Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
PeerJ ; 12: e17476, 2024.
Article in English | MEDLINE | ID: mdl-38974414

ABSTRACT

The whitefly, Bemisia tabaci (Gennadius), is a polyphagous and major pest of cotton worldwide. Both adults and nymphs of B. tabaci affect the crop by causing direct and indirect damage. A severe whitefly outbreak was experienced during 2015 on cotton in North India and this was followed by a profound infestation during 2022. The present research rigorously examined whether the proliferation in the whitefly population was an outbreak or the result of a multi factor resurgence. During 2015, whitefly counts remained above the economic threshold level (ETL) between 28th and 35th Standard Meteorological Week (SMW). However, during 2022 above ETL population was observed in 27th SMW and it persisted until 36th SMW. The peak incidence of the whitefly was noticed during 31st and 29th SMW in 2015 and 2022, respectively. The early pest build up in 2022 and longer persistence (≥10 weeks) over the cotton season resulted in more damage to cotton crop. Additionally, pest survillence across the zone on the farmers' fields during 2022 revealed 44.4 per cent spots (585 out of 1,317 locations) above ETL while the corresponding locations in 2015 was 57% (620 out of 1,089). Thus, in 2022 infestation was not uniform in the entire zone wherein only few blocks of Punjab, Haryana and Rajasthan states of India experienced severe infestations of the whitefly. This study reports the complex of factors including weather, delayed sowing, use of tank mixtures/ subleathal doses of insecticides, pest resurgence etc. that might have possibly contributed to these upsurges in whitefly on cotton in north India.


Subject(s)
Gossypium , Hemiptera , Animals , India/epidemiology , Gossypium/parasitology , Seasons , Plant Diseases/parasitology , Plant Diseases/statistics & numerical data
2.
Plant Dis ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985506

ABSTRACT

Whiteflies (Bemisia tabaci) are a significant pest of cucurbits and vectors many viruses leading to substantial economic losses. Modern diagnostic tools offer the potential for early detection of viruses in the whiteflies before crop production. One such tool is the multiplex reverse transcriptase quantitative PCR (RT-qPCR) probe-based technique, which can detect multiple targets in a single reaction and simultaneously quantify the levels of each target, with a detection limit of 100 copies per target. In this study, a multiplex RT-qPCR-based detection system capable of identifying one DNA virus and three RNA viruses in whiteflies: cucurbit leaf crumple virus (CuLCrV), cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and squash vein yellowing virus (SqVYV) was developed. To ensure the reliability of the assay, an internal gene control as the fifth target to monitor false-negative results was incorporated. This newly developed molecular diagnostic tool possesses several advantages. It can detect up to five desired targets from a single whitefly RNA sample, even at concentrations as low as 1 ng/µl. To evaluate its sensitivity, we conducted experiments using serially diluted cloned plasmids and in vitro transcribed RNA transcripts of the target viruses. We also assessed the specificity of the assay by including aphid-transmitted viruses and other viruses known to infect cucurbits. The diagnostic method successfully detected all five targets simultaneously and allowed for the quantification of up to 100 copies using a mixture of healthy? RNA and in vitro transcribed RNA. Our aim with this study was to develop a highly specific and sensitive one-step multiplex RT-qPCR system for the simultaneous detection of viruses transmitted by whiteflies in cucurbits. This system offers significant advantages for early detection, enabling prompt control measures to mitigate the further spread of viral infections and reduce yield losses. Additionally, we demonstrated the ability to simultaneously detect mixed viruses (CCYV, CYSDV, CuLCrV, and SqVYV) in individual whiteflies and quantify the number of viral copies carried by each whitefly. The multiplex RT-qPCR assay outperforms currently available techniques for detecting many samples at a given time and can be effectively utilized for early monitoring of plant viruses in individual whiteflies and symptomless plants.

