Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 545
Filter
1.
Bioengineered ; 15(1): 2396642, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39219315

ABSTRACT

Fiberbanks refer to a type of fibrous sediment originated by the forestry and wood pulping industry in Sweden. These anthropogenic sediments are significantly contaminated with potentially toxic elements, and a diverse array of organic pollutants. Additionally, these sediments are of environmental concern due to their potential role in greenhouse gas emissions. Given the environmental risks posed by these sediments, the development of effective remediation strategies is of critical importance. However, no specialized methods have been established yet for the cleanup of this specific type of contaminated sediments. To identify effective fungal species for the mycoremediation of the fiberbank substrate, we performed a detailed screening experiment. In this research, we primarily aimed at assessing both the growth capacity and the proficiency in degrading organic pollutants of 26 native white-rot fungi (WRF) species. These species were sourced from natural forest environments in northern Sweden. The experimental setup involved evaluating the WRF on plates containing fiberbank material with a central Hagem-agar disc to closely monitor the interaction of these species with fiberbank substrates. Among the fungi tested, Laetiporus sulphureus exhibited the highest growth area percentage at 72%, followed by Hymenochaete tabacina at 68% and Diplomitoporus crustulinus at 67%. For the removal of 2-3 ring polycyclic aromatic hydrocarbons (PAHs), Phellinus punctatus led with 68%, with Cystostereum muraii at 57% and Diplomitoporus crustulinus at 49%. Regarding the removal percentage of 4-6 ring PAHs, Diplomitoporus crustulinus showed the highest efficiency at 44%, followed by Phlebia tremellosa at 40% and Phlebiopsis gigantea at 28%.


Subject(s)
Biodegradation, Environmental , Sweden , Geologic Sediments/microbiology , Geologic Sediments/chemistry
2.
Mycoscience ; 65(2): 86-91, 2024.
Article in English | MEDLINE | ID: mdl-39234516

ABSTRACT

We investigated factors affecting the community composition of lignicolous myxomycetes in dead wood with white and brown rot through summer and autumn surveys in a subalpine forest in Central Japan. In both seasons, wood had decayed to a softer state under brown rot than under white rot. The pH of wood with white rot was nearly neutral, while wood with brown rot was weakly acidic. Wood pH was lower in summer than in autumn. Forty-two myxomycetes taxa in 19 genera were identified in 302 fruiting-body colonies; white rot yielded 31 taxa and brown rot 24 taxa. Species diversity was higher on wood with white rot than on wood with brown rot. The effect of wood hardness on species composition depended on season. Several species exhibited a preference for one of the rot types. The substrate conditions associated with brown rot limit myxomycetes species diversity.

3.
NanoImpact ; 36: 100528, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39226949

ABSTRACT

Vanadium dioxide (VO2) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO2. In this study, we investigated the impact of two commercial VO2 particles, nanosized S-VO2 and micro-sized M-VO2 on the white rot fungus Phanerochaete chrysosporium. The growth of P. chrysosporium is significantly affected by VO2 particles, with S-VO2 displaying a higher inhibitory effect on weight gain. In addition, VO2 at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 µg/mL, S-VO2 completely alters the morphology of P. chrysosporium, while the M-VO2 treatment does not affect the mycelium formation of P. chrysosporium. Additionally, VO2 particles inhibit the laccase activity secreted by P. chrysosporium, and thus prevent the dye decoloration and sawdust decomposition by P. chrysosporium. The mechanism underlying this toxicity is related to the dissolution of VO2 and the oxidative stress induced by VO2. Overall, our findings suggest that VO2 nanoparticles pose significant environmental hazards and risks to white rot fungi.

