Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 861
Filter
1.
Cell Rep ; 43(7): 114429, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38968074

ABSTRACT

Social deficits are frequently observed in patients suffering from neurodevelopmental disorders, but the molecular mechanisms regulating sociability are still poorly understood. We recently reported that the loss of the microRNA (miRNA) cluster miR-379-410 leads to hypersocial behavior and anxiety in mice. Here, we show that ablating miR-379-410 in excitatory neurons of the postnatal mouse hippocampus recapitulates hypersociability, but not anxiety. At the cellular level, miR-379-410 loss in excitatory neurons leads to larger dendritic spines, increased excitatory synaptic transmission, and upregulation of an actomyosin gene network. Re-expression of three cluster miRNAs, as well as pharmacological inhibition of the actomyosin activator ROCK, is sufficient to reinstate normal sociability in miR-379-410 knockout mice. Several actomyosin genes and miR-379-410 family members are reciprocally dysregulated in isogenic human induced pluripotent stem cell (iPSC)-derived neurons harboring a deletion present in patients with Williams-Beuren syndrome, characterized by hypersocial behavior. Together, our results show an miRNA-actomyosin pathway involved in social behavior regulation.


Subject(s)
Actomyosin , MicroRNAs , Pyramidal Cells , Social Behavior , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Pyramidal Cells/metabolism , Actomyosin/metabolism , Mice , Humans , Hippocampus/metabolism , Mice, Knockout , Mice, Inbred C57BL , Induced Pluripotent Stem Cells/metabolism , rho-Associated Kinases/metabolism
2.
Cortex ; 178: 32-50, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38964151

ABSTRACT

We know little about the ability to explore and navigate large-scale space for people with intellectual disability (ID). In this cross-syndrome study, individuals with Down syndrome (DS), individuals with Williams syndrome (WS) and typically developing children (TD; aged 5-11 years) explored virtual environments with the goal of learning where everything was within the environment (Experiment 1) or to find six stars (Experiment 2). There was little difference between the WS and DS groups when the goal was simply to learn about the environment with no specific destination to be reached (Experiment 1); both groups performed at a level akin to a subset of TD children of a similar level of non-verbal ability. The difference became evident when the goal of the task was to locate targets in the environment (Experiment 2). The DS group showed the weakest performance, performing at or below the level of a subset of TD children at a similar level of non-verbal ability, whilst the WS group performed at the level of the TD subset group. The DS, WS and TD group also demonstrated different patterns of exploration behavior. Exploration behaviour in DS was weak and did not improve across trials. In WS, exploration behavior changed across trials but was atypical (the number of revisits increased with repeated trials). Moreover, transdiagnostic individual difference analysis (Latent Profile Analysis) revealed five profiles of exploration and navigation variables, none of which were uniquely specific to DS or to WS. Only the most extreme profile of very poor navigators was specific to participants with DS and WS. Interestingly, all other profiles contained at least one individual with DS and at least one individual with WS. This highlights the importance of investigating heterogeneity in the performance of individuals with intellectual disability and the usefulness of a data-driven transdiagnostic approach to identifying behavioral profiles.

3.
Appl Clin Genet ; 17: 107-115, 2024.
Article in English | MEDLINE | ID: mdl-38983678

ABSTRACT

Introduction: There are more than 6000 genetic syndromes, therefore the recognition of facial patterns may present a challenge for clinicians. The 22q11.2 deletion syndrome (22q11.2 DS) and Williams syndrome (WS) are two different genetic syndromes but share some common phenotypic traits and subtle facial dysmorphisms. Therefore, any tool that would help clinicians recognize genetic syndromes would likely result in a more accurate diagnosis. Methods: The syndrome identification accuracy was compared between 2 different facial analysis algorithms (DeepGestalt and GestaltMatcher) of the Face2Gene (F2G) tool and a group of 9 clinicians with different levels of expertise before and after using F2G for a cohort of 64 Thai participants' frontal facial photos divided into 3 groups of 22q11.2 DS, WS and unaffected controls. Results: The higher accuracy from the DeepGestalt algorithm than from clinicians was demonstrated, especially when comparing between the two syndromes. The accuracy was highest when clinicians use the tool combined with their own decision-making process. The tool's second algorithm, GestaltMatcher revealed clear separation among these three groups of photos. Discussion: The result of F2G outperforming clinicians was not surprising. However, the highest increase in accuracy was with nondysmorphology clinicians using F2G. Conclusion: Face2Gene would be a useful tool to help clinicians in facial recognition of genetic syndromes, before ordering specific tests to confirm the definite diagnosis.