3.
Pest Manag Sci ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034816

ABSTRACT

BACKGROUND: Surfactants, particularly non-ionic ones, are widely used as adjuvants in pesticide formulations due to their ability to maintain pesticide effectiveness without changing solution properties, such as pH. While non-ionic surfactants are generally low-toxic, stable, and excellent dispersants with high solubilization capabilities, they may be less effective than cationic surfactants, which offer superior surface activity, transport properties, and antimicrobial action. This study investigates the efficacy of new piperidinium surfactants with carbamate fragments as adjuvants in insecticide formulations containing imidacloprid. The efficacy of these formulations is being assessed against greenhouse whitefly, a pest known to harm cultivated and ornamental flowering plants. RESULTS: The aggregation behavior of piperidinium surfactants containing carbamate fragments was investigated, and their wetting effect was evaluated. Synthesized surfactants have lower CMC values compared to their methylpiperidinium analogue. The effect of piperidinium surfactants on the insecticide concentration on the surface and inside tomato leaves was assessed using spectrophotometric methods. It was found that the introduction of piperidinium surfactants with carbamate fragment at a concentration of 0.1% wt. allows for decrease in lethal concentration of imidacloprid up to 10 times, thereby testifying the marked increase in the effectiveness of imidacloprid against the greenhouse whitefly insect pest (Trialeurodes vaporariorum). It was shown that the main factors responsible for the enhanced efficacy of the insecticide were the ability of the surfactant to increase the concentration of imidacloprid on the leaf surfaces and improve their penetration into the plant. CONCLUSION: The presented work employed a comprehensive approach, which significantly increases the generalizability of the results obtained and provides the ability to predict the effect and target selection of adjuvants. © 2024 Society of Chemical Industry.

4.
Insects ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921145

ABSTRACT

The sweetpotato whitefly, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1), causes significant losses to vegetable crops directly by sap-feeding, inducing plant physiological disorders, and elevating the build-up of sooty mold, and indirectly by transmitting plant viruses. In this study, we evaluated the susceptibility of 20 yellow squash and zucchini (Cucurbita pepo) cultivars to MEAM1, across three growing seasons in the southeastern United States. Weekly sampling of the numbers of MEAM1 adults, nymphs, and eggs were conducted from the fourth week after seed sowing and across 6 weeks during the summer and fall of 2021 and five weeks during the fall of 2022. In general, adult whitefly populations were high during the first week of sampling but decreased as the seasons progressed. The zucchini cultivar 'Black Beauty' harbored the most adults, while 'Green Eclipse Zucchini' was the least attractive zucchini cultivar to the adults in fall 2022. For yellow squash, 'Early Summer' (summer 2021) and 'Amberpic 8455' (summer 2021 and fall 2022) were the cultivars with the highest adult populations, while 'Lioness' (summer 2021) and 'Gourmet Gold Hybrid' (fall 2022) harbored the lowest adult counts. The whitefly egg counts across both vegetables trailed those of adults and peaked in the second week of sampling. The counts of nymphs increased as the seasons progressed, but there was a decline after the second week during fall 2021. For the yellow squash cultivars, 'Gourmet Gold Hybrid', (summer 2021 and fall 2022), 'Lioness', and 'Fortune' (summer 2021) recorded the highest yields. For zucchini, 'Golden Glory' (summer 2021) was the top performer. These results provide valuable information for whitefly management in yellow squash and zucchini based on host plant susceptibility and yield.

5.
Viruses ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932261

ABSTRACT

Begomoviruses have emerged as destructive pathogens of crops, particularly in the tropics and subtropics, causing enormous economic losses and threatening food security. Epidemics caused by begomoviruses have even spread in regions and crops that were previously free from these viruses. The most seriously affected crops include cassava; cotton; grain legumes; and cucurbitaceous, malvaceous, and solanaceous vegetables. Alphasatellites, betasatellites, and deltasatellites are associated with the diseases caused by begomoviruses, but begomovirus-betasatellite complexes have played significant roles in the evolution of begomoviruses, causing widespread epidemics in many economically important crops throughout the world. This article provides an overview of the evolution, distribution, and approaches used by betasatellites in the suppression of host plant defense responses and increasing disease severity.