4.
Chemosphere ; 364: 143265, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236927

ABSTRACT

Loxoprofen has been widely used as a non-steroidal anti-inflammatory drug globally and it can also persist in the environment. Although it is known to be a non-toxic drug, its presence may still pose a potential risk to organisms in the environment. Here, the hyper lignin-degrading fungus Phanerochaete sordida YK-624 was used to study the degradation of loxoprofen. This fungus showed excellent loxoprofen biodegradation ability with 90.4% and 93.4% after one day of incubation at lower concentrations of 0.01 and 0.005 mM, respectively. And at a higher concentration of 0.1 mM, a significant removal of 94.2% was also observed after 10 days of incubation. In this study, four metabolites were isolated and determined by HR-ESI-MS and NMR. Furthermore, LC/MS analysis suggested the presence of intermediate hydroxy loxoprofen. In addition, loxoprofen-OH was also identified as a metabolite of loxoprofen through comparison with the synthesized compounds. In this metabolism of loxoprofen, cytochrome P450 may play a significant role. Interestingly, P. sordida YK-624 showed enantioselectivity in the degradation process of loxoprofen. By these results, three degradation pathways of loxoprofen by P. sordida YK-624 were hypothesized. To the best of our knowledge, this is the first report describing the potential degradation mechanisms of loxoprofen by a white-rot fungus.

5.
Chemosphere ; 363: 142982, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089338

ABSTRACT

The shift towards a circular economy, where waste generation is minimized through waste re-use and the development of valorization strategies, is crucial for the establishment of a low carbon, sustainable, and resource-efficient economy. However, there is a lack of strategies for re-using and valorizing specific types of waste, particularly those containing naturally occurring radioactive materials (NORM), despite the prevalence of industrial activities that produce such waste due to their chemical and radiological hazards. Living organisms, including fungi, are valuable sources of bioactive compounds with various industrial applications. In this study, we assessed the growth and metabolic profile changes of three white rot fungi species in response to low concentrations of a uranium mine effluent containing NORM and metals to explore their potential for producing biotechnologically relevant bioactive compounds. The growth rate was assessed in three different culture media, with and without the uranium mine effluent (1% V/V)), and the metabolic profile was analyzed using FTIR-ATR spectroscopy. Results suggested an improvement in growth rates in media containing the uranium mine effluent, although not statistically significant. T. versicolor showed promise in terms of bioactive compound production. The production of droplets during growth experiments and significant metabolic changes, associated with the production of bioactive compounds like laccase, melanin, and oxalic acid, were observed in T. versicolor grown in mYEPDA with the uranium mine effluent. These findings present new research opportunities for utilizing waste to enhance the biotechnological production of industrially relevant bioactive compounds and promote the development of circular economy strategies for re-using and valorizing NORM-containing waste.


Subject(s)
Industrial Waste , Mining , Uranium , Uranium/metabolism , Biodegradation, Environmental , Laccase/metabolism
6.
Heliyon ; 10(15): e35496, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170105

ABSTRACT

Xylanases (EC 3.2.1.8) catalyze the breakdown of xylan, which is the second most abundant polysaccharide in plant cell walls. Biological catalysts have gained greater global attention than chemical catalysts in different industrial processes because they are highly selective, easy to control and have a negligible environmental impact. The aim of this study was to investigate the xylanolytic potential of white-rot fungi, optimize their physicochemical conditions and characterize the resulting xylanase. Sixty-eight white-rot fungus (WRF) isolates were screened for their xylanolytic potential and growth conditions for maximal xylanase production using cheap agricultural residue (wheat straw) as the sole carbon source. Five WRF isolates with high xylanase yields (73.63 ± 0.0283-63.6 ± 0.01247 U/ml) were selected by qualitative and quantitative screening methods. The optimum xylanase production occurred at pH 5.0 and 28 °C. Solid-state fermentation (SSF) yielded a high amount of xylanase. The highest xylanase activity (80.9-61.274 U/mL) was recorded in the pH range of 5.0-6.5 and at 50 °C. The metal ions Mg2+, Ca2+ and Mn2+ enhanced the activity of xylanase (127.28-110.06 %), while Cu2+, Fe2+ and K+ inhibited the activity with 43.4-17 % losses. The km and Vmax were 0.32-0.545 mg/mL and 86.95-113.63 µmol/min/mg, respectively. This finding indicates that wheat straw can be used for large-scale xylanase production under SSF conditions. The pH and temperature profiles and stabilities indicate that the xylanase produced in the present study can be applied in food and animal feed industries.