4.
Int Arch Otorhinolaryngol ; 28(3): e502-e508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974619

ABSTRACT

Introduction Williams syndrome (WS) is a genetic disorder caused by a microdeletion in chromosome 7, affecting ∼ 28 genes. Studies have demonstrated conductive losses seemingly related to the absence of the elastin gene and mild to profound sensorineural losses due to cochlear fragility. Objective To characterize and compare the peripheral auditory system and auditory brainstem response (ABR) of adults with WS and neurotypical adults matched by age and gender. Methods We conducted a cross-sectional observational study with 30 individuals of both sexes, aged 18 to 37 years - 15 of them with WS (study group) and 15 with neither the syndrome nor hearing complaints (control group), matched for sex and age. The subjects underwent pure-tone and speech audiometry, acoustic immittance, transient-evoked otoacoustic emissions (TEOAEs), and ABR. Results Early-onset sensorineural hearing loss was found in 53.3% of the study sample, mostly mild, occurring above 3 kHz. The TEOAEs were absent in 53.3% of assessed subjects; for those in whom they were present, the signal-to-noise responses were significantly lower than in the control group. In the ABR, increased absolute latencies were observed in waves I and III. Conclusion Individuals with WS have early and progressive cochlear impairments, mainly affecting the basal region of the cochlea. They may have low brainstem changes which seem to begin in adulthood.

5.
Birth Defects Res ; 116(7): e2385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023193

ABSTRACT

INTRODUCTION: Williams syndrome (WS) cases have been reported to have with 25-100 times greater increased risk of sudden cardiac death (SCD). SCD has been reported in cases without any evidence of structural cardiovascular anomalies. Wolff-Parkinson-White (WPW) syndrome is characterized by short PR interval and delta wave. Ventricular preexcitations can develop paroxysmal reentrant tachycardia through Kent bundle or less frequent atrial fibrillation and in some cases with accessory pathway effective refractory period (APERP) under 250 ms considered as risky and may lead to SCD. WS associated with WPW has not been reported before. CASE REPORT: An 11-year-old male who had been followed up with WS was referred to pediatric cardiology outpatient clinic with the complaint of palpitation. Electrocardiographic examination showed short PR interval and delta wave in the ECG consistent with WPW. He underwent electrophysiological study (EPS). Basic measurements were performed, and APERP was found at 280 ms cycle atrial pacing. RF energy was delivered using a 4 mm tip nonirrigated radiofrequency (RF) ablation catheter where the best ventriculoatrial (VA) signals were received and the AP was abolished within few seconds. DISCUSSION AND CONCLUSIONS: Although, WPW cases are usually asymptomatic or related to SVT, the risk of SCD should not be ignored. Thus, all patients with WPW deserve an EPS for assessing the AP conduction properties. Due to the increased risk of SCD in patients with WS compared to general population, in the presence of concomitant WPW, these patients should be evaluated with EPS even if they do not have symptoms.


Subject(s)
Catheter Ablation , Electrocardiography , Williams Syndrome , Wolff-Parkinson-White Syndrome , Humans , Wolff-Parkinson-White Syndrome/physiopathology , Wolff-Parkinson-White Syndrome/complications , Male , Child , Electrocardiography/methods , Williams Syndrome/complications , Williams Syndrome/physiopathology , Catheter Ablation/methods , Death, Sudden, Cardiac/etiology
6.
Neurol Sci ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023712