Subject(s)
Begomovirus , Crops, Agricultural , Plant Diseases , Begomovirus/genetics , Begomovirus/physiology , Plant Diseases/virology , Crops, Agricultural/virology , Satellite Viruses/genetics , Satellite Viruses/physiology , Satellite Viruses/classification , Evolution, Molecular , DNA, Satellite/genetics , Phylogeny
6.
J Virol Methods ; 329: 114992, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936512

ABSTRACT

Cucurbit leaf crumple virus (CuLCrV) is among the prominent viruses infecting cucurbits in the USA. Attainable procedures of virus inoculation to crops are prerequisite for screening of resistance against the virus. Because mechanical (non-vector-mediated) infection by cucurbit leaf crumple virus (CuLCrV) is inefficient in economically important crops, screening for CuLCrV resistance is currently laborious and time-consuming using transmission by viruliferous whiteflies. We constructed an infectious partial tandem repeat construct of an isolate of CuLCrV from Georgia, USA, in the plant expression binary vector pCambia2300 and transformed it into Agrobacterium tumifaciens strain EHA105. Agroinfiltration of this construct into the abaxial surface of the leaves of common bean (Phaseolus vulgaris L.) produced a systemic infection characteristic of CuLCrV, although this approach was not successful for yellow squash. However, we report a very efficient and reproducible inoculation procedure established in squash when the leaves were injured with a microneedle and rubbed it with cell suspension harbouring the infectious viral construct.

7.
Front Microbiol ; 15: 1410568, 2024.
Article in English | MEDLINE | ID: mdl-38841073

ABSTRACT

Cotton, a key source of income for Pakistan, has suffered significantly by cotton leaf curl disease (CLCuD) since 1990. This disease is caused by a complex of phylogenetically-related begomovirus (genus Begomovirus, family Geminiviridae) species and a specific betasatellite (genus Betasatellite, family Tolecusatellitidae), cotton leaf curl Multan betasatellite. Additionally, another DNA satellite called alphasatellite (family Alphasatellitidae), is also frequently associated. All these virus components are vectored by a single species of whitefly (Bemisia tabaci). While many factors affect cotton productivity, including cotton variety, sowing time, and environmental cues such as temperature, humidity, and rainfall, CLCuD is a major biotic constraint. Although the understanding of begomoviruses transmission by whiteflies has advanced significantly over the past three decades, however, the in-field seasonal dynamics of the viruses in the insect vector remained an enigma. This study aimed to assess the levels of virus and betasatellite in whiteflies collected from cotton plants throughout the cotton growing season from 2014 to 2016. Notably, begomovirus levels showed no consistent pattern, with minimal variations, ranging from 0.0017 to 0.0074 ng.µg-1 of the genomic DNA in 2014, 0.0356 to 0.113 ng.µg-1 of the genomic DNA in 2015, and 0.0517 to 0.0791 ng.µg-1 of the genomic DNA in 2016. However, betasatellite levels exhibited a distinct pattern. During 2014 and 2015, it steadily increased throughout the sampling period (May to September). While 2016 showed a similar trend from the start of sampling (July) to September but a decline in October (end of sampling). Such a study has not been conducted previously, and could potentially provide valuable insights about the epidemiology of the virus complex causing CLCuD and possible means of controlling losses due to it.

8.
Pestic Biochem Physiol ; 202: 105937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879299

ABSTRACT

DNA methylation is an epigenetic process that involves the chemical modification of DNA, leading to the regulation of its transcriptional activity. It is primarily known for the addition of methyl groups to cytosine in DNA. The whitefly Bemisia tabaci is a polyphagous pest insect and a vector that is responsible for transmitting numerous plant viruses, resulting in significant economic losses in agricultural crops globally. In our study, we characterized the expression of two key DNA methylation genes, the DNA methyltransferases Dnmt1 and Dnmt3, in B. tabaci. Additionally, we explored the impact of inhibiting DNMTs on the miRNA pathway and fitness of whitefly. To investigate the role of the DNA methylation pathway in B. tabaci, we found that the expression of Dnmt1 and Dnmt3 varied across different tissues and developmental stages of B. tabaci. We employed azacytidine (5-AZA) treatment of adults to inhibit DNMTs (DNMT1 and DNMT3). Administration of 5-AZA affected the survival and reproduction of this pest. Moreover, inhibition of DNMTs led to a decrease in the expression of the miRNA pathway core genes Dicer1 and Argonaute1, which subsequently resulted in reduced expression of Let-7 and miR-184 which are essential microRNAs in the physiology and biology of insects. The study suggests that DNA methyltransferases could be targeted for developing an inhibition strategy to control this pest and vector insect.