7.
Foods ; 13(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063283

ABSTRACT

Our study employed Pleurotus ostreatus, P. djamor, and Trametes versicolor (white rot fungi = WRF) in the process of solid-state fermentation (SSF) to convert sorghum grains into myceliated sorghum (MS). The MS was then used for in vitro studies to assess changes in nutrient content compared to untreated sorghum (control). The results demonstrated a significant (p < 0.001) increase in dry matter (DM), crude protein (CP), ash, neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents of MS. Specifically, CP and ash values saw a remarkable increase from 68 to 330% and 40 to 190% in MS, respectively. Additionally, NDF and ADF degradability values increased significantly (p < 0.001) by 81.5% and 56.2% in P. djamor-treated MS at 24 h post-incubation. The treatment × time interaction was also significant (p < 0.001) for greenhouse gas (GHG) emissions. T. versicolor MS exhibited the highest total volatile fatty acid (TVFA) and propionate production. The use of WRF in the SSF process led to a significant improvement in the nutritional value of sorghum. Despite the varying effects of different WRF on the nutritional parameters in MS, they show potential for enhancing the feed value of sorghum in animal feed.

8.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963450

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Citric Acid , Soil Pollutants , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Citric Acid/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Laccase/metabolism , Soil Microbiology , Polyporaceae/metabolism , Trametes/metabolism , Biomass
9.
Bioresour Technol ; 407: 131108, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009046

ABSTRACT

The prolonged period of low temperatures in northern China poses a significant challenge to the bioremediation of antibiotic pollution. This study reports that a white-rot fungus Bjerkandera adusta DH0817, isolated from a poultry farm in Liaoning Province, can remove 60 % of SDZ within 20 days at 10°C and reduce the biotoxicity of SDZ. Six degradation pathways were proposed. SDZ biodegradation was primarily driven by cytochrome P450. Transcriptome analysis revealed that DH0817 upregulated genes associated with cell membrane, transcription factors and soluble sugars in response to low temperatures. Subsequently, genes associated with fatty acid, proteins and enzymes were upregulated to remove SDZ at low temperatures. This study provides valuable microbial resources and serves as a theoretical reference for addressing antibiotic pollution in livestock and poultry farms under low temperature conditions.


Subject(s)
Biodegradation, Environmental , Cold Temperature , Coriolaceae/metabolism , Coriolaceae/genetics , Adaptation, Physiological , Animals
10.
EFSA J ; 22(7): e8890, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984216

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Coniella castaneicola (Ellis & Everh) Sutton, following commodity risk assessments of Acer campestre, A. palmatum, A. platanoides, A. pseudoplatanus, Quercus petraea and Q. robur plants from the UK, in which C. castaneicola was identified as a pest of possible concern to the EU. When first described, Coniella castaneicola was a clearly defined fungus of the family Schizoparmaceae, but due to lack of a curated type-derived DNA sequence, current identification based only on DNA sequence is uncertain and taxa previously reported to be this fungus based on molecular identification must be confirmed. The uncertainty on the reported identification of this species translates into uncertainty on all the sections of this categorisation. The fungus has been reported on several plant species associated with leaf spots, leaf blights and fruit rots, and as an endophyte in asymptomatic plants. The species is reported from North and South America, Africa, Asia, non-EU Europe and Oceania. Coniella castaneicola is not known to occur in the EU. However, there is a key uncertainty on its presence and geographical distribution worldwide and in the EU due to its endophytic nature, the lack of systematic surveys and possible misidentifications. Coniella castaneicola is not included in Commission Implementing Regulation (EU) 2019/2072 and there are no interceptions in the EU. Plants for planting, fresh fruits and soil and other growing media associated with infected plant debris are the main pathways for its entry into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the fungus. Based on the scarce information available, the introduction and spread of C. castaneicola in the EU is not expected to cause substantial impacts, with a key uncertainty. Phytosanitary measures are available to prevent its introduction and spread in the EU. Because of lack of documented impacts, Coniella castaneicola does not satisfy all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.