ABSTRACT

BACKGROUND: Williams syndrome (WS; chromosome 7q11.23 deletion) is a rare, multisystemic, neurodevelopmental disorder with variable penetrance and expressivity. Although movement and psychiatric disorders are known to occur in individuals with WS, parkinsonism, dystonia, and treatment-resistant schizoaffective disorder have not been formally described. METHODS: We present two unrelated cases of adults with molecularly confirmed WS and typical histories of developmental delays, intellectual/learning disabilities, and treatment-responsive anxiety/mood disorder who developed similar noteworthy neuropsychiatric expressions. We reviewed detailed neuropsychiatric histories, laboratory investigations, neuroimaging, and treatment responses and compared data for the two cases. RESULTS: Both individuals developed treatment-resistant schizoaffective disorder in adulthood requiring multiple trials of antipsychotic treatments. While on clozapine, both patients developed parkinsonism and generalized dystonia with truncal involvement that responded to trials of low-dose levodopa without exacerbating underlying psychotic or affective symptoms. CONCLUSION: This report illustrates the novel occurrence of levodopa-responsive movement disorders and treatment-resistant schizoaffective disorder in individuals with WS, adding to the expanding neuropsychiatric phenotypes, and highlighting potential shared underlying mechanisms. The observed treatment response suggests that levodopa, in relatively low doses, may be safe and useful in ameliorating presumed antipsychotic-associated parkinsonism and tardive dystonia in WS.

7.
Stem Cell Res ; 78: 103460, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861775

ABSTRACT

Williams syndrome (WS) is a relatively rare genetic disorder. It arises from a microdeletion in chromosome 7q11.23, resulting in the loss of one copy of more than 20 genes. Disorders in multiple systems, including cardiovascular and nervous systems, occur in patients with WS. Here, we generated two human induced pluripotent stem cell (iPSC) lines from WS patients. Both lines expressed pluripotency markers at gene and protein levels. They possessed normal karyotypes and the potential to differentiate into three germ layers. They serve as a useful tool to study disease mechanism, test drugs, and identify promising therapeutics for patients with WS.


Subject(s)
Induced Pluripotent Stem Cells , Williams Syndrome , Williams Syndrome/genetics , Williams Syndrome/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Line , Cell Differentiation , Male , Female
8.
Eur J Pediatr ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871980

ABSTRACT

Williams-Beuren syndrome (WBS) is a rare genetic disorder characterized by special facial gestalt, delayed development, and supravalvular aortic stenosis or/and stenosis of the branches of the pulmonary artery. We aim to develop and optimize accurate models of facial recognition to assist in the diagnosis of WBS, and to evaluate their effectiveness by using both five-fold cross-validation and an external test set. We used a total of 954 images from 135 patients with WBS, 124 patients suffering from other genetic disorders, and 183 healthy children. The training set comprised 852 images of 104 WBS cases, 91 cases of other genetic disorders, and 145 healthy children from September 2017 to December 2021 at the Guangdong Provincial People's Hospital. We constructed six binary classification models of facial recognition for WBS by using EfficientNet-b3, ResNet-50, VGG-16, VGG-16BN, VGG-19, and VGG-19BN. Transfer learning was used to pre-train the models, and each model was modified with a variable cosine learning rate. Each model was first evaluated by using five-fold cross-validation and then assessed on the external test set. The latter contained 102 images of 31 children suffering from WBS, 33 children with other genetic disorders, and 38 healthy children. To compare the capabilities of these models of recognition with those of human experts in terms of identifying cases of WBS, we recruited two pediatricians, a pediatric cardiologist, and a pediatric geneticist to identify the WBS patients based solely on their facial images. We constructed six models of facial recognition for diagnosing WBS using EfficientNet-b3, ResNet-50, VGG-16, VGG-16BN, VGG-19, and VGG-19BN. The model based on VGG-19BN achieved the best performance in terms of five-fold cross-validation, with an accuracy of 93.74% ± 3.18%, precision of 94.93% ± 4.53%, specificity of 96.10% ± 4.30%, and F1 score of 91.65% ± 4.28%, while the VGG-16BN model achieved the highest recall value of 91.63% ± 5.96%. The VGG-19BN model also achieved the best performance on the external test set, with an accuracy of 95.10%, precision of 100%, recall of 83.87%, specificity of 93.42%, and F1 score of 91.23%. The best performance by human experts on the external test set yielded values of accuracy, precision, recall, specificity, and F1 scores of 77.45%, 60.53%, 77.42%, 83.10%, and 66.67%, respectively. The F1 score of each human expert was lower than those of the EfficientNet-b3 (84.21%), ResNet-50 (74.51%), VGG-16 (85.71%), VGG-16BN (85.71%), VGG-19 (83.02%), and VGG-19BN (91.23%) models. CONCLUSION: The results showed that facial recognition technology can be used to accurately diagnose patients with WBS. Facial recognition models based on VGG-19BN can play a crucial role in its clinical diagnosis. Their performance can be improved by expanding the size of the training dataset, optimizing the CNN architectures applied, and modifying them with a variable cosine learning rate. WHAT IS KNOWN: • The facial gestalt of WBS, often described as "elfin," includes a broad forehead, periorbital puffiness, a flat nasal bridge, full cheeks, and a small chin. • Recent studies have demonstrated the potential of deep convolutional neural networks for facial recognition as a diagnostic tool for WBS. WHAT IS NEW: • This study develops six models of facial recognition, EfficientNet-b3, ResNet-50, VGG-16, VGG-16BN, VGG-19, and VGG-19BN, to improve WBS diagnosis. • The VGG-19BN model achieved the best performance, with an accuracy of 95.10% and specificity of 93.42%. The facial recognition model based on VGG-19BN can play a crucial role in the clinical diagnosis of WBS.

