of complex branched structures (≈ 50 µm) especially for shear rates ranging from 140 s-1 to 200 s-1. Based on the classification by size of the observed populations, we discuss possible hypotheses for the deposit growth kinetics, involving the interplay of different physico-chemical protein-surface interactions and paving the way to future further investigations.

19.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928797

ABSTRACT

In the current study, fermented whey-based beverage models with different levels of blackcurrant juice (0; 10; 20; 100% (w/w)) and furcellaran (0.25% and 0.50% (w/w)) were produced and evaluated. Physicochemical, rheological, mechanical vibration damping, and sensory analyses were performed. During fermentation (48 h), the values of pH, density, and total soluble solids decreased. On the other hand, the ethanol content during fermentation increased up to a final content in the range of 0.92-4.86% (v/v). The addition of furcellaran was effective in terms of sediment content decrease to a level of 0.25% (w/w). In general, the samples exhibited non-Newtonian pseudoplastic behaviour. The sensory analysis revealed that the sample with a composition of 20% (w/w) blackcurrant juice and 0.50% (w/w) furcellaran received the highest score.

20.
Foods ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928833

ABSTRACT

The present work examined the production of single-cell protein (SCP) by a newly isolated strain of Kluyveromyces marxianus EXF-5288 under increased lactose concentration of deproteinized cheese whey (DCW) and different temperatures (in °C: 20.0, 25.0, 30.0 and 35.0). To the best of the authors' knowledge, this is the first report examining the ability of Kluyveromyces marxianus species to produce SCP at T = 20.0 °C. Different culture temperatures led to significant differences in the strain's growth, while maximum biomass and SCP production (14.24 ± 0.70 and 6.14 ± 0.66 g/L, respectively) were observed in the cultivation of K. marxianus strain EXF-5288 in shake-flask cultures at T = 20.0 °C. Increased DCW lactose concentrations (35.0-100.0 g/L) led to increased ethanol production (Ethmax = 35.5 ± 0.2 g/L), suggesting that K. marxianus strain EXF-5288 is "Crabtree-positive". Batch-bioreactor trials shifted the strain's metabolism to alcoholic fermentation, favoring ethanol production. Surprisingly, K. marxianus strain EXF-5288 was able to catabolize the produced ethanol under limited carbon presence in the medium. The dominant amino acids in SCP were glutamate (15.5 mg/g), aspartic acid (12.0 mg/g) and valine (9.5 mg/g), representing a balanced nutritional profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...