Subject(s)
DNA Methylation , Hemiptera , MicroRNAs , Animals , Hemiptera/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Azacitidine/pharmacology , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Female
9.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829390

ABSTRACT

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

10.
Sci Rep ; 14(1): 13846, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879618

ABSTRACT

Sustainability in cotton production is inevitable because producing more cotton means more employment, economic acceleration, and industrial expansion. India, China, the United States, Brazil, and Pakistan contribute 74% of worldwide cotton production. Pakistan is contributing only 5%, despite the high potential of cotton. The average yield of cotton in Pakistan is stagnant at 570.99 kg hm-2, whereas it entails the highest cost of production among all other crops. The yield obtained in Pakistan is less than the potential, profitability is drastically lessening, and farmers are abandoning cotton for alternative kharif crops. Some traditional quantitative studies have unveiled different factors that affect cotton production. However, an in-depth qualitative study has never been conducted in Pakistan to explore the root causes of growing cotton crop failure. Following Moustakas's traditional phenomenological guidelines, this phenomenological study was conducted in the district of Rahim Yar Khan in the core cotton zone of Punjab province. A total of 10 interviews were conducted with purposively selected cotton growers based on a criterion: (i) having more than 10 years of cotton growing experience, (ii) being a cotton grower, and (iii) having at least 10 years of formal schooling. Interviews were conducted face to face on an interview guide. One interview lasted 45-50 min, and responses were recorded and analyzed using a thematic analysis approach. A total of 6 themes emerged from the collected data, including (i) climate change, (ii) varietal problems, (iii) pesticide usage, (iv) sense of institutional services, (v) attitude of farmers and (vi) soil health and environment. These six merging themes contributed to cotton crop failure and yield decline. The deep exploration further summarized that researchers, extensionists, and farmers need to seriously consider variety, sowing time, and the environment to revive cotton crops. The detailed recommendations and policy guidelines are presented in this paper, highlighting the cotton sector's research, development and investment areas.


Subject(s)
Crops, Agricultural , Farmers , Gossypium , Pakistan , Gossypium/growth & development , Farmers/psychology , Humans , Crops, Agricultural/growth & development , Agriculture , Crop Production
11.
Microorganisms ; 12(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38792717

ABSTRACT

Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with the semi-persistently transmitted Cucurbit chlorotic yellows virus (CCYV) affects whitefly susceptibility to M. anisopliae exposure. We discovered that viruliferous whiteflies exhibited increased mortality when fungus infection was present compared to non-viruliferous insects. High throughput 16S rRNA sequencing also revealed significant alterations of the whitefly bacterial microbiome diversity and structure due to both CCYV and fungal presence. Specifically, the obligate symbiont Portiera decreased in relative abundance in viruliferous whiteflies exposed to M. anisopliae. Facultative Hamiltonella and Rickettsia symbionts exhibited variability across groups but dominated in fungus-treated non-viruliferous whiteflies. Our results illuminate triangular interplay between pest insects, their pathogens, and symbionts-dynamics which can inform integrated management strategies leveraging biopesticides This work underscores the promise of M. anisopliae for sustainable whitefly control while laying the groundwork for elucidating mechanisms behind microbe-mediated shifts in vector competence.

12.
Insects ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786858

ABSTRACT

The whitefly, Bemisia tabaci (Genn.), is one of the most dangerous polyphagous pests in the world. Eco-friendly compounds and new chemical insecticides have gained recognition for whitefly control. In this study, the toxicity and biochemical impact of flometoquin, flonicamid, and sulfoxaflor, alone or combined with lemongrass essential oil (EO), against B. tabaci was studied. In addition, a molecular docking study was conducted to assess the binding affinity of the tested compounds to AchE. Based on the LC values, the descending order of the toxicity of the tested compounds to B. tabaci adults was as follows: sulfoxaflor > flonicamid > flometoquin > lemongrass EO. The binary mixtures of each of the tested compounds with lemongrass EO exhibited synergism in all combinations, with observed mortalities ranging from 15.09 to 22.94% higher than expected for an additive effect. Sulfoxaflor and flonicamid, alone or in combination with lemongrass EO, significantly inhibited AchE activity while only flonicamid demonstrated a significant impact on α-esterase, and none of the tested compounds affected cytochrome P450 or GST. However, the specific activity of P450 was significantly inhibited by the lemongrass/sulfoxaflor mixture while α-esterase activity was significantly inhibited by the lemongrass/flometoquin mixture. Moreover, the lemongrass EO and all the tested insecticides exhibited significant binding affinity to AchE with energy scores ranging from -4.69 to -7.06 kcal/mol. The current findings provide a foundation for utilizing combinations of essential oils and insecticides in the integrated pest management (IPM) of B. tabaci.