9.
Adv Exp Med Biol ; 1441: 629-644, 2024.
Article in English | MEDLINE | ID: mdl-38884738

ABSTRACT

Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.


Subject(s)
Double Outlet Right Ventricle , Tetralogy of Fallot , Humans , Tetralogy of Fallot/genetics , Double Outlet Right Ventricle/genetics , Mutation , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Transcription Factors/genetics
10.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Article in English | MEDLINE | ID: mdl-38884747

ABSTRACT

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Subject(s)
Aorta, Thoracic , Aortic Valve , Humans , Aorta, Thoracic/abnormalities , Aorta, Thoracic/pathology , Aortic Valve/abnormalities , Aortic Valve/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Bicuspid Aortic Valve Disease/genetics , Pulmonary Valve Stenosis/genetics , Mutation , Receptor, Notch1/genetics , Aortic Valve Disease/genetics , Heart Valve Diseases/genetics , Heart Valve Diseases/pathology , Calcinosis/genetics , Calcinosis/pathology , Hematologic Diseases/genetics , Hematologic Diseases/pathology , Vestibular Diseases/genetics , Vestibular Diseases/pathology
11.
World J Clin Cases ; 12(16): 2813-2821, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38899290

ABSTRACT

BACKGROUND: As research on diabetes continues to advance, more complex classifications of this disease have emerged, revealing the existence of special types of diabetes, and many of these patients are prone to misdiagnosis and underdiagnosis, leading to treatment delays and increased health care costs. The purpose of this study was to identify four causes of secondary diabetes. CASE SUMMARY: Secondary diabetes can be caused by various factors, some of which are often overlooked. These factors include genetic defects, autoimmune disorders, and diabetes induced by tumours. This paper describes four types of secondary diabetes caused by Williams-Beuren syndrome, Prader-Willi syndrome, pituitary adenoma, and IgG4-related diseases. These cases deviate significantly from the typical progression of the disease due to their low incidence and rarity, often leading to their neglect in clinical practice. In comparison to regular diabetes patients, the four individuals described here exhibited distinct characteristics. Standard hypoglycaemic treatments failed to effectively control the disease. Subsequently, a series of examinations and follow-up history confirmed the diagnosis and underlying cause of diabetes. Upon addressing the primary condition, such as excising a pituitary adenoma, providing glucocorticoid supplementation, and implementing symptomatic treatments, all patients experienced a considerable decrease in blood glucose levels, which were subsequently maintained within a stable range. Furthermore, other accompanying symptoms improved. CONCLUSION: Rare diseases causing secondary diabetes are often not considered in the diagnosis of diabetes. Therefore, it is crucial to conduct genetic tests, antibody detection and other appropriate diagnostic measures when necessary to facilitate early diagnosis and intervention through proactive and efficient management of the underlying condition, ultimately improving patient outcomes.