11.
J Fungi (Basel) ; 10(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921357

ABSTRACT

The genome of Trametes versicolor encodes multiple laccase isozymes, the expression of which is responsive to various conditions. Here, we set out to investigate the potential of orange peel extract as an inducer of laccase production in this white-rot fungus, in comparison to the previously identified inducing chemical compound, veratryl alcohol. For four geographically distinct T. versicolor strains, a positive correlation has been observed between their oxidative activity and incubation time in liquid cultures. The addition of 20% orange peel extract or 5 mM veratryl alcohol caused a rapid increase in the oxidative potential of T. versicolor M99 after 24 h, with a more pronounced effect observed for the orange peel extract. To elucidate the underlying molecular mechanisms of the induced laccase activity, a transcriptional gene expression analysis was performed for the seven individual laccase genes in T. versicolor, revealing the upregulation of several laccase genes in response to the addition of each inducer. Notably, the gene encoding TvLac5 demonstrated a substantial upregulation in response to the addition of 20% orange peel extract, likely contributing to the observed increase in its oxidative potential. In conclusion, our results demonstrate that orange peels are a promising agro-industrial side stream for implementation as inducing agents in large-scale laccase production with T. versicolor.

12.
J Fungi (Basel) ; 10(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38921384

ABSTRACT

Grapevine (Vitis vinifera) is one of the major economic fruit crops but suffers many diseases, causing damage to the quality of grapes. Strain G166 was isolated from the rhizosphere of grapevine and was found to exhibited broad-spectrum antagonistic activities against fungal pathogens on grapes in vitro, such as Coniella diplodiella, Botrytis cinerea, and Colletotrichum gloeosporioides. Whole-genome sequencing revealed that G166 contained a 6,613,582 bp circular chromosome with 5749 predicted coding DNA sequences and an average GC content of 60.57%. TYGS analysis revealed that G166 belongs to Pseudomonas viciae. Phenotype analysis indicated that P. viciae G166 remarkably reduced the severity of grape white rot disease in the grapevine. After inoculation with C. diplodiella, more H2O2 and MDA accumulated in the leaves and resulted in decreases in the Pn and chlorophyll content. Conversely, G166-treated grapevine displayed less oxidative damage with lower H2O2 levels and MDA contents under the pathogen treatments. Subsequently, G166-treated grapevine could sustain a normal Pn and chlorophyll content. Moreover, the application of P. viciae G166 inhibited the growth of mycelia on detached leaves and berries, while more disease symptoms occurred in non-bacterized leaves and berries. Therefore, P. viciae G166 served as a powerful bioagent against grape white rot disease. Using antiSMASH prediction and genome comparisons, a relationship between non-ribosomal peptide synthase clusters and antifungal activity was found in the genome of P. viciae G166. Taken together, P. viciae G166 shows promising antifungal potential to improve fruit quality and yield in ecological agriculture.

13.
Sci Rep ; 14(1): 14414, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909163

ABSTRACT

Use of brown seaweed (Ecklonia maxima) as a nutraceutical source in indigenous chicken diets is limited by high dietary fibre levels. Inoculating seaweeds with oyster mushroom (Pleurotus ostreatus) spawn (OMS) could enhance the utility of the spent mushroom substrate (SMS). This study investigated the effect of feeding incremental levels of brown seaweed SMS on growth performance, physiological responses, and meat quality parameters in Boschveld roosters. A total of 324, 4-week-old Boschveld roosters were weighed and randomly allotted to 36 pens (9 birds per pen) to produce six replicates per dietary treatment. The diets were formulated as follows: a standard grower diet (CON); and CON containing 150 g/kg of brown seaweed inoculated with OMS at 0 (SMS0), 20 (SMS20), 30 (SMS30), 40 (SMS40) and 50% (SMS50). Birds fed diet CON had the least feed intake (p < 0.05) than all the other SMS treatment levels in weeks 7, 8, 12, 14 and 15. Diet SMS40 promoted higher (p < 0.05) body weight gain (BWG) than CON in weeks 6, 7, 9 and 14. Gain-to-feed ratio linearly increased in weeks 7 [R2 = 0.288; p = 0.010], 11 [R2 = 0.581, p = 0.0001] and 14 [R2 = 0.389, p = 0.004], respectively. Quadratic responses (p < 0.05) were observed for BWG in week 5, white blood cells, heterophils, platelets, lymphocytes, monocytes, and relative spleen and large intestine weights as OMS levels increased. Linear increases were recorded for slaughter [R2 = 0.197, p = 0.017] and breast weights [R2 = 0.197, p = 0.020] as OMS levels increased. Diet SMS0 promoted higher (p < 0.05) relative caeca weights than the CON and SMS treatment groups. Neither quadratic nor linear responses (p > 0.05) were observed for breast meat quality parameters. In conclusion, feeding brown seaweed SMS improved growth performance and slaughter weight, altered some blood parameters and internal organs, without affecting breast meat quality of Boschveld roosters. Based on the quadratic response for BWG, the optimum OMS level was deduced at 20% in a brown seaweed-based Boschveld rooster diet.