13.
Insects ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786871

ABSTRACT

In biological control, joint releases of predators and parasitoids are standard. However, intraguild predation (IGP) can occur when a predator attacks a parasitoid, potentially affecting pest control dynamics. In addition to the focal prey (FP), Trialeurodes vaporariorum, the intraguild predator (IG-predator) Geocoris punctipes can consume the parasitoid Eretmocerus eremicus (IG-prey). In this IGP context with multiple prey, an alternative prey (AP), like the aphid Myzus persicae, may influence interactions. Theory predicts that, in simple interactions, a predator's functional response (FR) to the FP changes with the presence of an AP. However, whether this holds in an IGP context is unknown. In this study, we empirically tested that prediction. Our results show that without IGP, G. punctipes exhibits a generalized FR with and without AP. Nevertheless, with IGP, the predator exhibited a Type II FR at low and high AP densities, increasing pressure on the FP and potentially favoring short-term biological control strategies. However, when 25 AP were offered, the predator's response shifted, underscoring the importance of monitoring AP densities to prevent potential disruptions in FP control. In both contexts, the increase in AP produced a handling time increase and a decrease in consumption rate. These results indicate that the theoretical prediction of the effect of AP on the FR is met only under specific conditions, and the complexity of multitrophic interactions must be considered.

14.
Plants (Basel) ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732482

ABSTRACT

Sweet potato leaf curl virus (SPLCV) is a whitefly-transmitted begomovirus infecting sweetpotato and other morning glory (Convolvulaceae) species worldwide. The virus is widespread at the USDA, ARS, U.S. Vegetable Laboratory (USVL), and testing of germplasm maintained in the breeding program indicates nearly 100% infection in storage roots of materials propagated for at least four years. Prior to the public release of new germplasm, viruses must be eliminated via laborious and time-consuming meristem-tip culture. The identification of virus-free seedlings early in the selection process can offer an alternative to meristem-tip culture. In this study, we investigated the transmission of SPLCV over two years of consecutive field plantings (early and late) of sweetpotato. While SPLCV is endemic at the USVL, virus transmission pressure over the typical cultivation season is unknown, and avoidance of virus transmission paired with the selection and maintenance of clean material may be a viable alternative to virus elimination. In 2022, the storage roots of 39 first-year seedling (FYS) selections were tested for SPLCV after early-season cultivation, revealing a single selection (2.6%) with a positive test. Similar testing was conducted in 2023 with no SPLCV-positive FYS selections detected. To further assess SPLCV acquisition in the field, replicated late-season plantings of each selected FYS (n = 37) were monitored from planting to harvest. Testing was conducted at 60 and 120 days after planting (DAP). Approximately 35% of the bulk samples were infected at 60 DAP, and infection increased to 52.3% by 120 DAP. Testing of individuals within selected positive bulked samples did not support 100% infection at harvest. Altogether, these results demonstrate that SPLCV transmission during early planting is sufficiently low to facilitate the maintenance of virus-free selections, offering an alternative to virus cleaning and a cultivation strategy that may be leveraged for production.