12.
Article in English | MEDLINE | ID: mdl-38904853

ABSTRACT

Williams-Beuren Syndrome (WBS) is a rare genetic condition caused by a chromosomal microdeletion at 7q11.23. It is a multi-system disorder characterized by distinct facies, intellectual disability, and supravalvar aortic stenosis. Those with WBS are at increased risk of sudden death, but mechanisms underlying this remain poorly understood. We recently demonstrated autonomic abnormalities in those with WBS that are associated with increased susceptibility to arrhythmia and sudden cardiac death (SCD) risk. A recently introduced method for HRV analysis called 'heart rate fragmentation' (HRF) correlates with adverse cardiovascular events and death in studies where HRV failed to identify high-risk subjects. Some argue that HRF quantifies non-autonomic cardiovascular modulators. We, therefore, sought to apply HRF analysis to a WBS cohort to: 1) determine if those with WBS show differences in HRF compared to healthy controls and 2) determine if HRF correlates with traditional HRV measures in those with WBS. Similar to studies of those with CAD and atherosclerosis, we found significantly higher HRF in those with WBS compared to healthy controls. In general, HRF shows minimal correlation with traditional HRV metrics, suggesting that HRF may quantify some non-autonomic modulators of sudden death risk in those with WBS. We also introduce a new metric inspired by the HRF methodology, Significant Acute Rate Drop (SARD), which may permit vagal activity detection more directly. HRF and SARD increase the ability of non-invasive HRV measures to identify those at greatest risk for sudden cardiac death both in those with WBS as well as populations more broadly.

13.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Article in English | MEDLINE | ID: mdl-38884729

ABSTRACT

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Subject(s)
Heart Septal Defects, Ventricular , Humans , Chromosome Aberrations , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Heart Septal Defects, Ventricular/genetics , Mutation , Transcription Factors/genetics
14.
J. pediatr. (Rio J.) ; 100(3): 277-282, May-June 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558330

ABSTRACT

Abstract Objective: To develop growth charts for weight-for-age, height-for-age, and body mass index (BMI)-for-age for both genders aged 2 to 18 years for Brazilian patients with Williams-Beuren Syndrome (WBS). Methods: This is a multicenter, retrospective, and longitudinal study, data were collected from the medical records of boys and girls with a confirmed diagnosis of WBS in three large university centers in the state of Sao Paulo, Brazil. Growth charts stratified by gender and age in years were developed using LMSchartmaker Pro software. The LMS (Lambda Mu Sigma) method was used to model the charts. The quality of the settings was checked by worm plots. Results: The first Brazilian growth charts for weight-for-age, height-for-age, and BMI-for-age stratified by gender were constructed for WBS patients aged 2 to 18 years. Conclusion: The growth charts developed in this study can help to guide family members and to improve the health care offered by health professionals.

15.
Metallomics ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38692844

ABSTRACT

Eukaryotic DNA codes not only for proteins but contains a wealth of information required for accurate splicing of messenger RNA precursors and inclusion of constitutively or alternatively spliced exons in mature transcripts. This "auxiliary" splicing code has been characterized as exonic splicing enhancers and silencers (ESE and ESS). The exact interplay between protein and splicing codes is, however, poorly understood. Here, we show that exons encoding copper-coordinating amino acids in human cuproproteins lack ESEs and/or have an excess of ESSs, yet RNA sequencing and expressed sequence tags data show that they are more efficiently included in mature transcripts by the splicing machinery than average exons. Their largely constitutive inclusion in messenger RNA is facilitated by stronger splice sites, including polypyrimidine tracts, consistent with an important role of the surrounding intron architecture in ensuring high expression of metal-binding residues during evolution. ESE/ESS profiles of codons and entire exons that code for copper-coordinating residues were very similar to those encoding residues that coordinate zinc but markedly different from those that coordinate calcium. Together, these results reveal how the traditional and auxiliary splicing motifs responded to constraints of metal coordination in proteins.


Subject(s)
Copper , Exons , RNA Splicing , Humans , Exons/genetics , Copper/metabolism , Alternative Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Enhancer Elements, Genetic/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism
16.
Front Endocrinol (Lausanne) ; 15: 1352552, 2024.
Article in English | MEDLINE | ID: mdl-38699383