Subject(s)
Animal Feed , Chickens , Meat , Seaweed , Animals , Chickens/growth & development , Meat/analysis , Animal Feed/analysis , Diet/veterinary , Pleurotus/growth & development , Male , Dietary Supplements , Animal Nutritional Physiological Phenomena
14.
Microb Cell Fact ; 23(1): 167, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849849

ABSTRACT

BACKGROUND: White-rot fungi are known to naturally produce high quantities of laccase, which exhibit commendable stability and catalytic efficiency. However, their laccase production does not meet the demands for industrial-scale applications. To address this limitation, it is crucial to optimize the conditions for laccase production. However, the regulatory mechanisms underlying different conditions remain unclear. This knowledge gap hinders the cost-effective application of laccases. RESULTS: In this study, we utilized transcriptomic and metabolomic data to investigate a promising laccase producer, Cerrena unicolor 87613, cultivated with fructose as the carbon source. Our comprehensive analysis of differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) aimed to identify changes in cellular processes that could affect laccase production. As a result, we discovered a complex metabolic network primarily involving carbon metabolism and amino acid metabolism, which exhibited contrasting changes between transcription and metabolic patterns. Within this network, we identified five biomarkers, including succinate, serine, methionine, glutamate and reduced glutathione, that played crucial roles in co-determining laccase production levels. CONCLUSIONS: Our study proposed a complex metabolic network and identified key biomarkers that determine the production level of laccase in the commercially promising Cerrena unicolor 87613. These findings not only shed light on the regulatory mechanisms of carbon sources in laccase production, but also provide a theoretical foundation for enhancing laccase production through strategic reprogramming of metabolic pathways, especially related to the citrate cycle and specific amino acid metabolism.


Subject(s)
Laccase , Metabolic Networks and Pathways , Laccase/metabolism , Laccase/genetics , Biomarkers/metabolism , Carbon/metabolism , Gene Expression Regulation, Fungal , Transcriptome , Polyporaceae/enzymology , Polyporaceae/genetics , Polyporaceae/metabolism , Fructose/metabolism , Metabolomics , Fungal Proteins/metabolism , Fungal Proteins/genetics
15.
Bioresour Technol ; 406: 131037, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925407

ABSTRACT

White rot fungi are promising organisms for the production of mycelial-based biofoams, providing a sustainable means of valorizing lignocellulosic wastes. This study explores the utilization of two indigenous fungal species, isolated from Argentina and belonging to the genera Trametes, for producing biofoams from brewery waste. The resulting biofoams exhibited an average density of 0.30 g cm-3, a Young's modulus of approximately 1 MPa, and a compressive stress of around 19 MPa. Additionally, the variation of laccase activity throughout the biofoam production process was evaluated. Surprisingly, residual laccase activity was detected in the biofoams following oven drying at temperatures of 60, 80, and 100 °C. This detection highlights the untapped enzymatic potential of the biofoams and positions them as promising green catalysts for various biotechnological applications.