15.
J Econ Entomol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748560

ABSTRACT

Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a significant pest that damages a wide range of high-value vegetable crops in south Florida. This pest has demonstrated the ability to develop resistance to various insecticide groups worldwide. Monitoring the resistance levels of MEAM1 populations and maintaining baseline susceptibility data are crucial for the long-term effectiveness of insecticide management strategies. We conducted serial dilution bioassays on 15 field populations of MEAM1 collected in south Florida to assess their resistance to 4 key insecticides: afidopyropen, cyantraniliprole, dinotefuran, and flupyradifurone. To quantify resistance levels, resistance ratios (RR) were generated by comparing the LC50 values of field populations to those of a known susceptible MEAM1 colony reared in the laboratory. Our findings reveal that all field-collected populations were susceptible to dinotefuran (RR 1-8) and flupyradifurone (RR 2-8). While over 80% of the populations tested were susceptible to afidopyropen (RR 1-9), 2 populations exhibited low (RR 38) and moderate resistance (RR 51), respectively. In contrast, most of the populations (57%) showed low to moderate resistance to cyantraniliprole (RR 21-78), and the remaining populations were susceptible (RR 3-10). The 2 populations with resistance to afidopyropen also exhibited moderate resistance to cyantraniliprole. Further research in this direction can aid in refining insecticide resistance management programs in Florida and other regions where B. tabaci MEAM1 is a major pest. Exploring the implications of these findings will be essential for insecticide use and integrated pest management strategies in south Florida.

16.
J Econ Entomol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757660

ABSTRACT

The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is challenging to control using chemical pesticides owing to its resistance to many insecticides. Thus, there has been an increasing demand for alternative control measures. Thus, this study evaluated the efficacy of a newly designed pest suction machine to manage whiteflies on tomato plants (Solanum lycopersicum L.) (Solanales: Solanaceae) in greenhouses over 2 seasons. The suction machine comprised a battery-powered cart with a mounted suction unit, an ultrasonic device, and green lights. Ultrasonic irradiation provided non-contact vibration, facilitating the movement of adult whiteflies away from the plants, and green lights attracted them to the suction device. This combination effectively captured whitefly adults, even with a weak suction force, saving electricity consumption. The efficacy of suction machine was further evaluated by measuring the number of whitefly adults caught by the machine and the number of adults and nymphs remaining on the tomato leaves. The whitefly population was considerably lower in the treated blocks than in the non-treated blocks in the autumn trial. The machine reduced the density of whitefly adults without using chemical pesticides. Although a lot of optimizations would be required, suction control is an additional and alternative strategy that may be incorporated in the integrated pest management of whiteflies on greenhouse tomato plants.

17.
J Econ Entomol ; 117(3): 817-824, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38603566

ABSTRACT

Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a destructive insect pest of many crops. Rickettsia infection in different cryptic species of B. tabaci has been observed worldwide. Understanding the interactions between these 2 organisms is critical to developing Rickettsia-based strategies to control B. tabaci and thereby reduce the transmission of related vector-borne viruses. In this study, we investigated the effects of Rickettsia infection on the biological characteristics of the Middle East Asia Minor 1 (MEAM1) strain of B. tabaci through biological analysis of infected and uninfected individuals. The results of this study suggest that Rickettsia may confer fitness benefits. These benefits include increased fertility, improved survival rates, accelerated development, and resulted in female bias. We also investigated the transcriptomics impact of Rickettsia infection on B. tabaci by performing a comparative RNA-seq analysis of nymphs and adult females, both with and without the infection. Our analysis revealed 218 significant differentially expressed genes (DEGs) in infected nymphs compared to uninfected ones and 748 significant DEGs in infected female adults compared to their uninfected whiteflies. Pathway analysis further revealed that Rickettsia can affect many important metabolic pathways in whiteflies. The results suggest that Rickettsia plays an essential role in energy metabolism, and nutrient synthesis in the B. tabaci MEAM1, and depends on metabolites obtained from the host to ensure its survival. Overall, our findings suggest that Rickettsia has beneficial effects on B. tabaci and offered insights into the potential molecular mechanisms governing the interactions between Rickettsia and B. tabaci MEAM1.


Subject(s)
Hemiptera , Nymph , Rickettsia , Transcriptome , Animals , Hemiptera/microbiology , Female , Nymph/growth & development , Nymph/microbiology , Male
18.
Pest Manag Sci ; 80(8): 4085-4097, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38587112