ABSTRACT

Congenital adrenal hyperplasia (CAH) and Williams Syndrome (WS; MIM # 194050) are distinct genetic conditions characterized by unique clinical features. 21-Hydroxylase deficiency (21-OHD; MIM #201910), the most common form of CAH, arises from mutations in the CYP21A2 gene, resulting in virilization of the external genitalia in affected females, early puberty in males, and short stature. Williams syndrome, caused by a microdeletion of 7q11.23, presents with distinctive facial features, intellectual disability, unique personality traits, early puberty, and short stature. This case report describe the clinical features of a 4-year-old girl referred due to progressive virilization and developmental delay. Genetic analysis confirmed concurrent CAH and WS, identifying a novel mutation in the CYP21A2 gene (c.1442T>C). Following corticosteroid therapy initiation, the patient developed central precocious puberty. This case report delves into the pubertal change patterns in a patient affected by overlapping genetic conditions, providing valuable insights in to the intricate clinical manifestation and management of these rare complex disorders.


Subject(s)
Adrenal Hyperplasia, Congenital , Puberty, Precocious , Virilism , Williams Syndrome , Humans , Female , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Puberty, Precocious/diagnosis , Puberty, Precocious/genetics , Puberty, Precocious/etiology , Williams Syndrome/complications , Williams Syndrome/genetics , Williams Syndrome/diagnosis , Child, Preschool , Virilism/genetics , Virilism/diagnosis , Steroid 21-Hydroxylase/genetics , Mutation
17.
Turk J Pediatr ; 66(2): 215-225, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38814298

ABSTRACT

BACKGROUND: Cardiovascular system involvement is quite common and the leading cause of morbidity and mortality in patients with Williams syndrome (WS), most of whom need surgery. The present study aimed to provide a detailed evaluation of the features of surgical procedures and outcomes of patients with WS given as single-center experience, and additionally to make a detailed review from Türkiye. MATERIALS AND METHODS: Thirty-five children with WS diagnosed between the years 1992 and 2021 were evaluated retrospectively including cardiovascular data, surgical treatment features, and outcomes. A total of six articles from Türkiye were evaluated. RESULTS: A total of 35 patients with Williams Syndrome (24 male) with a median age of cardiologic diagnosis of 6 months (range, 2 days-6 years) were evaluated. The cardiac defects of the patients with WS were found as supravalvular aortic stenosis (SVAS) (n=30, 85%) and peripheral pulmonary stenosis (PPS) (n=21, 65%). Additional cardiac anomalies were seen in 71% patients. The rate of SVAS and PPS surgery in all patients with WS was 77.1%. The median surgical age of the patients was 2.5 years (range, 7 months-15.5 years). No patients died due to surgery. But one patient died because of ventricular tachycardia due to anesthesia at the beginning of angiography. A total of 138 (63% male) patients with WS were evaluated from the articles published in Türkiye. Of 138 patients, 64.4% had SVAS, 52.1% had PPS, and 39.8% had additional cardiac anomaly. The median follow-up period ranged from 17 months to 18 years, and six (4.3%) patients died in the early postoperative period. CONCLUSION: Cardiovascular system involvement is extremely common and is the leading cause of morbidity and mortality in patients with WS, often requiring surgical intervention. As seen in our study including 35 patients with WS and in publications from Türkiye, SVAS in patients with WS generally requires surgery, especially in the first year of life. PPS, on the other hand, requires surgery less frequently than SVAS, and pulmonary stenosis appears to decrease over time.


Subject(s)
Heart Defects, Congenital , Williams Syndrome , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Follow-Up Studies , Heart Defects, Congenital/surgery , Retrospective Studies , Turkey/epidemiology , Williams Syndrome/surgery , Williams Syndrome/complications , Adolescent
18.
J Community Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776013

ABSTRACT

Individuals with Williams syndrome (WS) may experience a variety of medical, behavioral, and educational concerns. The primary objective of this study was to assess barriers to health care for patients with WS, primarily using the Barriers to Care Questionnaire (BCQ), and to assess whether various demographic factors are correlated with these barriers. A REDCap survey was distributed using the Williams Syndrome Association Research Registry. 319 caregivers of individuals with WS in the United States completed the BCQ. On the BCQ, lower scores indicate more barriers to care. Younger age was associated with lower scores for both the pragmatics and the skills subscales while lower income levels and increased distances to providers knowledgeable about WS were consistently associated with lower total BCQ scores.