Subject(s)
Beer , Cellulose , Laccase , Cellulose/chemistry , Cellulose/metabolism , Laccase/metabolism , Beer/microbiology , Trametes/enzymology , Biotechnology/methods , Temperature
16.
Appl Environ Microbiol ; 90(7): e0054524, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38899887

ABSTRACT

White-rot fungi differentially express laccases when they encounter aromatic compounds. However, the underlying mechanisms are still being explored. Here, proteomics analysis revealed that in addition to increased laccase activity, proteins involved in sphingolipid metabolism and toluene degradation as well as some cytochrome P450s (CYP450s) were differentially expressed and significantly enriched during 48 h of o-toluidine exposure, in Trametes hirsuta AH28-2. Two Zn2Cys6-type transcription factors (TFs), TH8421 and TH4300, were upregulated. Bioinformatics docking and isothermal titration calorimetry assays showed that each of them could bind directly to o-toluidine and another aromatic monomer, guaiacol. Binding to aromatic compounds promoted the formation of TH8421/TH4300 heterodimers. TH8421 and TH4300 silencing in T. hirsuta AH28-2 led to decreased transcriptional levels and activities of LacA and LacB upon o-toluidine and guaiacol exposure. EMSA and ChIP-qPCR analysis further showed that TH8421 and TH4300 bound directly with the promoter regions of lacA and lacB containing CGG or CCG motifs. Furthermore, the two TFs were involved in direct and positive regulation of the transcription of some CYP450s. Together, TH8421 and TH4300, two key regulators found in T. hirsuta AH28-2, function as heterodimers to simultaneously trigger the expression of downstream laccases and intracellular enzymes. Monomeric aromatic compounds act as ligands to promote heterodimer formation and enhance the transcriptional activities of the two TFs.IMPORTANCEWhite-rot fungi differentially express laccase isoenzymes when exposed to aromatic compounds. Clarification of the molecular mechanisms underlying differential laccase expression is essential to elucidate how white-rot fungi respond to the environment. Our study shows that two Zn2Cys6-type transcription factors form heterodimers, interact with the promoters of laccase genes, and positively regulate laccase transcription in Trametes hirsuta AH28-2. Aromatic monomer addition induces faster heterodimer formation and rate of activity. These findings not only identify two new transcription factors involved in fungal laccase transcription but also deepen our understanding of the mechanisms underlying the response to aromatics exposure in white-rot fungi.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Laccase , Trametes , Transcription Factors , Laccase/genetics , Laccase/metabolism , Trametes/enzymology , Trametes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrocarbons, Aromatic/metabolism
17.
Front Microbiol ; 15: 1374974, 2024.
Article in English | MEDLINE | ID: mdl-38873140

ABSTRACT

White rot fungi possess superior infiltrability and biodegradability on lignocellulosic substrates, allowing them to form tailored microstructures which are conducive to efficient carbonization and chemical activation. The present research employed white rot fungus pretreatment as a viable approach for preparing porous carbon from Banlangen residues. The resultant F-A-BLGR-PC prepared by pretreating Banlangen residues with white rot fungi followed by carbonization and activation has a hierarchical porous structure with a high specific surface area of 898 m2 g-1, which is 43.4% greater than that of the unprocessed sample (R-BLGR-PC). When used as an electrode for supercapacitors, the F-A-BLGR-PC demonstrated a high specific capacitance of 308 F g-1 at 0.5 A g-1 in 6 M KOH electrolyte in three-electrode configuration. Moreover, the F-A-BLGR-PC based symmetric supercapacitor device achieved a superb cyclic stability with no obvious capacitance decay after 20,000 cycles at 5 A g-1 in 1 M Na2SO4 electrolyte. Additionally, the F-A-BLGR-PC sample was found to be an ideal adsorbent for removing methyl orange (MO) from water, exhibiting an adsorption ability of 173.4 mg g-1 and a maximum removal rate of 86.6%. This study offers a promising method for the preparation of a porous carbon with a high specific surface area in a biological way using white rot fungi pretreatment, and the derived carbon can not only be applied in energy storage but also in environmental remediation, catalysis, and so on.