ABSTRACT

BACKGROUND: Entomopathogenic fungi (EPF) treatment of plants may affect the survival and feeding preferences of herbivorous pests. However, comprehensive studies on the fitness across their entire life cycle, feeding behavior, and physiological changes in herbivores consuming EPF-treated plants within the tripartite interactions of EPF, plants, and pests are still limited. In this study, we utilized life tables, electrical penetration graph (EPG), and metabolomics to uncover the biological and physiological characteristics of Bemisia tabaci on tomato plants inoculated with Beauveria bassiana through root irrigation. RESULTS: Our study indicated that Beauveria bassiana Bb252 can penetrate the entire tissue from the point of inoculation, primarily colonizing the intercellular spaces and vascular tissue. However, this colonization is temporary, lasting no more than 35 days. Moreover, the population fitness and feeding behavior of Bemisia tabaci on tomato plants treated with Beauveria bassiana via root irrigation were significantly affected, showing a substantial 41.4% decrease in net reproductive rate (R0), a notable reduction in watery salivation, and shortened phloem ingestion. Lastly, we observed a significant decrease in hormones and amino acids of whiteflies that fed on Beauveria bassiana-treated tomato plants by root irrigation. CONCLUSIONS: Our results indicated that the endophyte, Beauveria bassiana Bb252, reduced demographic fitness of Bemisia tabaci by altering its hormones and amino acids levels. These findings enhance our understanding of multitrophic interactions in integrated pest management. © 2024 Society of Chemical Industry.


Subject(s)
Beauveria , Feeding Behavior , Hemiptera , Solanum lycopersicum , Animals , Beauveria/physiology , Hemiptera/microbiology , Hemiptera/physiology , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Pest Control, Biological , Endophytes/physiology , Herbivory , Female , Male , Nymph/microbiology , Nymph/growth & development , Nymph/physiology
19.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38442350

ABSTRACT

The Middle East Asia Minor 1 biotype of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a greenhouse and field crop pest of global significance. The objective of this study was to assess the potential of the generalist predatory thrips, Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), as a biological control agent for B. tabaci. This was achieved by determining the functional responses of F. vespiformis larvae and adults to the egg and nymphal stages of B. tabaci under laboratory conditions. Analyses consisted of 10 replicates of each predator and prey stage combination on bean leaf discs for a 24-h period. Following logistic regression analyses to determine the functional response type exhibited, response parameters were estimated with nonlinear least squares regression using Roger's equation. Results showed that F. vespiformis larvae and adults exhibited a Type II functional response when feeding on immature B. tabaci. The handling times (Th) of F. vespiformis larvae and adults were magnitudes higher for B. tabaci nymphs than they were for eggs, which were in part driven by the higher attack rates (a) observed on eggs. The maximum attack rate (T/Th) for B. tabaci eggs and nymphs exhibited by first-stage larvae, second-stage larvae, and adult F. vespiformis increased with increasing predator age. Results from this study suggest that F. vespiformis larvae and particularly adults are promising biological control agents for B. tabaci and are efficient predators at both low and high prey densities.


Subject(s)
Hemiptera , Thysanoptera , Animals , Ovum , Asia, Eastern , Biological Control Agents , Larva , Nymph
20.
Anal Biochem ; 689: 115503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453049

ABSTRACT

Terpenes play a vital role in plant defense; tomato plants produce a diverse range of terpenes within specialized glandular trichomes, influencing interactions with herbivores, predators, and pollinators. This study employed two distinct methods, namely leaf dip and maceration, to extract trichomes from tomato leaves. Terpene quantification was carried out using Gas Chromatography-Mass Spectrometry (GC-MS). The leaf dip method proved effective in selectively targeting trichome content, revealing unique extraction patterns compared to maceration. The GC-MS method demonstrated high linearity, accuracy, sensitivity, and low limits of detection and quantification. Application of the method to different tomato species (Solanum pennellii, Solanum pimpinellifolium, Solanum galapagense, Solanum habrochaites, and Solanum lycopersicum) identified significant variation in terpene content among these species, highlighting the potential of specific accessions for breeding programs. Notably, the terpene α-zingiberene, known for its repellency against whiteflies, was found in high quantities (211.90-9155.13 µg g-1) in Solanum habrochaites accession PI209978. These findings provide valuable insights into terpenoid diversity for plant defense mechanisms, guiding future research on developing pest-resistant tomato cultivars. Additionally, the study underscores the broader applications of terpenes in agriculture.


Subject(s)
Solanum lycopersicum , Solanum , Terpenes/analysis , Gas Chromatography-Mass Spectrometry , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...