19.
J Biomech ; 168: 112124, 2024 May.
Article in English | MEDLINE | ID: mdl-38701696

ABSTRACT

Congenital arterial stenosis such as supravalvar aortic stenosis (SVAS) are highly prevalent in Williams syndrome (WS) and other arteriopathies pose a substantial health risk. Conventional tools for severity assessment, including clinical findings and pressure gradient estimations, often fall short due to their susceptibility to transient physiological changes and disease stage influences. Moreover, in the pediatric population, the severity of these and other congenital heart defects (CHDs) often restricts the applicability of invasive techniques for obtaining crucial physiological data. Conversely, evaluating CHDs and their progression requires a comprehensive understanding of intracardiac blood flow. Current imaging modalities, such as blood speckle imaging (BSI) and four-dimensional magnetic resonance imaging (4D MRI) face limitations in resolving flow data, especially in cases of elevated flow velocities. To address these challenges, we devised a computational framework employing zero-dimensional (0D) lumped parameter models coupled with patient-specific reconstructed geometries pre- and post-surgical intervention to execute computational fluid dynamic (CFD) simulations. This framework facilitates the analysis and visualization of intricate blood flow patterns, offering insights into geometry and flow dynamics alterations impacting cardiac function. In this study, we aim to assess the efficacy of surgical intervention in correcting an extreme aortic defect in a patient with WS, leading to reductions in wall shear stress (WSS), maximum velocity magnitude, pressure drop, and ultimately a decrease in cardiac workload.


Subject(s)
Hemodynamics , Models, Cardiovascular , Williams Syndrome , Humans , Williams Syndrome/physiopathology , Williams Syndrome/diagnostic imaging , Hemodynamics/physiology , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnostic imaging , Aorta/physiopathology , Aorta/diagnostic imaging , Blood Flow Velocity/physiology , Male , Female , Computer Simulation
20.
J Am Heart Assoc ; 13(9): e032872, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639351

ABSTRACT

BACKGROUND: Peripheral pulmonary stenosis (PPS) is a condition characterized by the narrowing of the pulmonary arteries, which impairs blood flow to the lung. The mechanisms underlying PPS pathogenesis remain unclear. Thus, the aim of this study was to investigate the genetic background of patients with severe PPS to elucidate the pathogenesis of this condition. METHODS AND RESULTS: We performed genetic testing and functional analyses on a pediatric patient with PPS and Williams syndrome (WS), followed by genetic testing on 12 patients with WS and mild-to-severe PPS, 50 patients with WS but not PPS, and 21 patients with severe PPS but not WS. Whole-exome sequencing identified a rare PTGIS nonsense variant (p.E314X) in a patient with WS and severe PPS. Prostaglandin I2 synthase (PTGIS) expression was significantly downregulated and cell proliferation and migration rates were significantly increased in cells transfected with the PTGIS p.E314X variant-encoding construct when compared with that in cells transfected with the wild-type PTGIS-encoding construct. p.E314X reduced the tube formation ability in human pulmonary artery endothelial cells and caspase 3/7 activity in both human pulmonary artery endothelial cells and human pulmonary artery smooth muscle cells. Compared with healthy controls, patients with PPS exhibited downregulated pulmonary artery endothelial prostaglandin I2 synthase levels and urinary prostaglandin I metabolite levels. We identified another PTGIS rare splice-site variant (c.1358+2T>C) in another pediatric patient with WS and severe PPS. CONCLUSIONS: In total, 2 rare nonsense/splice-site PTGIS variants were identified in 2 pediatric patients with WS and severe PPS. PTGIS variants may be involved in PPS pathogenesis, and PTGIS represents an effective therapeutic target.


Subject(s)
Cytochrome P-450 Enzyme System , Intramolecular Oxidoreductases , Pulmonary Valve Stenosis , Williams Syndrome , Adolescent , Child , Child, Preschool , Female , Humans , Male , Cell Movement , Cell Proliferation , Cells, Cultured , Codon, Nonsense , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Exome Sequencing , Genetic Predisposition to Disease , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Phenotype , Pulmonary Artery/physiopathology , Pulmonary Artery/enzymology , Pulmonary Valve Stenosis/genetics , Pulmonary Valve Stenosis/physiopathology , Severity of Illness Index , Williams Syndrome/genetics , Williams Syndrome/physiopathology , Williams Syndrome/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...