18.
Environ Sci Pollut Res Int ; 31(25): 37245-37255, 2024 May.
Article in English | MEDLINE | ID: mdl-38767795

ABSTRACT

In mid-November 2021, there were large areas of white rot disease on cultivated Saccharina japonica in Rongcheng City, China, and diseases were undetected on Sargassum horneri and Porphyra yezoensis. The disturbance direction of bacterial community in the phycosphere after disease outbreak and the relationship with seawater nutrients remain unclear. Here, in situ studies of bacterial community in the non-diseased and diseased areas (Shawo and Dongchu islands) and seawater nutrient levels were carried out. 16S rRNA sequencing showed that the bacterial richness of the studied seaweeds increased in the diseased area. Only in S. japonica, Algitalea outcompeted abundant primary bacteria with probiotic relationships to the host of the non-diseased area, and dominated in the diseased area (17.6% of the total abundance). Nitrogen and phosphorus levels in seawater were 57.8% and 19.6% higher in the non-diseased area than those in the diseased area, respectively, and were strongly correlated with the phycosphere bacteria at the family level of S. japonica. There was no difference in potential pathogenicity between the two areas, while positive signal communications decreased, and nitrogen cycle, chemoheterotrophy, and cellulolysis increased in the diseased area compared to the non-diseased area. Overall, white rot disease caused a structural disturbance in phycosphere bacterial community of S. japonica that related to seawater nutrient levels. Enriched degraders and altered bacterial community functions may exacerbate the disease. This evaluation will provide information for white rot disease management to prevent and mitigate the occurrence of S. japonica outbreaks.


Subject(s)
Seawater , Seawater/microbiology , China , RNA, Ribosomal, 16S , Bacteria , Phosphorus , Nitrogen , Seaweed/microbiology , Nutrients , Edible Seaweeds , Laminaria
19.
Bioresour Technol ; 402: 130768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697367

ABSTRACT

The bark represents the outer protective layer of trees. It contains high concentrations of antimicrobial extractives, in addition to regular wood polymers. It represents a huge underutilized side stream in forestry, but biotechnological valorization is hampered by a lack of knowledge on microbial bark degradation. Many fungi are efficient lignocellulose degraders, and here, spruce bark degradation by five species, Dichomitus squalens, Rhodonia placenta, Penicillium crustosum, Trichoderma sp. B1, and Trichoderma reesei, was mapped, by continuously analyzing chemical changes in the bark over six months. The study reveals how fungi from different phyla degrade bark using diverse strategies, regarding both wood polymers and extractives, where toxic resin acids were degraded by Basidiomycetes but unmodified/tolerated by Ascomycetes. Proteome analyses of the white-rot D. squalens revealed several proteins, with both known and unknown functions, that were specifically upregulated during growth on bark. This knowledge can accelerate improved utilization of an abundant renewable resource.


Subject(s)
Picea , Plant Bark , Polysaccharides , Picea/microbiology , Plant Bark/chemistry , Polysaccharides/metabolism , Fungi/metabolism , Lignin/metabolism , Biodegradation, Environmental , Fungal Proteins/metabolism
20.
MycoKeys ; 105: 119-137, 2024.
Article in English | MEDLINE | ID: mdl-38752164

ABSTRACT

The genus Sidera (Hymenochaetales, Basidiomycota) comprises white-rot, mono- or dimitic fungi with poroid or hydnoid hymenophore. It has a worldwide distribution albeit with fewer species present in the Southern Hemisphere. Although recent studies revealed the existence of several new Sidera species, there are still taxonomic inconsistencies and obscure phylogenetic relationships amongst certain taxa of the genus. In this work, a large number of Sidera collections were used to obtain an updated phylogeny, based on ITS and 28S rDNA sequences by including new material from Mediterranean Europe. The monophyly of the genus was strongly supported and all species with poroid hymenophore formed a highly-supported lineage with two major subclades. In total, 23 putative species were recognised. Amongst those, five are considered to possibly represent entities new to science, but further work is required since they are represented by single specimens or environmental sequences. Examined collections originally named S.lenis from southern Europe were grouped within S.vulgaris. Similarly, several collections under various names were hereby identified as S.vulgaris, including those of the recently described species S.tibetica. Furthermore, a critical discussion (based on morphoanatomical findings) is made on the key features that could be used to distinguish S.lenis from S.vulgaris.

SELECTION OF CITATIONS
SEARCH DETAIL